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Abstract 14 

The assembly and development of the gut microbiome in infants has important consequences for 15 

immediate and long-term health. Preterm infants represent an abnormal case for bacterial 16 

colonization because of early exposure to bacteria and frequent use of antibiotics. To better 17 

understand the assembly of the gut microbiota in preterm infants, fecal samples were collected 18 

from 32 very low birthweight preterm infants over the first six weeks of life. Infant health 19 

outcomes included healthy, late-onset sepsis, and necrotizing enterocolitis (NEC). We 20 

characterized the bacterial composition by 16S rRNA gene sequencing and metabolome by 21 

untargeted gas chromatography mass spectrometry. Preterm infant fecal samples lacked 22 

beneficial Bifidobacterium and were dominated by Enterobacteriaceae, Enterococcus, and 23 

Staphylococcus due to the near uniform antibiotic administration. Most of the variance between 24 

the microbial community compositions could be attributed to which baby the sample came from 25 

(Permanova R2=0.48, p<0.001), while clinical status (healthy, NEC, or late-onset sepsis), and 26 

overlapping time in the NICU did not explain a significant amount of variation in bacterial 27 

composition.  Fecal metabolomes were also found to be unique to the individual (Permanova 28 

R2=0.43, p<0.001) and weakly associated with bacterial composition (Mantel statistic r = 0.23 ± 29 

0.05 (p = 0.03 ± 0.03). No measured metabolites were found to be associated with necrotizing 30 

enterocolitis, late-onset sepsis or a healthy outcome. Overall, preterm infants gut microbial 31 

communities were personalized and reflected antibiotic usage. 32 

Importance 33 

Preterm infants face health problems likely related to microbial exposures including sepsis and 34 

necrotizing enterocolitis. However, the role of the gut microbiome in preterm infant health is 35 

poorly understood. Microbial colonization differs from healthy term babies because it occurs in 36 
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the NICU and is often perturbed by antibiotics. We measured bacterial compositions and 37 

metabolomic profiles of 77 fecal samples from thirty-two preterm infants to investigate the 38 

differences between microbiomes in health and disease. Rather than finding microbial signatures 39 

of disease, we found the preterm infant microbiome and metabolome were both personalized, 40 

and that the preterm infant gut microbiome is enriched in microbes that commonly dominate in 41 

the presence of antibiotics. These results contribute to the growing knowledge of the preterm 42 

infant microbiome and emphasize that a personalized view will be important to disentangling the 43 

health consequences of the preterm infant microbiome.  44 

Introduction 45 

Early life exposure to microbes and their metabolic products is a normal part of development, 46 

with enormous and under-explored impact on the immune system. The intestinal microbiota of 47 

infants initially assembles by exposure to the mother’s microbiota and microbes in the 48 

environment (1–4). In healthy breast-fed infants Bifidobacteria longum spp. infantis capable of 49 

digesting human-milk oligosaccharides dominate the infant gut (5). When infants are born 50 

preterm, they are exposed to environmental and human associated microbes earlier in their 51 

development than normal, and rarely harbor Bifidobacteria spp. in their gut communities. We do 52 

not yet understand the effects of altering the timing of initial bacterial exposure. With numerous 53 

emerging health consequences related to the microbiome, understanding factors that influence 54 

this initial assembly of the microbiome will be important. 55 

Preterm infants are routinely treated with antibiotics, enriching for microbes that can colonize in 56 

the presence of antibiotics (4, 6, 7). While antibiotics have tremendously reduced infant 57 

mortality, their effect on microbiota assembly and resulting health consequences is not fully 58 

understood. Prenatal and postnatal antibiotics have been shown to reduce the diversity of the 59 
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infant intestinal microbiota (8, 9). Children under two years old are prescribed antibiotics at a 60 

higher rate than any other age group, and 85% of extremely low birthweight infants (< 1000 g) 61 

are given at least one course of antibiotics (10). Even if an infant is not exposed to antibiotics 62 

after birth, approximately 37% of pregnant women use antibiotics over the course of the 63 

pregnancy (11).  64 

Perturbing the microbiota of infants can have immediate and long-lasting health consequences. 65 

In the short term, infants can be infected by pathogenic bacteria that results in sepsis, which is 66 

categorized as early-onset or late-onset depending on the timing after birth. Preterm infants are 67 

also at high risk to develop necrotizing enterocolitis (NEC), which is a devastating disease that 68 

causes portions of the bowel to undergo necrosis. NEC is one of the leading causes of mortality 69 

in preterm infants, who make up 90% of NEC cases (12). The incidence of NEC among low 70 

birthweight preterm infants is approximately 7% and causes death in about one third of cases. 71 

The exact causes of NEC are not known, but an excessive inflammatory response to intestinal 72 

bacteria may be involved (13). 73 

Many of the long-term consequences of microbial colonization are believed to be mediated by 74 

interactions between the intestinal microbiota and the immune system. In addition to direct 75 

interactions, the microbiota interacts with the immune system through the production of 76 

metabolites that can be taken up directly by immune and epithelial cells (14, 15). For example, 77 

bacterial production of short chain fatty acids can affect health and integrity of the intestinal 78 

epithelia and immune cells (16–18). However, few studies use metabolites alongside bacterial 79 

community profiling. In fact, the healthy composition of an infant fecal metabolome is 80 

understudied. 81 
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In this retrospective study, we follow the changes in the gut microbiota over time in 32 very low 82 

birth weight (< 1500 grams) preterm infants born at Children’s Hospital Orange County. We 83 

simultaneously track the bacterial composition and metabolite profile over time. Infants were 84 

classified into three groups based on health outcomes: healthy infants, late-onset sepsis, and 85 

NEC. The composition of the intestinal microbiota was measured by 16S rRNA gene sequencing 86 

of fecal samples taken over time.  Preterm infant guts were dominated by Enterobacteriaceae 87 

and Enterococcus, and Staphylococcus. Untargeted metabolomics analysis of the fecal samples 88 

by gas chromatography mass spectrometry (GC-MS) revealed a personalized metabolome that 89 

was weakly associated with the bacterial composition. 90 

Results 91 

Patient cohort 92 

A total of 77 fecal samples were collected from 32 very low birth weight infants in the NICU at 93 

Children’s Hospital Orange County from 2011 to 2014 (Table 1, Figure 1). Birthweights ranged 94 

from 620 – 1570 grams. Fecal samples were collected between day 7 and 75 of life. Sampling 95 

time and number of fecal samples varied. Three or more longitudinal samples were available 96 

from ten of the infants, while one or two samples were available from the remaining 22 infants. 97 

Three infants developed NEC, eight developed late-onset sepsis, and 21 remained healthy. 98 

Twelve infants were delivered vaginally while the remaining 22 were delivered by cesarean 99 

section. All infants were fed by either breastmilk or a combination of breastmilk and formula. 100 

Twenty-four infants received antibiotics at some point during the sampling period, the most 101 

common being ampicillin and gentamycin. 102 

Microbial Community Characterization  103 
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We sequenced the 16S rRNA gene content of each fecal sample to determine bacterial 104 

composition. The total bacterial load of each fecal sample was measured by qPCR of the 16S 105 

rRNA gene and scaled to the total weight of stool that DNA was extracted from. Among all 106 

infants, bacterial abundances vary over four orders of magnitude and were not associated with 107 

health outcome (Supplemental figure 1). The high variation in bacterial load is likely due to the 108 

near uniform use of antibiotics. Bacterial communities were composed of mostly 109 

Enterobacteriaceae, Enterococcus, Staphylococcus, and Bacteroides (Figure 2a). Most samples 110 

were dominated by one to three genera of bacteria. Only three infants (two fed breastmilk, one 111 

fed breastmilk and formula) were colonized at greater than 1 % relative abundance by 112 

Bifidobacteria, which emerging evidence suggests is a key member of the infant microbiome. 113 

We computationally confirmed that the primers used are able to detect 90% of known 114 

Bifidobacteria species (19). No single bacterial OTU or community composition was 115 

consistently found for infants that became sick (NEC or late-onset sepsis) compared to the 116 

infants that remained healthy. 117 

Longitudinal sampling revealed that over the course of days, the bacterial composition could 118 

change dramatically (Figure 2a, 2b). Permutational Multivariate Analysis of Variance 119 

(PERMANOVA) was applied to determine which of the known clinical factors explained the 120 

most variance in the bacterial community composition. The individual explained 48% (p < 121 

0.001) of the variance in the samples, meaning that about half of the total variance among all 122 

tested fecal samples could be attributed to the infant the fecal sample came from (Supplemental 123 

table 1). None of the other factors explained a significant amount of variation in the bacterial 124 

composition, including infant health, overlapping dates in the NICU, delivery mode, or feeding 125 
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mode.  Four of the infants in the study are twins. Twin set 1 (infants 12 and 13) had a similar 126 

microbial composition while the other three sets did not (Supplemental Figure 2). 127 

Diversity of the bacterial communities was low as expected for preterm infants. Alpha diversity 128 

as measured by Shannon index increased overall with age, but the trend was not significant 129 

(linear model R2 = 0.005, p = 0.52) (Figure 3a). Other clinical factors including health outcome, 130 

feeding (breastmilk versus breastmilk and formula), antibiotic use, and delivery mode were 131 

tested for an effect on the alpha diversity (Figure 3b-e). None of the factors were associated with 132 

a difference in alpha diversity except recorded antibiotic use, in which Shannon diversity was 133 

unexpectedly lower on average in infants that did not have a record of receiving antibiotics 134 

(Wilcoxon rank sum test p=0.06). It should be noted that although six infants did not have a 135 

record of antibiotic use, records may be incomplete due to hospital transfers. All four infants that 136 

were colonized with Bacteroides were born vaginally, although five other vaginally born infants 137 

were not colonized. Only vaginally born infants were colonized by Bacteroides (four out of nine 138 

infants) while none of the twenty-two infants born by C-section were colonized. 139 

Metabolomics 140 

Metabolite profiles of infant fecal samples were analyzed by gas chromatography mass 141 

spectrometry, which measures small primary metabolites. Over 400 small molecules were 142 

detected from each fecal sample and 224 metabolites were known compounds. Metabolites were 143 

grouped into the following categories: amino acid metabolism, bile acids, central metabolism, 144 

fatty acids, fermentation products, lipid metabolism, nucleotide metabolism, organic acids, 145 

sterols, sugars, sugar acids, sugar alcohols, and vitamin metabolism (Figure 4, Supplemental 146 

table 2). No metabolites or categories of metabolites were found to be associated with 147 

necrotizing enterocolitis or late-onset sepsis. The metabolite profile of each infant was seen to 148 
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vary over time, similar to the amount of variation seen in the bacterial composition (Figure 5). 149 

PERMANOVA analysis to determine which factors explain the most variance in the metabolite 150 

profile indicate that the individual explains 43% (p < 0.001) of the variation (Supplemental 151 

table 1). 152 

To determine which metabolites might be useful for tracking bacterial metabolism in the infant 153 

gut, we examined metabolites with consistent abundance among infants versus those that varied 154 

(Supplemental figure 3). In general, sugars, central metabolites, and amino acids were variable 155 

while fatty acids, sterols, organic acids, and bile acids were more consistent. Infant 23, which 156 

developed necrotizing enterocolitis at day 16 of life, had low abundances of amino acid 157 

metabolites the two days prior to disease onset (Figure 4). However, several of the healthy 158 

control infants also had similarly low abundances of amino acid metabolites. The individual 159 

signal of each infant’s metabolome is far more evident than any trends due to clinical factors 160 

(Supplemental table 1).  161 

Bacterial composition associated with metabolite profile 162 

Bacterial metabolism in the gut is expected to contribute to the abundances of metabolites 163 

detected in fecal samples. We wanted to know if fecal samples with a similar bacterial 164 

composition were also similar in their metabolite profile. We employed a Mantel test using 165 

Pearson correlations between distances among bacterial compositions of samples and distances 166 

among metabolite profiles of samples. Because bacterial compositions and metabolite profiles 167 

are personalized, using multiple samples from a single infant would skew the result. Therefore, 168 

one sample from each infant was randomly selected 100 times to remove the effect of the 169 

individual and the Mantel test was applied to each subset. The average Mantel statistic of r = 170 

0.23 ± 0.05 (p = 0.03 ± 0.03) indicates a weak but significant association between the bacterial 171 
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composition and metabolite profile. Also, within individual infants, shifts in the bacterial 172 

composition are accompanied by shifts in the metabolome. Infants 17, 23, and 31 have dramatic 173 

shifts in both bacterial composition and metabolome profile over time, while infants 10 and 37 174 

remain stable in both bacterial composition and metabolome.  175 

To investigate the correlations driving this overall association, we calculated correlations 176 

between bacterial abundances and metabolite intensities (Figure 6). Staphylococcus had the most 177 

positive correlations including several classes of sugar metabolites, organic acids, and central 178 

metabolites. Fatty acids, lipid metabolism, and amino acids were positively correlated with the 179 

commonly abundant gut colonizers Enterobacteriaceae and Bacteroides, and negatively 180 

correlated with the commonly low abundance colonizers Staphylococcus and Enterococcus. We 181 

also looked more specifically at individual metabolites correlated with bacterial abundances 182 

(Figure 6). Bacteroidetes were found to be positively correlated with succinate (r = 0.85).  Many 183 

other weak correlations (r < 0.5) exist between bacterial abundances and metabolite intensities, 184 

but the sample size is not large enough to distinguish signal from noise.  185 

Discussion 186 

Bacterial compositions in this cohort were consistent with the emerging picture from other 187 

studies that show the preterm infant gut harbors communities dominated by facultative anaerobes 188 

including Enterobacteriaceae, Enterococcus, and Staphylococcus (1, 2, 20). These communities 189 

appear to be enriched in commonly antibiotic resistant organisms (21). While we expected to 190 

find associations between bacterial community composition and health outcome in this cohort, 191 

we were surprised to find that there were not clear signatures of microbiome composition linked 192 

to NEC or sepsis. In larger cohorts, associations between particular bacteria or metabolites with 193 

NEC have been reported, however, they are not universal signatures across patients, and may 194 
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reflect patient variation more than disease etiology (22–25). In fact, the strongest signal in both 195 

the microbiome and metabolome data from this cohort was the infant from whom the sample was 196 

taken. Overall, preterm infant microbiomes in this study were shaped by antibiotics, which have 197 

a strong impact on all patients, regardless of health outcome.  198 

Although the bacterial composition of infant guts varied over time, we saw longitudinal samples 199 

from individual infants remained highly personalized over several weeks; nearly half of the 200 

variation in the microbial community compositions can be explained by which individual the 201 

sample came from. The stability of animal-associated microbiomes is an active area of research, 202 

with studies finding that the individual microbiome of an adult remains stable through time (26), 203 

but can be perturbed by extreme changes in diet or antibiotics (27–29). The bacterial 204 

composition in the adult gut largely returns to its previous state one month after antibiotic 205 

treatment, but altering the initial assembly of the microbiota in infants can have long lasting 206 

health consequences (7, 27, 30, 31). Previous work has found ampicillin and gentamycin (the 207 

most common antibiotics  taken by infants in this study) to have an inconsistent effect on 208 

bacterial diversity, sometimes increasing and sometimes decreasing diversity (1). Similarly, in 209 

these infants, ampicillin and gentamycin resulted in more variation in bacterial diversity, but 210 

there was no clear trend of increasing or decreasing diversity. However, antibiotics change the 211 

dominant members of the microbiota which could have profound effects on immune 212 

development and growth (7, 31–33). 213 

Evidence is emerging that a healthy infant gut microbiota is dominated by Bifidobacteria with 214 

the capacity to digest human milk oligosaccharides in breastmilk (5, 34, 35). The lack of a core 215 

Bifidobacteria community in infants could leave the microbiota open to colonization by 216 

facultative anaerobes like we observed in these infants (36). Proteobacteria such as 217 
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Enterobacteriaceae are commonly seen to increase in abundance after antibiotic administration 218 

(21). Indeed, infants in this study had microbiomes that were shaped by antibiotic use. Although 219 

six of the thirty-two infants in this study did not have recorded antibiotic use around sampling 220 

time, the microbiota can still be affected by prenatal antibiotics taken by the mother (7, 31, 37).   221 

Microbiome studies have become widespread, so that a typical bacterial composition is well 222 

characterized in a range of sample cohorts. However, the same cannot be said for the 223 

metabolome. There is a dearth of knowledge about what a consensus healthy infant fecal 224 

metabolome should be, making comparisons for the cohort in this study difficult. To add to the 225 

complexity, each metabolomic approach detects subsets of metabolites, and depends on sample 226 

extraction and other method choices. Increasing the frequency of metabolomics data collection in 227 

microbiome studies would be a huge step forward for the field. Baseline knowledge about the 228 

typical connections between metabolite abundances and bacterial metabolism should be 229 

collected, so that molecules that have consistent abundances in a healthy state could give context 230 

to data generated from clinical samples in different disease states.  231 

Untargeted metabolomics can survey many metabolites in a biological sample to provide a 232 

snapshot of the active metabolism in a system such as the human gut. Metabolite profiles of 233 

preterm infants in this study were found to be personalized to a similar degree as the bacterial 234 

composition. This is in contrast to a previous study on full term infants that showed the 235 

metabolomic profile to be stable, and weakly associated with bacterial composition, over the first 236 

few years of life (38). Personalized metabolic signatures of disease hold great promise to 237 

complement microbiota profiling in human systems (18, 36). However, analyzing metabolomic 238 

data is challenging because an array of inputs contribute to the abundances of metabolites in 239 

fecal samples including bacterial metabolism, host biology, and food intake.  240 
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We report a number of correlations between bacteria and metabolites in preterm infant feces, and 241 

bacterial metabolism has been previously shown to contribute to metabolite abundances in 242 

humans and mice (15, 39, 40). Short chain fatty acids are now commonly measured and 243 

associated with bacterial fermentation in the gut (41). In this study, the only short-chain fatty 244 

acid detected was succinate, which we found to be correlated with the presence of Bacteroides, 245 

which produces acetate and succinate from carbohydrate fermentation (42).  We also detected 246 

several medium-chain fatty acids, which were generally correlated with the abundance of 247 

Bacteroides and Enterobacteriaceae. None of the twenty-two C-section born infants in this study 248 

were colonized by Bacteroides, possibly due to a lack of vertical transmission from the mother 249 

during birth (3).  250 

Overall, we find preterm infant microbiomes are shaped by shared exposures especially to 251 

antibiotics, leading to the dominance of antibiotic resistant facultative anaerobes such as 252 

Enterococcus spp.. The anaerobic, milk degrading Bifidobacteria were largely absent, even in 253 

preterm infants with access to breastmilk, possibly due to a lack of exposure to microbes from 254 

family members in the sterile hospital environment along with antibiotics. Our understanding of 255 

the health consequences of microbial colonization under these antibiotic-enriched circumstances 256 

is still in its infancy.  257 
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Materials and methods 258 

Sample Collection 259 

Stool samples from diapers of preterm infants in the neonatal intensive care unit at Children’s 260 

Hospital Orange County were collected by nurses over three years from 2011 to 2014. Samples 261 

were immediately stored at -20 °C then transferred to -80 °C no more than three days post-262 

collection. Samples were kept at -80 °C and thawed once for DNA extraction and metabolomics. 263 

A total of 77 stool samples were collected from 32 preterm infants. 264 

DNA extraction and 16S rRNA gene sequencing 265 

Stool samples were thawed once and DNA was extracted from 10 mg using a fecal Zymo Fecal 266 

DNA MiniPrep Kit (#D6010). The V3 and V4 region of the 16SrRNA gene was amplified with 267 

two-stage PCR. The first PCR amplified the V3 to V4 region of the 16S rRNA gene using 341F 268 

and 805R primers: forward primer (5’- CCTACGGGNGGCWGCAG-3’) and reverse primer (5’- 269 

GACTACHVGGGTATCTAATCC -3’) (43). These primers also added an overhang so that 270 

barcodes and Illumina adaptors could be added in the second PCR. The first PCR was done as 271 

follows: 30 cycles of 95 °C 30 seconds; 65 °C 40 seconds; 72 °C 1 minute. Immediately after 272 

completion of the first PCR, primers with sample specific barcodes and Illumina adapter 273 

sequences were added and a second PCR was performed as follows: 9 cycles 94 °C for 30 274 

seconds; 55 °C 40 seconds; 72 °C 1 minute. PCR reactions were cleaned using Agencourt 275 

AMPure XP magnetic beads (#A63880) using the recommended protocol. Amplicons were run 276 

on an agarose gel to confirm amplification and then pooled. Amplicon pool was run on an 277 

agarose gel and the 500bp fragment was cut out and gel extracted using Millipore Gel Extraction 278 

Kit (#LSKGEL050). The sequencing library was quantified using Quant-iT Pico Green dsDNA 279 
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Reagent and sent to Laragen Inc. for sequencing on the Illumina MiSeq platform with 250bp 280 

paired-end reads producing a total of 2.4 million paired-end reads. 281 

qPCR for bacterial load 282 

The bacterial load of each fecal sample was measured with quantitative PCR of a conserved 283 

region of the 16S gene. The following primers were used: (5’- TCC TAC GGG AGG CAG CAG 284 

T-3’), (5’- GGA CTA CCA GGG TAT CTA ATC CTG TT-3’). PerfeCTa SYBER Green 285 

SuperMix Reaction Mix (Quantabio #95054) was used to quantify DNA from samples. Relative 286 

abundance of 16S rRNA genes relative to the mass of stool was compared for each sample. Total 287 

fecal DNA was measured with Quant-iT Pico Green dsDNA Assay Kit (ThermoFisher 288 

#P11496). 289 

Sequence processing 290 

Sequences were quality filtered using PrinSeq to remove adapters as well as any sequences less 291 

than 120 base-pairs, containing any ambiguous bases, or with a mean PHRED quality score of 292 

less than 30 (44). Reads were found to drop steeply in quality after 140 base pairs, so all reads 293 

were trimmed to 140 base pairs. The forward read contained the V3 region in the high quality 294 

first 140 base pairs, while the V4 region was captured in the low-quality region of the reverse 295 

reads. Therefore, we used only the forward reads for subsequent analyses. 296 

Bacterial community analysis 297 

Quantitative Insights Into microbial Ecology (QIIME) was used for de novo OTUs picking using 298 

the Swarm algorithm with a clustering threshold of 8 (45, 46). This resulted in 2,810 OTUs 299 

among all samples. OTUs containing only one sequence were filtered out, leaving 212 OTUs. 300 

Taxonomy was assigned to each OTU using QIIME and the Greengenes 13_8 database. An OTU 301 
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table was constructed and used for downstream analysis. Ten rarefactions were performed on the 302 

OTU table down to 2000 reads per sample, which was the largest number of reads that allowed 303 

retention of most samples. QIIME was used to calculate alpha diversity by Shannon index and 304 

beta diversity by the average weighted UniFrac distance of the ten rarefactions. Community 305 

composition barplots, Principal Coordinate Analysis (PCoA) plots, and alpha diversity plots 306 

were created using R and the ggplot2 package (47, 48). All R scripts are included in the 307 

supplemental information. 308 

Untargeted metabolomics by GC-MS 309 

When fecal samples were thawed for DNA extraction, approximately 50 mg was collected and 310 

refrozen at -80 ° for metabolomics. Samples were sent on dry ice to the West Coast 311 

Metabolomics Center (WCMC) at UC Davis for untargeted metabolomics by gas 312 

chromatography time-of-flight mass spectrometry. Metabolites were extracted from fecal 313 

samples with a 3:3:2 mixture of isopropanol, acetonitrile, and water respectively before 314 

derivatization and GC-MS analysis by Fiehn Lab standard operating procedures (49–51). 315 

Metabolite profiles were compared by calculating Manhattan distances between samples based 316 

on all metabolite intensities and visualized by PCoA using the vegan and ape packages in R (52, 317 

53). 318 

Permutational multivariate analysis of variance (PERMANOVA) 319 

PERMANOVA was used to determine factors that explained variance in bacterial community 320 

composition and metabolite profile. PERMANOVA was performed using the adonis function in 321 

the vegan package in R. The input for PERMANOVA was UniFrac distances of the 16S data and 322 

Manhattan distances of the metabolite profiles. Briefly, PERMANOVA quantifies the variation 323 
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among samples explained by the given groupings compared to randomized groupings. To 324 

measure the variance explained by individual infant, we excluded samples that had fewer than 325 

three longitudinal samples, leaving ten infants. When performing PERMANOVA for factors 326 

other than individual, we accounted for the longitudinal sampling by repeatedly subsampling one 327 

sample from each infant and averaging the results. 328 

Correlations between bacteria and metabolites 329 

Pearson correlations between bacterial abundances and normalized metabolite intensities were 330 

calculated using the cor function in R. Correlations were calculated between the relative 331 

abundances of all bacterial classes and all metabolite intensities among all samples in all infants. 332 

Only the four most highly abundant general of bacteria were used to ensure no results were 333 

skewed by taxa present in only one or a few samples. For each class of metabolite, the average of 334 

all correlations between metabolites in that class and each taxon was calculated so that trends 335 

between bacterial taxa and classes of metabolites could be visualized by heatmap. 336 

Mantel test 337 

To determine if fecal samples with similar bacterial compositions also have similar metabolite 338 

profiles, a Mantel test was performed. To account for the effect of longitudinal sampling, each 339 

dataset was randomly subsampled down to one sample per infant. A Bray-Curtis dissimilarity 340 

matrix was computed for the bacterial composition and Manhattan distances calculated for 341 

metabolite intensities. The Mantel function in the vegan package of R was used to calculate the 342 

Mantel statistic for a Pearson correlation between the two dissimilarity matrices. The average 343 

and standard deviation of the Mantel statistic r and p-value for the 100 Mantel tests was reported. 344 

Data availability 345 
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Raw sequence data will be uploaded to the SRA. OTU tables, raw metabolomics data, a 346 

markdown file of sequence processing workflow, and R scripts used for analyses are available at 347 

https://github.com/swandro/preterm_infant_analysis. 348 
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Table 1. Clinical and sampling information for all infants. 533 

Infant # samples 
Age sample(s) collected 
(days) 

Age at 
disease onset 

(days) 
Group 

Fetal age 
at birth 

Birth 
weight 
(g) 

Antibiotics  
Delivery 

mode 
Feeding type 

Twin 
set 

1 2 7,7   control 27w4d 875   c-section breastmilk   

2 3 15,15,36   control 31w 1570 ampicillin,gentamycin c-section breastmilk and formula   

3 1 19   control 26w 980 ampicillin,gentamycin c-section breastmilk   

4 2 11,11   control 30w3d 1335   vaginal breastmilk   

5 2 18,18   control 24w5d 630   c-section breastmilk   

6 4 25,26,28,43   control 28w5d 860 ampicillin,gentamycin c-section breastmilk and formula   

7 3 10,21,24   control 25w2d 885   c-section breastmilk and formula   

8 1 10   control 25w4d 940 ampicillin,gentamycin vaginal breastmilk   

9 1 8   control 27w2d 1205   vaginal breastmilk   

11 2 29,29   control 27w4d 850 ampicillin,gentamycin vaginal breastmilk   

12 1 22   control 26w2d 880 ampicillin,gentamycin c-section breastmilk and formula 1 

13 1 23   control 26w2d 925 ampicillin,gentamycin c-section breastmilk and formula 1 

14 1 8   control 31w4d 1190 ampicillin,gentamycin c-section breastmilk   

15 3 18,40,40   control 28w1d 1270 ampicillin,gentamycin c-section breastmilk and formula 2 

16 1 19   control 28w1d 1355 ampicillin,gentamycin c-section breastmilk and formula 2 

17 3 18,32,54   control 26w2d 660 ampicillin,cefotaxime c-section breastmilk   

21 1 10   control 28w6d 1180 ampicillin,gentamycin c-section breastmilk   

22 1 25   control 28w6d 1360 ampicillin,cefotaxime vaginal breastmilk and formula   

24 2 27,73   control 26w 740 ampicillin,gentamycin c-section breastmilk 3 

25 1 28   control 26w 780 ampicillin,gentamycin c-section breastmilk 3 

35 2 18,18   control 25w5d 920   c-section breastmilk and formula   

23 7 14,15,27,28,30,30,56 27 NEC 26w6d 1080 ampicillin,gentamycin, cefotaxime,vancomycin vaginal breastmilk   

28 4 31,32,33,48 31 NEC 26w 1060 vancomycin,piperacillin c-section breastmilk and formula   

30 4 21,41,42,56 41 NEC 23w6d 620 cefazolin,azithromycin,ampicillin vaginal breastmilk and formula   

20 1 21 26 septic 24w5d 815 ampicillin,gentamycin c-section breastmilk   

10 6 15,35,36,37,39,40 27 septic 26w5d 940 ampicillin,gentamycin,vancomycin vaginal breastmilk and formula   

26 1 22 22 septic 24w4d 660 ampicillin,gentamycin,cefotaxime,vancomycin c-section breastmilk 4 

27 2 22,31 29 septic 24w5d 650 ampicillin,gentamycin c-section breastmilk 4 

29 2 20,26 26 septic 26w1d 980 cefotaxime,vancomycin c-section breastmilk   

31 5 10,34,35,38,45 34 septic 27w 710 ampicillin,gentamycin c-section breastmilk and formula   

32 4 32,32,53,75 32 septic 27w5d       breastmilk and formula   

37 3 8,17,18 13 septic 24w1d 680 ampicillin,gentamycin,cefazolin,oxacillin vaginal breastmilk   
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 535 

 536 
 537 
Figure 1. Study design schematic. Longitudinal fecal samples were collected over the first 75 538 

days of life from very low birthweight infants in the NICU. Bacterial compositions and 539 
metabolomes were characterized.  540 
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 541 

Figure 2. Bacterial composition of preterm infant guts. A) Stacked barplot of relative abundance of 542 

bacterial genera in all infant samples. The family Enterobacteriaceae is included because genus level 543 
resolution was not available. Infants are grouped together by health outcome. The timing of necrotizing 544 
enterocolitis diagnosis is indicated by a vertical dotted line. B) First axis of PCoA based on weighted 545 
uniFrac distances between bacterial communities plotted over time. Only infants with three or more 546 
longitudinal samples shown in B. 547 
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 548 

Figure 3. Alpha diversity measured by Shannon index of bacterial composition. A) Alpha diversity of all 549 
samples over the age of the infant. Boxplots of the average alpha diversity of each infant separated by B) 550 
health outcome, C) infants that were fed only breastmilk or a combination of formula and breastmilk, D) 551 
record of antibiotic usage, or E) delivery mode.   552 
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 553 

Figure 4. Metabolite profile of preterm infant fecal samples. Color is the modified z-score which is based 554 
on the median intensity for each metabolite in all infant samples. Red cells indicate standard deviations 555 
below the median and blue indicate standard deviations above the median value for each metabolite. 556 
Measured metabolites that could be assigned to a category are shown. Samples on the x-axis and grouped 557 
by infant and ordered longitudinally. Metabolites within each category are listed in the supplemental data.  558 
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 560 

Figure 5. First component of PCoA of metabolite profile over time. Manhattan distances between 561 
samples were calculated and visualized by PCoA. The first principal component which explains the most 562 
variation among the samples is shown over time. Each dot represents a single fecal sample and is colored 563 
by infant. Lines connect samples for each infant to show change over time. Only infants with three or 564 
more longitudinal samples shown. 565 

  566 
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567 
Figure 6. Correlations between bacteria abundances and metabolite intensities. A) Average of 568 
correlations between bacterial abundances and all metabolites in each metabolite category. B) Correlation 569 
between Bacteroides abundance and succinic acid intensity in all samples. Numbers indicate infant 570 
number. 571 
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