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Abstract 1 

In nature, microbes often need to "decide" which of several available nutrients to utilize, a choice 2 

that depends on a cell’s inherent preference and external nutrient levels. While natural 3 

environments can have mixtures of different nutrients, phenotypic variation in microbes’ 4 

decisions of which nutrient to utilize is poorly studied. Here, we quantified differences in the 5 

concentration of glucose and galactose required to induce galactose-responsive (GAL) genes 6 

across 36 wild S. cerevisiae strains. Using bulk segregant analysis, we found that a locus 7 

containing the galactose sensor GAL3 was associated with differences in GAL signaling in eight 8 

different crosses. Using allele replacements, we confirmed that GAL3 is the major driver of GAL 9 

induction variation, and that GAL3 allelic variation alone can explain as much as 90% of the 10 

variation in GAL induction in a cross. The GAL3 variants we found modulate the diauxic lag, a 11 

selectable trait. These results suggest that ecological constraints on the galactose pathway may 12 

have led to variation in a single protein, allowing cells to quantitatively tune their response to 13 

nutrient changes in the environment.  14 

 15 

  16 
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Author summary 17 

In nature, microbes often need to decide which of many potential nutrients to consume. This 18 

decision making process is complex, involving both intracellular constraints and the organism’s 19 

perception of the environment. To begin to mimic the complexity of natural environments, we 20 

grew cells in mixtures of two sugars, glucose and galactose. We find that in mixed environments, 21 

the sugar concentration at which cells decides to induce galactose-utilizing (GAL) genes is 22 

highly variable in natural isolates of yeast. By analyzing crosses of phenotypically different 23 

strains, we identified a locus containing the galactose sensor, a gene that in theory could allow 24 

cells to tune their perception of the environment. We confirmed that the galactose sensor can 25 

explain upwards of 90% of the variation in the decision to induce GAL genes. Finally, we show 26 

that the variation in the galactose sensor can modulate the time required for cells to switch from 27 

utilizing glucose to galactose. Our results suggest that signaling pathways can be highly variable 28 

across strains and thereby might allow for rapid adaption in fluctuating environments. 29 

  30 
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Introduction 31 

The nutrient composition of natural environments can fluctuate and organisms must 32 

induce metabolic pathways that allow them to utilize the available nutrients [1-3]. Recent studies 33 

have found that closely related microbes vary in both the types of nutrients they can utilize and 34 

the efficiency at which they do so [4,5]. However, most studies have focused on differences in 35 

growth in single-nutrient environments (e.g., growth in “pure” glycerol). Natural environments, 36 

on the other hand, often contain multiple nutrients that cells need to choose between, and 37 

suboptimal nutrient decisions can have severe fitness consequences [6-9]. Hence, it is likely that 38 

cells have been selected not only to utilize nutrients efficiently, but to decide which subsets of 39 

nutrients to utilize. 40 

Signaling pathways sense which nutrients are present and control the decision of which 41 

transcriptional network to activate. The majority of plasticity in gene expression patterns has 42 

been linked to changes in transcriptional regulatory networks. While transcription factor binding 43 

sites are typically conserved, the location of the binding sites in the genome can rapidly evolve 44 

[10]. Chromatin immunoprecipitation followed by sequencing in yeast [11-13], mice and human 45 

[14], and flies [15] have shown a surprisingly small conservation in the genes and sites that were 46 

bound by transcriptional regulators between species. Even when the regulated genes are 47 

conserved, the transcription factors that regulate them can change [16-19]. The development of 48 

genomic tools has greatly aided the interspecific comparison of regulatory binding sites.  49 

There are relatively few cases where adaptive changes in signaling networks have been 50 

linked to molecular and genetic variation. By contrast, changes in transcription regulatory 51 

networks have been easier to identify due to the development of high-throughput genomic and 52 

computational approaches. Additionally, studies are often biased towards finding changes in 53 
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transcriptional regulatory networks based on the phenotypes assayed, i.e. fitness in 'extreme' 54 

environments. Still, there are multiple situations where upstream signaling changes must have 55 

occurred. For instance, in the galactose-utilization pathway (GAL) in C. albicans, Rtg1p and 56 

Rtg3p activate GAL genes while Gal4p is involved in glucose regulation; in S. cerevisiae, Gal4p 57 

activates GAL genes, while Rtg1p and Rtg3p are involved in glucose regulation [20]. This 58 

implies that the upstream signaling networks that sense and transduce galactose and glucose 59 

signals have also changed. Furthermore, duplication and divergence can shape signaling 60 

networks. For example in the GAL pathway in yeast, duplication and divergence allowed the 61 

sensing and catabolic activity of a single ancestral protein to be separated into two paralogous 62 

proteins [21]; this divergence likely had profound consequences for how yeast were able to 63 

'perceive' galactose. Hence, it is likely that cellular decision-making can also evolve, but the 64 

degree of variation, its molecular and physiological basis, and the evolutionary timeframe at 65 

which it occurs has yet to be resolved.  66 

To begin to address these questions we characterized differences in natural isolates of the 67 

budding yeast, S. cerevisiae in the decision to induce the GAL pathway in mixtures of glucose 68 

and galactose. In the presence of high concentrations of glucose, the preferred carbon source, 69 

yeast cells repress the GAL pathway [22,23]. In the presence of galactose alone, cells activate 70 

GAL genes. In mixtures of both glucose and galactose, cells must "decide" whether to induce 71 

GAL-associated genes. In such mixed environments, cells show a complex response [24] where 72 

the induction of the pathway is dependent on the ratio of glucose and galactose [25]. These 73 

observations, combined with the deep molecular understanding in the literature [26,27], make the 74 

GAL pathway an excellent model for studying natural variation in cellular decision-making. 75 
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 Here, we use single-cell measurements to quantify differences in GAL decision-making 76 

across closely related natural isolates of S. cerevisiae, followed by bulk segregant analysis and 77 

allele replacements to find the genetic determinants of this variation. We found that the glucose 78 

concentration needed to induce GAL genes varies ~100-fold across yeast strains. Even though 79 

this phenotypic variation is continuous, a large proportion of it can be explained by differences in 80 

a single gene, the galactose sensor GAL3. Changing the GAL3 allele produces a measurable 81 

difference in the diauxic lag length, a trait that was previously shown to be selectable [8]. These 82 

results highlight the fact that cellular decision-making has the potential to be rapidly shaped by 83 

selective pressures in the environment. 84 

Results 85 

The decision to induce GAL pathway varies across S. cerevisiae natural isolates 86 

To enable measurement of the GAL signaling response, we generated a fusion of the 87 

GAL1 promoter from S. cerevisiae and yellow fluorescent protein (GAL1pr-YFP) (Fig. 1A). 88 

GAL1 is the first metabolic gene in the galactose utilization pathway [28] and this promoter has 89 

been used by numerous studies as a faithful readout of pathway activity [9,25,29,30]. The 90 

reporter construct was integrated into the neutral HO locus [31] in 42 different S. cerevisiae 91 

strain backgrounds (S1 Fig.) [32,33]. These 42 strains span a range of phylogenetic and 92 

ecological diversity [32,33]. Six of these strains either did not grow in galactose, likely due to 93 

inactivation of the pathway [4], and thus were not characterized further. We focused on 94 

determining the GAL response phenotype of the remaining 36 strains (S1 Table). 95 

To survey the natural variation in the inducibility of GAL genes in mixtures of glucose 96 

and galactose, we measured the GAL reporter response in a titration of glucose concentrations 97 

from 2% to 0.004% w/v on a background of constant 0.25% galactose (Fig. 1B, Materials and 98 
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methods). Cells were first pre-grown for 14-16 hours in 2% raffinose (which does not induce or 99 

repress the GAL pathway), and then transferred to glucose + galactose and grown for 8 hours at 100 

low densities. We previously showed that this protocol is sufficient for cells to reach steady-state 101 

without depleting the carbon sources [25]. Finally, single-cell YFP fluorescence was measured 102 

by flow cytometry. To account for well-to-well variability or variability in our glucose titration, 103 

each of the 36 query strains were co-cultured with a reference strain, YJM978, containing 104 

TDH3pr-mCherry (this constitutive fluorophore allowed us to distinguish the query and 105 

reference strains) and GAL1pr-YFP (Materials and Methods).  106 

Qualitatively, there were large strain-to-strain differences in the concentration of glucose 107 

at which cells induced the GAL pathway (Fig. 1, S4 Fig.). We also observed bimodal expression 108 

in some strains and conditions, a likely consequence of cellular heterogeneity and ultrasensitivity 109 

in the GAL circuit [30,34,35]. This complicates quantitative analysis, because a metric such as 110 

the mean expression (which is implicit, for example, in a bulk assay) would convolute both the 111 

number of cells that are inducing and the expression level of the cells that have 'decided to' 112 

induce, two factors that may vary independently in bimodal responses. Hence, to compare the 113 

GAL pathway response between natural isolates, we defined a metric, the “decision threshold”, 114 

as the concentration at which 50% of cells have greater-than-basal expression of the GAL 115 

reporter (Materials and Methods). This metric is similar to those used in previous work [29,36], 116 

and focuses on when a cell decides to induce a pathway while differentiating it from how 117 

strongly a cell responds once induced. The decision threshold is highly reproducible across 118 

replicate measurements for all of our natural isolates (S3 Fig.).  119 

Quantitatively, the decision threshold varies over a range of 108 ± 0.7-fold glucose 120 

concentrations across our strains (Fig. 1, S4 Fig.). The Hawaiian cactus strain UWOPS87-242.1, 121 
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was most inducible, with a decision threshold of 0.74±0.2% glucose (mean ± standard error 122 

mean), while the clinical isolate, YJM421, was least inducible, with a decision threshold of 123 

0.01±0.01% glucose (mean ± S.E.M.). Half of the strains have decision thresholds within a 8.1-124 

fold range centered at 0.25% glucose (Fig. 1C). This glucose concentration corresponds to a 125 

galactose+glucose ratio of ~1:1. The distribution of decision thresholds appears continuous; there 126 

are significantly more than two distinct decision thresholds given the reproducibility of our 127 

measurements (Materials and Methods).  128 

Strain differences in decision threshold could be due to differences in sugar signaling, 129 

utilization, or both. If sugar utilization is a factor, we expect the decision threshold to be 130 

correlated to growth rates in glucose or galactose. We measured the growth rates of the 36 131 

natural isolates during mid-exponential growth in either 0.5% glucose or 0.5% galactose (S5 132 

Fig., [6]). Despite substantial variation in single-sugar growth rates across our strains (0.23-fold 133 

in glucose and 0.16-fold in galactose), neither growth in pure galactose or glucose are correlated 134 

with the decision threshold (glucose r2 = 0.2, galactose r2 = 0.001). This implies that while both 135 

sugar utilization and signaling can vary between strains, evolution has the potential to select 136 

these two traits independently. 137 

Previous studies have determined the correlation between genotypic diversity and either 138 

phenotypic diversity or ecological niche. For example, analysis of 600 traits in yeast by 139 

Warringer et al. identified a correlation between phylogeny and phenotype [4]. These studies can 140 

be used to assess whether traits are more likely to be neutral or undergoing selective constraint. 141 

To determine if the decision threshold is correlated with phylogeny, we began by comparing the 142 

13 closely related strains of the wine/European clean lineage. Despite the close phylogenetic 143 

relationship of these strains, this lineage represents the most phenotypic diversity. The two most 144 
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phenotypically distinct strains in this lineage, YJM978 and DBVPG1373, have a 48±0.3-fold 145 

difference (mean ± S.E.M.). More broadly, we compared the pairwise genetic distances 146 

(determined by RAD-SEQ [37]) to pairwise phenotypic distance (Materials and Methods). We 147 

did not find a significant correlation (r2=-0.08) between genetic distance and decision threshold. 148 

This level of correlation with genetic distance is comparable to that of many other traits [4] (S6 149 

Fig., p-value=0.17 by ANOVA). Finally, we tested for and found a signification association 150 

between ecological niche and decision threshold (S7 Fig., p-value=2.95e-5 by ANOVA). 151 

Bulk segregant analysis identifies one major-effect locus underlying natural 152 

variation in the GAL decision threshold 153 

To investigate the genetic basis of the observed variation in GAL decision threshold, we 154 

performed bulk-segregant analysis using a variant of the X-QTL method (Fig. 2A) [38-40]. We 155 

crossed eight strains that span the phenotypic and phylogenetic diversity of S. cerevisiae in a 156 

round-robin design (Fig. 2). This design is known to efficiently sample parental genetic variation 157 

and allow downstream linkage analyses to detect loci with a range of effect sizes [38]. Pools of 158 

segregants from each cross were grown in a glucose + galactose condition that maximally 159 

differentiates the parental phenotypes. The 5% least and 5% most induced cells (“OFF” and 160 

“ON” segregant pools) were isolated by fluorescence-activated cell sorting (FACS) and 161 

sequenced in bulk to determine the parental allele frequencies in each pool. We used the 162 

MULTIPOOL software [41] to determine statistical significance for allele frequency differences 163 

between OFF and ON pools across the genome (Materials and Methods), and called significant 164 

loci as regions where the peak log-odds-ratio was greater than 10 (Fig. 2B). This cutoff had a 165 

low false-discovery rate in a previous study, and correlated well with allele frequency difference, 166 

a proxy for locus effect size, in our data [38] (S8 Fig.). 167 
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Over all 8 crosses, we found 16 loci where segregant pools differ in allele frequency at 168 

LOD > 10 (Fig. 2B). One locus centered at 460 kb on chromosome IV (henceforth, “chrIV:460”) 169 

was the only locus to exceed the LOD cutoff in all 8 crosses, as well as the most significant locus 170 

in each cross (Fig. 2B). The 2-LOD support interval for this locus in the YJM978 x BC187 cross, 171 

defined as the genomic region where LOD decreases by 2 from its peak, is 10 kb wide and 172 

contains six genes (Fig. 2C). This includes GAL3, whose product directly binds galactose and 173 

positively regulates the GAL pathway [42]. The support interval for chr:460 looked similar in 174 

other crosses (S2 Table). One other locus, at chrXIV:462, reached LOD > 10 in two crosses; the 175 

remaining significant loci were confined to a single cross. We did detect additional loci in 176 

multiple crosses using a less stringent cutoff of LOD > 5; however, chrIV:460 remained the only 177 

locus significant in all crosses (S8 Fig., S2 Table, Materials and Methods). 178 

In principle, a round-robin cross design is expected to detect each locus in more than one 179 

cross. The fact that we identified several alleles in only one cross is potentially explained by a 180 

lack of statistical power, epistasis, or gene-by-environment effects [38]. Indeed, a potential 181 

caveat to the apparent importance of GAL3 is that in a pooled segregant analysis, large effect 182 

QTLs might mask the presence of smaller-effect genes [43]. Furthermore, low sequencing depth 183 

of some of our segregant pools may have limited our power to detect small-effect alleles 184 

(Materials and Methods). However, even the lowest sequencing depth we obtained (25x) is still 185 

sufficiently powered to map alleles with effects as low as 5% of phenotypic variance [44]. More 186 

importantly, we performed a complementary analysis of segregants to directly measure the 187 

contribution of GAL3 to the phenotypic variance in a cross (see below). Finally, alleles that were 188 

identified in only one cross may arise from the different conditions used for sorting each cross 189 
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(Materials and Methods), i.e. gene-by-environment effects. Given its importance, we chose to 190 

focus on the chrIV:460 locus for further characterization.  191 

GAL3 is the causative allele and major driver of variation in the GAL signaling 192 

response  193 

To determine if GAL3 was the causative allele on chrIV:460 with a predictable and 194 

quantitative impact on the decision threshold, we replaced the endogenous GAL3 allele of strains 195 

YJM978, BC187, and S288C with alleles from eleven natural isolates spanning the observed 196 

range of phenotypic variation (Fig. 1). Allele replacements were constructed by deleting the 197 

3283bp GAL3 locus, which includes 890 bp upstream, 911 bp downstream, and the 1563 bp 198 

GAL3 ORF in haploid parental strains and then replacing the deleted locus with the homologous 199 

~3283bp GAL3 locus from other strains using the CRISPR-Cas9 system [45] (Materials and 200 

Methods). Replacement of GAL3 alleles in the YJM978 background recapitulated the ~95-fold 201 

range of decision threshold of the natural isolates that served as GAL3 allele donors. 202 

Additionally, the decision thresholds of allele-replacement and GAL3 donor strains were well-203 

correlated in this background (r2 of 0.58). Similarly, GAL3 alleles in the S288C background had 204 

a ~55-fold range and r2 of 0.60; GAL3 alleles in the BC187 background had a ~138-fold range 205 

and r2 of 0.63. In total, this confirms the significant impact that the GAL3 locus has on variation 206 

in the decision threshold (Fig. 1, Fig. 3A-C, S9 Fig.). 207 

While different GAL3 alleles were able to confer a range of phenotypes in a particular 208 

strain background, the three strain backgrounds also displayed different decision thresholds for a 209 

given GAL3 allele. This suggests that genes other than GAL3 also affect the decision threshold, 210 

even for the BC187xYJM978 cross. To assess the magnitude of this background effect, we 211 

measured the decision threshold in seven different strain backgrounds where the GAL3 locus has 212 
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been replaced with an allele from YJM978, S288C, or BC187 (Fig. 3D, S10 Fig.). Across the 213 

seven backgrounds, GAL3YJM978 allele-replacement strains varied in decision threshold over a 214 

~14-fold range, GAL3S288C strains over ~20-fold, and GAL3BC187 strains over ~49-fold (Fig. 3), 215 

and the correlation (r2) in decision threshold between these allele-replacement strains and their 216 

strain background donors was 0.60, 0.28, and 0.12, respectively. These results confirm that strain 217 

background strongly influences decision threshold. However, it is also clear that GAL3 allele still 218 

has a stronger effect, because both the phenotypic range and correlations to donor strain were 219 

lower for strain background than for GAL3 allele. This can also be seen by the fact that the 220 

GAL3BC187 and GAL3S288C strains have decision thresholds that are similar to each other but 221 

systematically higher than GAL3YJM978, regardless of strain background. 222 

The GAL3 allele accounts for 70-90% of the phenotypic variance in a cross between 223 

strains with extreme opposite decision thresholds 224 

The allele replacements show that GAL3 is a major driver of natural variation in the 225 

decision threshold, but also suggests that other genes play a significant role. To quantify the 226 

relative contribution of GAL3 allele versus other genes to variation in decision threshold, we 227 

analyzed the variance in decision threshold across meiotic segregants from YJM978 x BC187 228 

hybrids with different combinations of GAL3 alleles. This method is relatively insensitive to the 229 

metric chosen and potential non-linear relationships between genotype and phenotype. We chose 230 

this cross because the GAL3 locus was the only significant locus from BSA, and thus our 231 

calculation should yield a rough upper bound on the GAL3 contribution in other strains. We 232 

constructed three hybrid strains: a ‘wild-type’ hybrid (YJM978 x BC187), a hybrid with GAL3 233 

only from YJM978 (YJM978 x BC187 gal3Δ::GAL3YJM978) and a hybrid with GAL3 only from 234 

BC187 (YJM978 gal3Δ::GAL3BC187 x BC187). The decision threshold of at least 58 meiotic 235 
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segregants was measured for each hybrid in duplicate (Fig. 4, S11 Fig.). Consistent with GAL3 236 

having a large effect, we found that converting a single allele in each hybrid greatly reduced the 237 

phenotypic variation of the segregant populations.  238 

To quantify the effect of GAL3, we used a variance-partitioning model with additive 239 

effects. We assumed that the total variance of each segregant population (VP) can be separated 240 

into several contributions: �� � �� � �� � ��� � �� � �� . We assumed no interactions between 241 

gene and environment (VEG=0) and no epistatic interactions (VI=0). Additionally, there is no 242 

dominance as we used haploid strains (VD=0) and the environmental variability is equal to the 243 

measurement noise because the strains are isogenic and are grown in identical environments 244 

(VE=���. Since we know that GAL3 is a major driver of the decision threshold phenotype, we 245 

partitioned VG into two components: the variance due to the background (���) and the variance 246 

due to GAL3 (VGAL3). Hence the total variance could be simplified to �� � �� � ���	
 � ���  247 

(Fig. 4, S11 Fig.). By definition, in the allele swap segregants (hybrids 2 and 3) ���	
 � 0. 248 

Based on this variance-partitioning model (Materials and Methods), we can estimate the 249 

contribution of the GAL3 allele by dividing ���	
 with the sum of ���	
 and ���  or the total 250 

genetic variance. We can estimate the ���  by comparing segregants from hybrid 2 and 3 or from 251 

the ‘wild-type’ hybrid, which will give us an upper and lower bound of GAL3 allelic 252 

contribution. Using the segregant population from hybrid 2 and 3, the GAL3 allele contributes 253 

86% of the genetic variance between YJM978 and BC187. Two segregants from hybrid 1 (‘wild-254 

type’ hybrid) have a decision threshold lower than what we would have expected from 255 

segregants of hybrid 2 (S11 Fig.). These two strains increase the background variance, which 256 

ultimately reduces the effect of GAL3. Using the segregant population from hybrid 1, we 257 

estimate that GAL3 explains 67% of the variance between YJM978 and BC187. These two 258 
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'outliers' could potentially result from a rare combination of alleles between the strains, implying 259 

that we undersampled the distribution from hybrid 2. These calculations suggest that GAL3 could 260 

contribute anywhere from 70-90% to the variance of the decision threshold phenotype. 261 

Polymorphisms within GAL3 262 

To further explore how polymorphisms in GAL3 might contribute to the decision 263 

threshold phenotype, we analyzed the sequences of 55 natural isolates of S. cerevisiae 264 

[32,46,47]. We identified 8 synonymous and 19 nonsynonymous polymorphisms in the coding 265 

region of GAL3, which represent 26 unique haplotypes (Table S3). The natural isolates that we 266 

assayed (Fig. 1) included 21 of these unique haplotypes, where we excluded the haplotypes from 267 

the 6 strains that cannot utilize galactose. To determine whether the GAL3 haplotype is 268 

predictive of the decision threshold, we tested for and found a significant association between 269 

decision threshold and GAL3 haplotype (S12 Fig., p-value=0.04 by ANOVA). However, strains 270 

that share GAL3 haplotypes also tend to share population history (i.e. genomic background) and 271 

ecological niche. In particular, YPS163, YPS606, YSP218, and T7 were all isolated from North 272 

American oak trees and make up the North American lineage; S288C and FL100 are both mosaic 273 

lab strains; YJM978, YJM981, and YJM975, are clinical isolates in the Wine/European lineage. 274 

Due to the correlation between phylogeny and GAL3 haplotype, follow-up investigations using a 275 

larger and more diverse set of strains are needed to determine the extent to which decision 276 

threshold can be determined solely from the GAL3 haplotype. 277 

The GAL3 polymorphisms we observed can in principle affect the expression level, 278 

regulation, or function of the protein. Using mutfunc, a database that predicts the consequences 279 

of mutations in a protein, we found that 13 of the 19 nonsynonymous SNPs are predicted to 280 

affect protein function (Table S4). This includes nonconservative amino-acid substitutions in the 281 
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Gal3p dimerization interface and the Gal3-Gal80p interface [48]. Gal3p and Gal80p are both 282 

homodimers and the Gal3p-Gal80p interaction, which is crucial to the mechanism of GAL 283 

pathway activation, is thought to depend on this homodimerization [49,50]. We are less able to 284 

predict the impact of promoter variation, but we found 13 SNPs in the promoter (500 bp 285 

upstream of the start codon), none of which were in known transcription factor binding sites 286 

(Table S3). Furthermore, we did not find a significant association between the GAL3 promoter 287 

haplotype and decision threshold (S12 Fig., p-value=0.98 by ANOVA). Follow-up investigations 288 

to characterize the effects of each SNP in GAL3 will provide mechanistic insight into how the 289 

GAL response can be tuned quantitatively by polymorphisms in a single gene. 290 

To determine if GAL3 or any other genes in the canonical pathway are subject to adaptive 291 

evolution, we performed a McDonald-Kreitman analysis [51] using DnaSP [52]. The McDonald-292 

Kreitman test compares intraspecies variation with the divergence between two species. If the 293 

ratio of nonsynonymous to synonymous variation between species is equal, there is neutral 294 

selection, while any act of natural selection will result in a shift of these two ratios. This test 295 

suggests that GAL3, GAL80, and GAL5 are under strong purifying selection (Table S5). Our 296 

analysis is consistent with two studies that analyzed polymorphism and divergence data between 297 

S. cerevisiae and S. paradoxus, which suggested that there is strong evidence for purifying 298 

selection across the yeast genome  [53,54].   299 

GAL3 tunes the glucose-galactose diauxic lag 300 

We next asked whether variation in GAL3 produces selectable variation in phenotype. 301 

Diauxic growth is a classical phenotype observed when cells are grown in two sugars [3]. Cells 302 

undergo two phases of growth separated by a period with little growth, known as the “diauxic 303 

lag”, during which cells induce the genes required to metabolize the second sugar. Previously, 304 
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our lab has shown that diauxic lag length varies across natural yeast isolates vary, and that GAL1 305 

transcriptional reporter level before the lag is negatively correlated with lag length [6]. Here, we 306 

further show that decision threshold is correlated to GAL reporter expression (S13 Fig.), and 307 

likely as a result, also negatively correlated with diauxic lag length (Fig. 5A). This suggests that 308 

changing GAL3 alleles will also change the diauxic lag.  309 

To determine if GAL3 allele affects diauxic lag across our natural isolates, we performed 310 

diauxic shift experiments on allele replacement strains representing six GAL3 alleles (I14, 311 

YJM421, Y12-WashU, BC187, and S288c) in three strain backgrounds (YJM978, S288C and 312 

BC187) (Fig. 5B). As expected, simply changing the GAL3 allele in either the YJM978, BC187, 313 

or S288C background was sufficient to change the diauxic lag (Fig. 5B, S14 Fig.). Additionally, 314 

GAL3 alleles from short-lag strains S288C, BC187, and I14 (which also have higher decision 315 

thresholds) tended to reduce diauxic lag length when introduced into long-lag strain backgrounds 316 

YJM978, DBVPG1106, and YJM421, and vice versa. Previously, strains evolved to have an 317 

altered diauxic lag in glucose+maltose also had altered lag in glucose+galactose [8]. To 318 

determine if the GAL3 alleles we identified had a specific effect on GAL regulation, we also 319 

measured diauxic lag in glucose+maltose. This showed that GAL3 allele only affects diauxic lag 320 

in glucose+galactose and not in glucose+maltose (Fig. 5B, inset). 321 

Discussion 322 

Natural genetic variation in the GAL pathway 323 

Genetically and phenotypically diverse natural isolates of yeast have become a powerful 324 

system to determine the genetic basis of complex traits. Analyzing natural variation in the well-325 

characterized GAL pathway has the potential to allow us to connect molecular variation, 326 
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phenotypic variation, and selection. Two recent studies also explored variation in the GAL 327 

response across budding yeasts. Peng et al. used combinatorial promoter swaps of GAL 328 

regulatory components (GAL2, GAL3, GAL4, GAL80) between S. cerevisiae and S. paradoxus to 329 

show that GAL80 promoter variation was responsible for differences in the GAL response [36]. 330 

Roop et al. used a combination of promoter and ORF swaps to show that variation in multiple 331 

GAL pathway genes underlies regulatory differences between S. cerevisiae and S. bayanus [55]. 332 

In our study, we used bulk-segregant linkage mapping across diverse S. cerevisiae strains to find 333 

that most of the variation in GAL regulation is caused by polymorphisms in a single gene, GAL3. 334 

Why did each of the three studies identify different genetic loci? A potential explanation 335 

is the difference in genetic distance between the strains/species analyzed. We analyzed variation 336 

within S. cerevisiae, Peng et al. analyzed variation between the closely related species S. 337 

cerevisiae and S. paradoxus [36], and Roop et al. analyzed variation between the more distantly 338 

related species S. cerevisiae and S. bayanus [55]. One hypothesis, based on studies of evolution 339 

of development, holds that phenotypic changes on short timescales (i.e. between closely related 340 

organisms) are more likely to be caused by nonsynonymous coding-sequence mutations [56,57]. 341 

These are favored because of their large phenotypic effects, but come at a cost of increased 342 

pleiotropy. On a longer timescale, cis-regulatory mutations are enriched, presumably because 343 

they are less pleiotropic and allow finely tuned regulation of fitness-enhancing activities [56,57]. 344 

Results from Peng et al., Roop et al., and our study are largely inconclusive or weakly 345 

inconsistent with pleiotropy being the driving force between the sources of variation. Variation 346 

in the GAL response between S. cerevisiae and S. paradoxus is driven by promoter variation in 347 

GAL80 [58], while variation between S. cerevisiae and S. bayanus was driven by a combination 348 

of promoter and ORF changes [55]. Furthermore, many causative genes were identified between 349 
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S. cerevisiae and S. bayanus, while a single gene drove most of the variation within S. cerevisiae 350 

and between S. cerevisiae and S. paradoxus. Based on genome-wide expression profiles, there is 351 

no evidence that a GAL80 or GAL3 variants should be more pleiotropic than simultaneously 352 

varying all pathway components [59]. Broader investigations of multiple Saccharomyces species 353 

will help clarify the relationship between evolutionary distance and the repertoire of mutations.  354 

There are possibilities other than pleiotropy that could cause the difference in genes 355 

identified. The different phenotypes assayed in each study could be controlled by different 356 

components in the GAL pathway. However, we believe our assays measure highly correlated 357 

underlying traits. Peng et al. supplemented their media with mannose to avoid the confounding 358 

effects of carbon limitation at low galactose concentrations [36]. The effect of mannose on 359 

galactose utilization has not extensively been studied in S. cerevisiae, but in other systems 360 

mannose can be utilized as a preferred carbon source [60]. Therefore, we expect that the decision 361 

threshold in mannose and glucose are likely correlated. Roop et al. compared batch growth in a 362 

mixture of glucose and galactose a condition that leads to a diauxic lag in S. cerevisiae but not in 363 

S. bayanus. While natural variation in diauxic growth could have involved many pathways, we 364 

showed previously that glucose-galactose diauxic lag is driven by the timing of GAL pathway 365 

induction [6]. Here we extended this by showing that diauxic lag is correlated with the decision 366 

threshold (Fig. 5A) and primarily modulated by variation in GAL3 (Fig. 5B). Overall, our work 367 

here and recent findings in the literature suggest that all these traits are highly interconnected.  368 

Is the observed variation in the GAL pathway the result of neutral drift or selection? 369 

There are three lines of evidence that suggest the GAL pathway is under selection.  First, 370 

previous analysis has used the QTL cis-regulatory sign test [61] to argue that the GAL pathway 371 

has undergone selection between S. cerevisiae and S. bayanus [55]. Second, we show via the 372 
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McDonald-Kreitman test that several of the genes in the GAL pathway within S. cerevisiae are 373 

significantly enriched for nonsynonymous polymorphisms, and therefore likely under adaptive 374 

constraint (Table S5). Third, there are at least five genes that affect variability in the GAL 375 

response [29,35,36,55]. Given this knowledge we can ask whether the GAL pathway is under 376 

selection in a manner similar to the cis-regulatory sign test. Instead of looking for concordant 377 

expression changes, we look for enrichment of independent functional mutations in an 378 

unexpectedly small subset (i.e. one gene) of multiple possible target genes. Specifically, what is 379 

the chance of eight independent alleles of GAL3 being the main driver of variation in all eight of 380 

our crosses given a mutational target size of 5 genes (p-value<1e-6, permutation test). While 381 

there are caveats with this method, e.g. what is the true number of potential QTN for each gene, 382 

the potential mutational target size is probably much larger than five genes. A recent study of 383 

deletion mutants found that upwards of 40% of genes in the yeast genome have the potential to 384 

influence the GAL response (Hua et al., under review). Together, we believe these lines of 385 

evidence support the hypothesis that the GAL pathway is under selection.  386 

The interplay between selection, pleiotropy, and natural variation is further highlighted 387 

by experimental evolution studies in yeast [8] and E. coli [62,63]. In mixtures of carbon sources, 388 

microbes first consume a preferred nutrient, followed by a “ diauxic lag” where cells must induce 389 

the genes necessary to metabolize the second, less preferred nutrient [3]. New et al. found that 390 

yeast strains evolved in rapid shifts between glucose and maltose also had a shorter diauxic lag in 391 

a mixture of the two sugars [8]. Similarly, E. coli passaged in glucose-acetate mixtures evolved 392 

into both short-lag and long-lag subpopulations [62,63]. These results show that diauxic lag 393 

length is a readily evolvable trait. However, in both previous cases, the evolved phenotypes were 394 

due to mutations in global metabolic regulators. For example, New et al. obtained evolved 395 
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isolates with weakened catabolite repression, via mutations in the glucose-sensing genes HXK2 396 

and STD1, while maltose regulatory genes were unchanged [8]. These mutations are pleiotropic, 397 

and thus the evolved strains had shorter diauxic lags in both galactose and maltose. By contrast, 398 

we did not find a strong role for general catabolite repression underlying natural variation in 399 

GAL regulation, even though the potential mutational target size is large. Instead, our GAL3 400 

allele replacements specifically tune the glucose-galactose diauxic lag and do not affect the 401 

glucose-maltose lag (Fig. 5B, inset). This raises the possibility that in natural environments, 402 

where evolution has had longer to act, mutations that perturb global metabolic regulation (as in 403 

STD1 or HXK2) may be more detrimental than mutations that tune a particular sugar preference 404 

(as in GAL3). Hence, as predicted, the frequency of pleiotropic mutations may be an important 405 

difference between evolution at short versus long timescales [56,57].  406 

Genetic complexity of quantitative traits 407 

A number of labs have analyzed phenotypic variation in response to a range of 408 

environmental conditions [4,64,65] and delved into the genetic basis of variation in specific traits 409 

such as heat tolerance [66], gene/protein expression [67,68], sporulation efficiency [69-71], 410 

colony morphology [72-75], sulfur uptake [76],  and carbon regulation [36,55]. The vast majority 411 

of these studies used growth or expression level [67] as readout. Collectively these studies have 412 

yielded insight into the nature of quantitative traits [77]. But, these readouts can potentially miss 413 

the complexities of response to fluctuating environments. For example, cells grown in mixtures 414 

of glucose and galactose must choose when to induce GAL genes, a property that varies between 415 

natural isolates and is distinct from the growth rate on pure glucose and pure galactose (S5 Fig.). 416 

Is the decision to induce the GAL pathway similar to other phenotypic traits? 417 
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In principle, multiple different pathways and genes can shape natural variation of a trait. 418 

A round-robin BSA analysis of MAPK-pathway-mediated stress tolerance in yeast showed that 419 

genes both inside and outside the assayed pathway can have large effects on intraspecies 420 

phenotypic variation [38]. Previous X-QTL analyses of various traits in yeast have identified a 421 

handful of QTLs per trait [38,39,78]. The largest throughput single study found a median of 12 422 

loci for 46 phenotypic traits [79]. While neither previous analysis of the GAL pathway 423 

performed a BSA, the number of causative alleles identified through swaps and the total amount 424 

of variation explained by these alleles suggests a similar number of genes affect the GAL 425 

pathway as other traits [36,55]. Similar to other traits [80], despite the strong correlation between 426 

the decision threshold of GAL3 allele-replacements and their corresponding GAL3 donor strains, 427 

the genetic background still plays a strong role in phenotypic variation (Fig. 3). QTLs outside the 428 

GAL pathway might explain why swapping the main regulators of the GAL pathway between S. 429 

cerevisiae and S. bayanus was only able to partially interconvert the phenotypes [55]. Taken 430 

together, these results suggest the GAL pathway is similar to other quantitative traits. But, taken 431 

alone, our BSA of the GAL pathway suggests that the GAL phenotype is a simpler genetic trait 432 

than many of the previously analyzed traits. While other studies have found a small number of 433 

QTLs drive the majority of variation in a cross, e.g. sporulation efficiency, when these traits are 434 

analyzed in a different cross unique QTLs are often found [70]. Our variation stands out in that 435 

there appears to be an allelic series of a single gene, GAL3, driving the variation. Similar to the 436 

genes whose alleles drive variation in sporulation efficiency, GAL3 is positioned in a 'signal 437 

transduction bottleneck' [69]. Unlike sporulation where multiple genes critical for decision 438 

making were identified [69], we found variation is driven by a subset, i.e. one, of potential 439 

decision making proteins. Taken collectively with the previous analysis of variation in the GAL 440 
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pathway, an intriguing possibility is this difference might not arise from 'genetic simplicity' of 441 

the GAL response. Instead, GAL3 might control the variability in a subset of the phenotype of 442 

the GAL response, i.e. the decision threshold, while other members of the GAL pathway might 443 

control different aspects of a broader phenotypic response, e.g. diauxic lag. Our future work will 444 

directly test this hypothesis. 445 

Genetic interactions, often referred to as epistasis, play a role in many QTL-mapping 446 

studies [81,82]. Our study highlights two types of epistasis. First, similar to many other systems 447 

[80], the quantitative effect of each GAL3 allele is influenced by the genetic background. While, 448 

the directional effect of the GAL3 alleles from S288C, BC187, and YJM978 are largely 449 

preserved, in the YJM978 and S288C background, the effects of the allele replacements are 450 

diminished and the background dominates the resulting phenotype, which is highly compressed 451 

(Fig. 3D). This suppression of variation in certain strain backgrounds has been seen in other 452 

systems, such as colony morphology [83,84], and can result from the interaction of two or many 453 

genes. Second, there appears to be a 'maximum' achievable decision threshold of around 1% 454 

glucose in 0.25% galactose. Hence, when GAL3 alleles with decision thresholds above 0.25% 455 

glucose in 0.25% galactose are placed into a background with a high decision threshold (e.g. 456 

S288C or BC187), the effect of the GAL3 allele appears to saturate. This behavior is 457 

phenomenologically reminiscent of epistatic interactions in peaked fitness landscapes where 458 

beneficial mutations have diminishing effects [85,86] or the apparent saturating interaction 459 

between gene expression and fitness [87]. Further elucidation of these examples of epistasis in 460 

the GAL pathway will likely provide new insights into basic principles of quantitative genetics. 461 

 In conclusion, while other genes contribute, the repeated and sizeable role of GAL3 in 462 

this study stands out compared to other QTL analyses in yeast. Using BSA, we identified the 463 
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galactose sensor GAL3 as a major driver of this phenotypic variation, accounting for 70-90% of 464 

the variation in a single cross. Hence, polymorphisms in a single gene in the canonical GAL 465 

pathway are sufficient to create a continuum of natural variation. An intriguing possibility is that 466 

in S. cerevisiae, variation in GAL3 may allow strains to vary the diauxic lag in a non-pleiotropic 467 

manner. Environments that fluctuate in a 'predicable' manner might be expected to select for a 468 

pathway architecture that allow strains to evolve on this fluctuating axis [56]. Further analysis of 469 

the GAL pathway should help to elucidate the interplay of molecular variation, phenotypic 470 

variation, and selection. 471 

Materials and methods 472 

Strains and media 473 

Strains were obtained as described in [6]. Strains used in this study can be found in Table 474 

S1. All strains from the collection and those assayed in Fig. 1 were homozygous diploids and 475 

prototrophic. An initial set of 42 strains were assayed in a gradient of glucose (2% to 0.004% by 476 

two-fold dilution) in a background of 0.25% galactose. Strains W303 and YIIC17-E5 were 477 

excluded from downstream analysis due to poor growth in our media conditions. Strain 378604X 478 

was also excluded due to a high basal expression phenotype that was an outlier in our collection. 479 

All experiments were performed in synthetic minimal medium, which contains 1.7g/L Yeast 480 

Nitrogen Base (YNB) (BD Difco) and 5g/L ammonium sulfate (EMD), plus D-glucose (EMD), 481 

D-galactose (Sigma), or raffinose (Sigma). Cultures were grown in a humidified incubator 482 

(Infors Multitron) at 30°C with rotary shaking at 230rpm (tubes and flasks) or 999rpm (600uL 483 

cultures in 1mL 96-well plates). 484 
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Flow cytometry assay 485 

GAL induction experiments were performed in a 2-fold dilution series of glucose 486 

concentration, from 1% to 0.004% w/v, with constant 0.25% galactose. 2% glucose and 2% 487 

galactose conditions were also included with each glucose titration experiment. To assess and 488 

control for well-to-well variation, experiments were performed as a co-culture of a “query” strain 489 

to be phenotyped and a “reference” strain that was always SLYB93 (natural isolate YJM978 with 490 

constitutive mCherry segmentation marker). 491 

To start an experiment, cells were struck onto YPD agar from -80C glycerol stocks, 492 

grown to colonies, and then inoculated from colony into YPD liquid and cultured for 16-24 493 

hours. Query and reference strains were then co-innoculated at a 9:1 ratio by volume in a dilution 494 

series (1:200 to 1:6400) in S + 2% raffinose medium. The raffinose outgrowths were incubated 495 

for 14-16 hours, and then their optical density (OD600) was measured on a plate reader 496 

(PerkinElmer Envision). One outgrowth culture with OD600 closest to 0.1 was selected for each 497 

strain, and then washed once in S (0.17% Yeast Nitrogen Base + 0.5% Ammonium Sulfate). 498 

Washed cells were diluted 1:200 into glucose + galactose gradients in 96-well plates (500uL 499 

cultures in each well) and incubated for 8 hours. Then, cells were processed by washing twice in 500 

Tris-EDTA pH 8.0 (TE) and resuspended in TE + 0.1% sodium azide before transferring to a 501 

shallow microtiter plate (CELLTREAT) for measurement.  502 

Calculating the decision threshold (F50) metric 503 

Flow cytometry was performed using a Stratedigm S1000EX with A700 automated plate 504 

handling system. Data analysis was performed using custom MATLAB scripts, including Flow-505 

Cytometry-Toolkit (https://github.com/springerlab/Flow-Cytometry-Toolkit, 506 

https://github.com/springerlab/Induction-Gradient-Toolkit). All experiments were co-cultured 507 
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with a reference strain and were manually segmented using a fluorescent channel (mCherry or 508 

BFP) and side scatter channel (SSC).  GAL1pr-YFP expression for each segmented population 509 

was collected and the induced fraction for each concentration of sugars was computed as shown 510 

previously in Escalante et al. [25]. The decision threshold for each glucose titration was 511 

calculated from the induced fraction of the ten sugar concentrations. The decision threshold was 512 

reported as the glucose concentration were 50% of the cells were induced. 513 

Filtering reference and query data 514 

To account for well-to-well variability or variability in our glucose titration, each of the 515 

query strains were co-cultured with a reference strain, YJM978, containing TDH3pr-mCherry. 516 

This constitutive fluorophore was used to segment the query and reference strains. Three filters 517 

were used to discard bad samples. 1) The 5% truncated standard deviation was calculated. 518 

Samples where the reference strains response was double this truncated deviation from the mean 519 

reference response were discarded without analyzing the co-cultured query strain (39 of 480 total 520 

experiments) (S2 Fig.). 2) Query strains where the data was of poor quality such that we could 521 

not make an accurate calculation of F50, typically for low counts or cultures that did not induce 522 

(8 of 441). 3) Query strain values that were over 1.5 standard deviations from the mean of the 523 

other replicates, (21 of 433) (S3 Fig.). This 1.5 standard deviation cut-off was determined based 524 

on calculating the difference of each sample from the mean and fitting this to a normal 525 

distribution assuming outliers (S3 Fig.). All strains were measured at least twice; replicates were 526 

performed on different days. 527 

Estimation of the number of unique GAL phenotypes 528 

To estimate a lower bound for the number of distinct GAL phenotypes, we compared our 529 

measurement noise from replicate measurements to the range of variation between strains. By 530 
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simply dividing the range by the measurement noise or by asking on a pair-wise manner which 531 

phenotypes are statistically distinguishable, the number of phenotype is at least five. 532 

Crossing and generating segregants 533 

To prepare parent strains for crossing and sporulation, diploid natural isolates bearing the 534 

hoΔ::GAL1pr-YFP-hphNT1 reporter cassette were sporulated and random spores were isolated. 535 

Mating type was determined by a test cross. We then introduced a constitutive fluorescent 536 

marker in tandem with the GAL reporter, to obtain MATa; hoΔ::GAL1pr-YFP-mTagBFP2-537 

kanMX4 or MATα; hoΔ::GAL1pr-YFP-mCherry-natMX4 parent strains. To the MATa parent 538 

we also introduced a pRS413-derived plasmid bearing STE2pr-AUR1-C and hphNT1. This 539 

plasmid is maintained by hygromycin selection but also allows selection for MATa cells by 540 

Aureobasidin A [88]. This plasmid design is inspired by a similar mating-type selection plasmid 541 

used in a recent study [38]. 542 

To generate segregant pools, we prepared a diploid hybrid and sporulated it as follows. 543 

We crossed a parent with BFP-kanMX with the mating type selection plasmid to a parent with 544 

mCherry-natMX4 and isolated a G418RNatRHygR diploid hybrid with the plasmid. We sporulated 545 

the hybrid by culturing it to saturation in YPD, diluting 1:10 in YP+2% potassium acetate and 546 

incubating at 30C for 8 hours. Cell were then washed and resuspended in 2% potassium acetate 547 

and incubated at 30C until >20% of cells were tetrads, or about 72 hours. We incubated ~5x106 548 

tetrads in 100uL water with 50U of zymolyase 100T (Zymo Research) for 5 hours at 30C, and 549 

then resuspended tetrads in 1mL of 1.5% NP-40 and sonicated for 10 seconds at power setting 3 550 

on a probe sonicator (Fisher Scientific Model 550).  551 

To reduce the size of recombination blocks and improve the resolution of linkage 552 

mapping [89], we then performed the following “intercross” protocol 4 times: 1) Spores were 553 
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isolated using the Sony SH800 Cell Sorter selecting for 4x106 BFP+ or mCherry+ (but not +/+ or 554 

-/-). 2) The sorted cells were grown into 100uL YPD + 40ug/mL tetracycline. 3) Cells were 555 

incubated for 16 hours at 30C without shaking. 4) 5mL of YPD + 200ug/mL G418 + 100ug/mL 556 

ClonNat + 200ug/mL Hygromycin B was added and cells were incubated for 48 hours at 30C 557 

with shaking. 5) Cultures were sporulated and spores were isolated by zymolyase treatment and 558 

sonication as described above. Steps 1-5 were repeated 4 times, resulting in a sonicated 559 

suspension of spores that had undergone 5 generations of meiosis since the parents. These spores 560 

were resuspended in YPD + 0.5ug/mL AbA and incubated at 30C for 16 hours to select for 561 

MATa haploids. This haploid culture was split to create a frozen glycerol stock, and was used as 562 

the inoculum for phenotypic isolation by FACS (as described above). 563 

Sorting-based bulk-segregant analysis 564 

To sort segregant pools for bulk genotyping, the intercrossed MATa-selected segregants 565 

were inoculated from a saturated YPD culture into S + 2% raffinose + AbA at dilutions of 1:200, 566 

1:400, 1:800, and 1:1600, and incubated at 30C for 16-24 hours. The outgrowth culture with 567 

OD600 closest to 0.1 was selected for each strain, washed once in S, and diluted 1:200 into S + 568 

0.25% glucose + 0.25% galactose + AbA. The glucose-galactose culture was incubated at 30C 569 

for 8 hours, and then a Sony SH800 sorter was used to isolate pools of 30,000 cells with the 5% 570 

lowest (“OFF”) and highest (“ON”) YFP expression, among cells whose Back Scatter (BSC) 571 

signal was between 105 and 3x105. This BSC gate was used to minimize the effects of cell size 572 

on expression level as cell with similar BSC have similar cell size. The sorted cells were 573 

resuspended in YPD + AbA and incubated at 30C until saturation, about 16-24 hours. An aliquot 574 

of this culture was saved for -80C glycerol stocks, and another was used to prepare sequencing 575 

libraries. 576 
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To sequence the segregant pools, genomic DNA was extracted from 0.5mL of saturated 577 

YPD culture of each segregant pool using the PureLink Pro 96 kit (Thermo Fisher K182104A). 578 

From these genomic preps, sequencing libraries were made using Nextera reagents (Illumina FC-579 

121-1030) following a low-volume protocol [90]. The input DNA concentration was adjusted so 580 

that resulting libraries had mean fragment sizes of 200-300bp as measured on a BioAnalyzer. 581 

Libraries were multiplexed and sequenced in an Illumina NextSeq flow cell. 582 

Genome sequences of round-robin parents 583 

Non-S288C parental genomes for the bulk segregant analysis were obtained from the 584 

literature: I14 from [38]; BC187, YJM978, DBVPG1106, and Y12 from [91]; YPS606 from 585 

[92]. We sequenced our parent strains at ~1x depth and verified their SNP patterns against these 586 

datasets. We initially obtained an unpublished sequence for YJM421 from the NCBI Sequencing 587 

Read Archive (accessions SRR097627, SRR096491), but this did not match our strain (it 588 

appeared similar to YJM326 instead). A RAD-seq SNP profile of YJM421 [37] partially 589 

matched our YJM421, but the RAD-seq data displayed heterozygosity. Because we crossed our 590 

YJM421 strain to both I14 and DBVPG1106, for which we have high-quality genomes, we could 591 

do the linkage mapping given only one parental genome. However, we confirmed that the 592 

YJM421 parent used for both crosses were the same strain, by looking at SNPs in the segregant 593 

pools of the two crosses that did not match the other parent. Our current hypothesis is that the 594 

YJM421 isolate we obtained from the Fay lab (and which was genotyped by RAD-seq in Cromie 595 

et al. [37]) was a heterozygous diploid, a haploid spore of which we used as the parent in our 596 

round robin cross. 597 
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Linkage mapping and loci detection 598 

To perform linkage analysis, we aligned raw reads for parent strains (from the literature) 599 

and segregant pools (from our experiments) to the sacCer3 (S288C) reference genome using 600 

BWA-MEM on the Harvard Medical School Orchestra cluster (http://rc.hms.harvard.edu, see 601 

Orchestra High Performance Compute Cluster note below).  We identified SNPs between cross 602 

parents and determined allele counts at each SNP in segregant pools using samtools 603 

mpileup and bcftools call -c. Using custom MATLAB code, we removed SNPs where 604 

read depth was less than 2 or higher than 1000 to avoid alignment artifacts. After filtering, 605 

average sequencing depth per pool ranged from 25x to 71x, with a median of 48x. 606 

To calculate LOD scores for allele frequency differences between OFF and ON pools, we 607 

input filtered allele counts to the mp_inference.py script (MULTIPOOL Version 0.10.2; 608 

[41]) with the options -m contrast -r 100 -c 2200 -n 1000, following previous 609 

practice  [38]. A value of n=1000 likely underestimates our segregant pool size and will lead to 610 

conservative LOD estimates. An exception to this is the I14xYJM421 cross, which displayed 611 

unusually low spore viability (~20%), possibly due to a Dobzhansky-Muller incompatibility 612 

[93]. Thus we used n=200 for this cross.  613 

We defined significant loci as LOD peaks where LOD > 10 (Fig. 2B). Previous bulk 614 

segregant analyses using MULTIPOOL used a less stringent cutoff of LOD > 5 [38,39]. This 615 

corresponded to a false discovery rate of 5% in one study [39], but led to a much higher number 616 

of unreplicated locus calls in another study [38]. Given that our segregant pools underwent 617 

multiple rounds of meiosis (and potentially diversity-reducing selection), we chose to use the 618 

more conservative LOD > 10. The choice of LOD does not affect our main conclusions about 619 

GAL3; even the lowest LOD for the chrIV:460 locus (in YJM978 x Y12) is 24 and thus highly 620 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 10, 2017. ; https://doi.org/10.1101/126011doi: bioRxiv preprint 

https://doi.org/10.1101/126011
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29

significant (S2 Table). Besides this locus, other moderately significant loci may still be 621 

biologically relevant, and so we provide a list of LOD peaks and their corresponding support 622 

intervals at LOD > 5 (S2 Table). We clustered these peaks as a single locus if they occur within 623 

20kb of each other from different crosses (S8 Fig., S2 Table). 624 

CRISPR/Cas9 allele replacement 625 

Allele replacement strains were constructed by knocking out GAL3 (-890bp from start to 626 

+911bp from the stop) with KANMX4 followed by CRISPR/Cas9-mediated markerless 627 

integration of the heterologous allele. Initially, strains were prepared by introducing Cas9 on a 628 

CEN/ARS plasmid (SLVF11); this plasmid is derived from a previous one [94], but the 629 

auxotrophic URA3 marker was replaced with AUR1-C to allow Aureobasidin A selection on 630 

prototrophic natural isolates. Then, a donor DNA, a guide RNA insert, and a guide RNA 631 

backbone were simultaneously transformed into the strain [45]. The donor DNA contained the 632 

new allele (PCR amplified from the desired natural isolate genome), its flanking sequences, and 633 

an additional 40bp of homology to target it to the correct genomic locus. The guide RNA insert 634 

was a linear DNA containing a SNR52 promoter driving a guide RNA gene containing a 20bp 635 

CRISPR/Cas recognition sequence linked to a crRNA scaffold sequence, plus 40bp of flanking 636 

homology on both ends to a guide RNA backbone. The guide RNA backbone was a 2u plasmid 637 

containing natMX4 (pRS420). This was linearized by NotI + XhoI digestion before 638 

transformation. Allele re-integration transformations were plated on cloNAT to select for in vivo 639 

assembly of the guide RNA into a maintainable plasmid, and Aureobasidin A to select for 640 

presence of Cas9. Successful re-integration was verified by colony PCR and Sanger sequencing 641 

was performed on a subset of strains and on all donor DNAs to verify the sequence of allelic 642 

variants. 643 
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Determining GAL3 allelic effect by analyzing segregant variance 644 

To estimate the effect of GAL3 allele on decision threshold, we performed a variance 645 

partitioning analysis on decision thresholds of segregants from each of 3 hybrids (Fig. 4). Two 646 

heterozygous hybrids with homozygous GAL3 alleles were constructed by mating CRISPR/Cas9 647 

generated allele replacement strains (YJM978 GAL3BC187 or BC187 GAL3YJM978) to either 648 

BC187 or YJM978 wildtype haploids. A “wildtype” hybrid heterozygous at all loci (BC187 x 649 

YM978) was also analyzed. These 3 hybrids were sporulated as described above, and the 650 

resulting segregants phenotyped for decision threshold in duplicate. 651 

We assumed a model �� � ���	
 � ��� � ��, where phenotypic variance �� is a sum of 652 

contributions from the variance due to GAL3 ���	
, the variance due to strain background ��� , 653 

and measurement error ��. We estimated measurement error by assuming a Gaussian form 654 

�	
, �� and fitting it to the differences between replicate measurements across all segregants. 655 

The variance in inter-replicate differences should be twice the measurement variance, and thus 656 

� �
�

√�
. To filter out poor-quality data, we removed segregants where half the inter-replicate 657 

difference was greater than 1.5 (S3 Fig.). We calculated the mean of each allele population (

 658 

or 
�
), where the two allelic variants of GAL3 are denoted by a and –a. To estimate the effect 659 

of the GAL3 allele EGAL3, we divided the difference of the mean of the two populations by 2. The 660 

variance due to GAL3 is the square of EGAL3. 661 

Finally, the phenotypic variance of a segregant population (VP) is composed of the 662 

measurement noise (ε2) and the genotypic variance (VG). VP was calculated for the YJM978 x 663 

BC187 segregants and for both of the hybrid conversion segregants. Since GAL3 is a major 664 

driver of the decision threshold phenotype, VG was partitioned into two components: the 665 

contribution to variance of the background (VBG) and the contribution to variance of GAL3 666 
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(VGAL3). The background variance was estimated by subtracting �� and GAL3 variance from the 667 

variance of the segregant population. The GAL3 contribution (
�����

��
� was reported as the ratio of 668 

the variance in GAL3 and the genotypic variance (VG). 669 

Growth curves and diauxic lag time metric 670 

Growth curves were obtained as described in Wang et al. [6]. In short, growth curves 671 

were obtained by manually measuring the absorbance at 600 nm (OD600) on a plate reader 672 

(PerkinElmer EnVision) for each plate approximately every 15 min for up to 20 h in a room 673 

maintained at 30°C and 75% humidity. Strains to be assayed were pinned into 500 μl of liquid 674 

YPD and incubated for 16 h, then diluted 1:200 into 500 μl of synthetic minimal medium + 0.5% 675 

glucose and grown for 6-8 h, and finally diluted 1:150 into synthetic minimal medium + 0.25% 676 

glucose + 0.25% galactose or synthetic minimal medium + 0.25% glucose + 0.25% maltose for 677 

growth curve measurements. The final inoculation was performed into two different plates (with 678 

2 replicates per plate); these replicate growth curves were nearly indistinguishable for all strains. 679 

Analysis of growth curve data was performed in MATLAB using custom-written code [6].  680 

To obtain growth rates in glucose or galactose, additional growth curves were performed 681 

as above, except the final culture medium contained 0.5% glucose alone or 0.5% galactose alone. 682 

The exponential growth rate was extracted from these data as the mean growth rate between 683 

when OD600 = 2−6 and OD600 = 2−4 (or, equivalently, when culture density was approximately 684 

1/16 and 1/4 of saturation, respectively).  685 

Bioinformatic analysis 686 

Sequences for the SGRP strains were downloaded from SGRP website. Sequences for the 687 

strains in the Liti library [95] were downloaded from  688 
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https://www.sanger.ac.uk/research/projects/genomeinformatics/sgrp.html. For the remaining 689 

strains with multiple distinct isolates reporter in the literature, a single genetic distance that 690 

matched the strain in our collection was selected. Using these sequencing databases, we 691 

extracted the GAL3 region and aligned sequences using MUSCLE (Table S3, S12 Fig.). Based 692 

on the identified SNPs, we used mutfunc (http://mutfunc.com/) to predict the consequences of 693 

nonsynonymous SNPs in the GAL3 variants (Table S4). These sequences were used for the 694 

McDonald Kreitman analysis using DnaSP [52] (Table S5). A neighbor-joining phylogenetic tree 695 

was generated using the seqneighjoin function on MATLAB (S7 Fig.) and genetic distances [37]. 696 

Orchestra High Performance Compute Cluster 697 

Portions of this research were conducted on the Orchestra High Performance Compute 698 

Cluster at Harvard Medical School. This NIH supported shared facility consists of thousands of 699 

processing cores and terabytes of associated storage and is partially provided through grant 700 

NCRR 1S10RR028832-01. See http://rc.hms.harvard.edu for more information. 701 
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  996 

Supporting information captions 997 

Main Figures 998 

Figure 1. Natural isolates of S. cerevisiae vary in the decision to induce the GAL pathway. 999 
(A) Schematic of the reporter construct (GAL1pr-YFP). (B) Schematic of co-culture pre-growth, 1000 
glucose and galactose induction, and flow cytometry measurement for a glucose titration. The 1001 
decision threshold, the concentration of glucose where 50% of the cells are induced, is indicated 1002 
by circle and dashed line. (C) Decision threshold for 36 lab and natural isolates of S. cerevisiae. 1003 
Histogram shows the distribution of the mean decision threshold for all strains assayed. 1004 
 1005 
Figure 2. Bulk segregant analysis identifies one major-effect locus underlying natural 1006 
variation in decision threshold. 1007 
(A) Schematic of bulk segregant analysis. Meiotic segregants from heterozygous hybrids were 1008 
sorted by FACS into ‘ON’ and ‘OFF’ pools based on GAL1pr-YFP expression and then 1009 
sequenced. (B) LOD score of allele frequency difference between ‘ON’ and ‘OFF’ segregant 1010 
pools versus genomic position (red asterisks: LOD > 10). A region of chromosome IV containing 1011 
GAL3 was associated with the difference between the ‘ON’ and ‘OFF’ phenotype in all 8 1012 
crosses. Potential candidate genes for other loci include GAL80, MKT1, and others listed in 1013 
Table S2. (C) Genes found within the 2-LOD support interval around the peak LOD score from 1014 
ChrIV:460kb plotted with the LOD score for the BC187xYJM978 cross. 1015 
 1016 
Figure 3. GAL3 allele largely sets the decision threshold. 1017 
Decision threshold of eleven different GAL3 homologous replacements in three genetic 1018 
backgrounds: (A) YJM978, (B) S288C, and (C) BC187. Decision threshold of wild-type strain is 1019 
indicated by the black circle. Inset: Correlation plot of natural isolate versus allele replacement 1020 
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decision threshold; error bar represents S.E.M. (D) Decision threshold of three allelic variants of 1021 
GAL3 (Mean and S.E.M. of at least two replicates) inserted into various genetic backgrounds: 1022 
GAL3YJM978 (red), GAL3S288C (green), and GAL3BC187 (blue), haploid wild-type strain (black). 1023 
Strains are ordered based on wild-type decision threshold. Inset: Correlation plot of natural 1024 
isolate (decision threshold of background strain) versus the decision threshold of the allele 1025 
replacement, error bar represents S.E.M. 1026 
 1027 
Figure 4. The GAL3 allele accounts for 70-90% of the decision threshold. 1028 
Decision threshold of segregants produced from hybrid (top), hybrid with GAL3YJM978 allele 1029 
homologously replaced with GAL3BC187 (middle), and hybrid with GAL3BC187 allele 1030 
homologously replaced with GAL3YJM978 (bottom). Hybrids are indicated by small schematic, the 1031 
line represents the genetic background and the filled in box represents the origin of the GAL3 1032 
allele (YJM978: red, BC187: blue)  1033 
 1034 
Figure 5. Changing GAL3 alleles specifically affects the glucose-galactose diauxic lag. 1035 
(A) Growth curves (OD600 versus time) of allele replacement strains in three genetic 1036 
backgrounds: YJM978 (red), S288C (green), BC187 (blue) of cells grown in a mixture 0.25% 1037 
glucose and 0.25% galactose. Cultures grew for 6 to 8 hours before entering the diauxic lag. A 1038 
single replicate is shown (additional replicates are shown in Figure S14). Inset: Growth curves 1039 
(OD600 versus time) of the same strains grown in a mixture of 0.25% glucose and 0.25% maltose. 1040 
(B) The decision threshold (as measured in Fig. 1) is inversely correlated with the diauxic lag 1041 
length (as measured in [6]). 1042 
 1043 

Supplementary Figures 1044 

Text S1. All supporting figures and captions. 1045 
Contains all the supporting figures and captions in one document. 1046 
 1047 
Table S1. List of strains used in this study. 1048 
This table lists the strains that were used in this study, Springer Lab ID (all strains used in this 1049 
study are contained on plate SLL16), genetic background, GAL3 allele source, genotype, and 1050 
ecological niche and lineage is listed for diploid strains used in Fig. 1. 1051 
 1052 
Table S2. List of significant loci and associated genes at LOD > 5. 1053 
This table lists genomic regions for which peak LOD > 5 in the bulk segregant analysis. 2-LOD 1054 
support intervals are shown for each peak in each cross, as well as averaged support intervals 1055 
that combine information from “clusters” of peaks within 20kb of each other from different 1056 
crosses. A subset of genes with sacCer3 (SGD R64-1-1) annotations in the support intervals for 1057 
each locus are shown. 1058 
 1059 
Table S3. SNPs found in promoter and coding region of GAL3 in 55 natural isolates of S. 1060 
cerevisiae. 1061 
This table lists SNPs found in 55 natural isolates of S. cerevisiae in the promoter (500bp 1062 
upstream of start codon) and coding region of GAL3. Position on ChrIV is indicated at the top. 1063 
All genetic variants were compared to the lab strain S288C. 26 different haplotypes are 1064 
represented across all of the strains. 1065 
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 1066 
Table S4. Predicted structural variants of GAL3 using mutfunc. 1067 
This table lists the predicted consequences of structural variants found in Gal3p using mutfunc 1068 
software. Strains that contain the indicated variant are listed in the final column. Mutfunc 1069 
predicted that 13 out of the 19 nonsynomous mutations have a structural consequence. 1070 
 1071 
Table S5. McDonald Kreitman analysis of GAL pathway genes. 1072 
This table lists the synonymous and nonsynonymous polymorphisms within S. cerevisiae (PS/PN) 1073 
compared to synonymous and nonsynonymous between S. paradoxus (DS/DN). SNP counting, 1074 
pValues, and neutrality indices were analyzed with DnaSP [52]. 1075 
 1076 
S1. Phylogenetic tree of S. cerevisiae used in this study. 1077 
Phylogenetic tree of common natural isolates of S. cerevisiae constructed based on sequencing 1078 
data from Cromie et al. 2013 [37]. Strains highlighted in red were used in this study, while 1079 
strains in black were not.   1080 
 1081 
S2. Quality control for query strains based on the reference strain.  1082 
Each experiment contained a reference strain. The decision threshold of the reference strain was 1083 
roughly normally distributed, with a long tail. Based on technical measurements, the tails are due 1084 
to unintended variation in the assay, e.g. cells grown at too high of an OD, as opposed to 1085 
biological variation. To eliminate this variation, we truncated the 5% highest and lowest values 1086 
(red dashed lines). The standard deviation of the remaining, roughly normal, distribution was 1087 
calculated and used to eliminate samples.  1088 
 1089 
S3.  Determining a cut-off for query outliers.  1090 
(A) Remaining strains were plotted, replicate #1 vs. replicate #2-n, where n is the total number of 1091 
replicates. A total of 68 strains out of 480 experiments were removed in our quality control. (B) 1092 
The absolute value of the difference between each distinct measurement of a sample and the 1093 
mean of all other replicate for that sample is plotted (blue). The same technique was used on 1094 
simulated derived from a normal distribution of standard deviation 0.75 (red). Based on this a 1.5 1095 
standard deviation was chosen to eliminate samples that were likely due to some unintended 1096 
source of bias.  1097 
 1098 
S4. Steady-state expression of GAL1pr-YFP from a panel of natural isolates in mixtures of 1099 
glucose and galactose.  1100 
Representative YFP induction profiles of the diploid natural isolates assayed in Fig. 1. Cells were 1101 
grown for 8 hours, a time previously determined to be sufficient for expression to reach steady-1102 
state [25], in a titration from 1% to 0% glucose (two-fold dilution series) in constant background 1103 
0.25% galactose. Flow cytometry profiles are plotted for each glucose concentration. Each panel 1104 
contains 10 distinct glucose and galactose concentrations and 2% pure glucose or galactose. The 1105 
color density represents the probability density function across of cells for different fluorescent 1106 
intensity levels. Strains are ordered by increasing decision threshold. 1107 
 1108 
S5. Growth rate in 0.5% glucose or 0.5% galactose is not strongly correlated with decision 1109 
threshold.  1110 
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Cells were grown in medium containing 0.5% glucose or 0.5% galactose and the OD600 was 1111 
measured every 15 minutes by plate reader (Materials and methods). The growth rate was then 1112 
calculated for each strain and condition (Materials and methods). The growth rate in glucose 1113 
(blue) or galactose (green) of natural isolates is plotted versus the decision threshold (from Fig. 1114 
1). Error represents S.E.M. of three replicates for growth rate and at least two replicates for 1115 
decision threshold. The line is a linear least squared fit.  1116 
 1117 
S6. Correlation between genetic distance and phenotypic distance for decision threshold 1118 
and traits from literature.  1119 
Genetic distance [37] and phenotypic distance for a number of traits [4] had been previously 1120 
measured and determined to be weakly correlated [4]. The histogram of correlation between 1121 
genetic and phenotypic distance is plotted. The correlation between genetic distance and decision 1122 
threshold is denoted with the red arrow. 1123 
 1124 
S7. Relationship of decision threshold with phylogeny and ecological niche.  1125 
Phylogenetic tree was constructed based on the Cromie et al. distance matrix (Materials and 1126 
methods) with the bar plot indicating decision threshold (from Fig. 1). Color of bars indicate the 1127 
ecological niche of strain. 1128 
 1129 
S8. Significance and effect size of detected loci. 1130 
(A) Allele frequency of the ON parent (BC187) in the YJM978xBC187 cross across a region of 1131 
chromosome IV spanning the chrIV:460Kb locus. The difference in allele frequency between 1132 
ON and OFF pools at the locus can be used as a proxy for its effect size on the GAL induction 1133 
phenotype. (B) Scatterplot of significance (LOD score) versus effect size (allele frequency 1134 
difference) for all 49 LOD peaks where LOD > 5. Significant LOD peaks from different crosses 1135 
were “clustered” into a single locus if they lay within 20kb of each other. Dots representing LOD 1136 
peaks are colored by clustered locus. 1137 
 1138 
S9. Representative YFP induction profiles of GAL3 allele replacements.   1139 
Homologous GAL3 allele replacement strains were assayed in a gradient of glucose in a 1140 
background of 0.25% galactose (Fig. 3A-C). The alleles were assayed in three backgrounds (A) 1141 
YJM978, (B) BC187, and (C) S288C. (D) The parental strain is shown for comparison.  1142 
 1143 
S10. Hemizygous hybrids YFP density plots. 1144 
Homologous GAL3 allele replacement strains were assayed in a gradient of glucose in a 1145 
background of 0.25% galactose (Fig. 3D). Three different alleles (A) YJM978, (B) BC187, and 1146 
(C) S288C were assayed in seven genetic backgrounds.  1147 
 1148 
S11. Phenotypic variation of hybrid (and hybrid conversion) segregants.  1149 
(A) Plot of the decision threshold for replicate 1 and replicate 2 from each segregant assayed. 1150 
Inset: probability density function of the difference of replicate 1 and replicate 2. The variance 1151 
from this distribution was used to determine the measurement error. (B) Decision threshold of 1152 
segregants produced from hybrid conversion (Error represents range of the two segregants).  1153 
 1154 
S12. Decision threshold versus haplotype of promoter or ORF region. 1155 
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Decision threshold plotted versus unique haplotypes of the (A) promoter or (B) ORF region. 1156 
Haplotype clusters that contain at least two strains are shown on the left side of the graph. The 1157 
blue line is a guide to show how strains cluster.  1158 
 1159 
S13. Scatter plot of decision threshold versus GAL1-YFP steady state expression [6]. 1160 
Scatter plot of steady state GAL1 expression levels versus decision threshold of a subset of 1161 
strains from Fig. 1. We previously showed that GAL1 expression levels before the diauxic lag are 1162 
inversely correlated with the diauxic lag length [6]. We extend that show that the decision 1163 
threshold is correlated to these GAL1 expression levels.  1164 
 1165 
S14. Growth curves of GAL3 allele replacement strains. 1166 
Replicate data of growth curves of GAL3 allele replacement strains in the YJM978, BC187, and 1167 
S288C background in glucose+galactose (top) or glucose+maltose (bottom). Wild-type growth 1168 
curves are shown for each background strain in black. Each color represents a different color 1169 
GAL3 donor allele. Time is shown relative to Log2(OD600) reaching -5. 1170 
 1171 
 1172 
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