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Abstract

Infectious disease surveillance data often provides only partial information about the progres-
sion of the disease in the individual while disease transmission is often modelled using complex
mathematical models for large populations, where variability only enters through a stochastic ob-
servation process. In this work it is shown that a rather simplistic, but truly stochastic transmission
model, is competitive with respect to model fit when compared with more detailed deterministic
transmission models and even preferable because the role of each parameter and its identifiability
is clearly understood in the simpler model. The inference framework for the stochastic model is
provided by iterated filtering methods which are readily implemented in the R package pomp. We
illustrate our findings on German rotavirus surveillance data from 2001 to 2008 and calculate a
model based estimate for the basic reproduction number R0 using these data.

1 Introduction

Infectious disease epidemiology is concerned with the control and, potentially, the eradication of the
disease from the population (Keeling and Rohani, 2008). During the last decades the growing field
of mathematical modelling has provided essential tools for gaining understanding of infectious disease
dynamics, monitoring public health data and early outbreak detection (Anderson and May, 1991;
Keeling and Rohani, 2008; Diekmann et al., 2013). Moreover, mathematical models play a crucial role
in infectious disease prevention by assessing the impact of different control measures, e.g. vaccination
strategies, thus, developing the quantitative foundation for advising control policies, e.g. in global
health (Heesterbeek et al., 2015).
Depending on which questions the modelling efforts are supposed to answer the resulting models
can from a mathematical viewpoint be simple or complex. With an increasing number of model
components it becomes more challenging to identify the role of each component and its interplay
with the system (Keeling and Rohani, 2008). On the other hand, when developing models together
with infectious disease specialists, a certain detail is required in order for a model to be considered
as being realistic. It is exactly this trade-off between simplicity and “reality” which is the focus
of this work. Inspired by May (2004) we investigate the question if a simple susceptible-infected-
recovered (SIR) type model, in which the dynamics are clearly understood, is capable of explaining
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large population epidemiological data and, even more, if it is competitive with respect to model fit
to a more detailed model. We illustrate our findings on rotavirus transmission in Germany, however,
the modelling background could be easily modified to explain other infectious diseases which have
comparable transmission characteristics, e.g. influenza, chickenpox or pneumococcus disease.
A crucial part of assessing a models usefulness is the calibration of model parameters from data, if
adequate data are available. However, the number of model parameters that can be identified from
data depends heavily on the quality and information contained in the available data and imposes
a limit to the explanatory power of the model (Bretó et al., 2009). This is especially compelling
for routine infectious disease surveillance data, because observations are recorded at discrete times
and commonly describe just one aspect of the disease progression, e.g. the number of new infections
aggregated over a certain time interval, say, one week. Event time data, such as infection and recovery
times, are rarely available at a larger scale (O’Neill, 2010). Moreover, the disease dynamics are subject
to various structural fluctuations such as seasonal and environmental changes, different genotypes or
variability in social behaviour such as super spreaders etc. Most of these possible sources of variability
are in part not sufficiently understood or not measurable in any way. Hence, stochastic variation is
potentially an essential element to capture the unknown or non-measurable influences.
Models based on a deterministic transmission model component explain all variability in the data
by an observational component since this is the only element where stochasticity enters, see e.g. in
Weidemann et al. (2013); Althaus (2014). The predictive strength of these models is ambiguous since,
in observed data, we see fluctuations which are clearly not due to variation in data collection alone,
but due to phenomena not captured by the model. The sources of variability might be numerous and
not even directly identifiable, but they all have in common that the underlying epidemic dynamics are
subject to fluctuations which are independent of population size. The question arises if models that
have much simpler features abstracting epidemiological insights, but address this structural variability,
are competitive or even better suited to explain epidemiological data than their often very complex
deterministic counterparts. These deterministic transmission models are very detailed with respect to
disease states, age classes or spatial components, however, fail to address variability in the transmission
model itself. The advantages of simpler models are clear: the dependence structure of parameters is
easier to disentangle, the computational effort decreases with less detailed models and the information
contained in data might not suffice to inform very complex transmission models. We investigate this
question for rotavirus transmission in Germany between 2001 and 2008. This data set is particularly
well suited for our investigations, since it was previously analysed in Weidemann et al. (2013) and
Weidemann et al. (2014) as part of advising the German standing board of vaccination (STIKO)
about the possible impact of a recommendation of rotavirus vaccination for children. This data set is
hence a good use-case for comparing a very detailed deterministic transmission model, which explains
variability of the data purely by observational noise, to a much simpler but stochastic transmission
model including structural variability. We will follow the approach of Bretó et al. (2009) and include
structural noise in form of stochastic transmission rates into our model. This has been used in previous
studies of infectious diseases of malaria (Bhadra et al., 2011), measles (He et al., 2009), polio (Martinez-
Bakker et al., 2015) and rotavirus (Martinez et al., 2016).
Our analysis will show that a simple model is capable to explain the above rotavirus data. However,
it also clearly shows that it is important to include variability in the form of over-dispersion but also
structural noise into the model.

2

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2017. ; https://doi.org/10.1101/125880doi: bioRxiv preprint 

https://doi.org/10.1101/125880
http://creativecommons.org/licenses/by-nd/4.0/


1.1 Disease-characteristics of rotavirus

Rotavirus is a childhood disease and the primary cause for gastroenteritis in infants and young chil-
dren while adults are rarely infected (Dennehy, 2015; Grimmwood and Lambert, 2009). By the age
of five nearly every child has been infected with the virus at least once (Bernstein, 2009). The virus
spreads by direct transmission on the faecal oral route. The incubation time of rotavirus is around 2
days while severe symptoms last for approximately 4-8 days (CDC, 2016). Infected children may have
severe watery diarrhoea, often accompanied by vomiting, fever, and abdominal pain (CDC, 2016).
Children may develop rotavirus disease more than once, because neither natural infection with ro-
tavirus nor rotavirus vaccination provides full immunity (protection) from future infections. Usually
an individual’s first infection with rotavirus causes the most severe symptoms (CDC, 2016). Due
to (partial) immunity acquired in childhood, most adults are hardly susceptible to rotavirus and if
infected only show mild or no symptoms i.e. asymptomatic infections. However, a higher incidence
is observed in elderly people above 60 years again, compare e.g. Figure 1, which might be due to a
weaker immune system in higher ages which leads to an increased susceptibility.
The data we analyze is the weekly reported number of new, laboratory-confirmed rotavirus cases
among children, adults and elderly from 2001 until 2008 in Germany. Thereafter a significant impact
on the rotavirus incidence by the increasing vaccination coverage is observed (Weidemann et al., 2013).
The data are available through SurvStat@RKI (RKI, 2016). One problem with the available routine
surveillance data is underreporting, however, since our focus is on methodological insights, we use
the results from Weidemann et al. (2013) and simply scale up the available data with these inferred
factors. The values we used for scaling up are the median estimates of the underreporting parameter
from the averaged posterior distribution inferred in Weidemann et al. (2013), namely 4.3% in the
former western federal states (WFS) and 19.0% in the former eastern federal states (EFS) between
2001-2004 and 6.3% in WFS and 24.1% in EFS from 2005 onward.
The time series depicted in Figure 1 are the original data scaled up by these inferred factors for three
age groups, i.e. infants and younger children (up to 4 years of age), individuals between 5 and 60 years
of age and older adults (60 years and older). The case report data clearly shows that the occurrence of
rotavirus varies seasonally, peaking in March except in year 2007 where the season starts slightly later.
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Figure 1: Weekly number of reported rotavirus cases among the three aggregated age groups of 0-4, 5-59 and 60-99 years
of age in Germany 2001-2008 scaled by under-reporting factors inferred in Weidemann et al. (2013).

Mathematical modelling with SIR-type models of rotavirus has already been carried out for the
USA (Pitzer et al., 2009), England and Wales (Atkins et al., 2012; Atchison et al., 2010; Pitzer et
al., 2012), Western Europe (Van Effelterre et al., 2010), Australia (Shim et al., 2006), Kyrgyzstan
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(Freiesleben de Blasio et al., 2010), Germany (Weidemann et al., 2013) and Bangladesh (Martinez
et al., 2016).
In the following, we address the question of how many parameters can be identified using the available
data, demonstrate our modelling and inference framework and finally make some qualitative statements
about the endemic rotavirus situation in Germany during that period by estimating susceptibilities
of different age groups to the disease and the basic reproduction number. Conveniently, inference
methods for both a deterministic and stochastic underlying transmission processes are implemented
in the R package pomp (King et al., 2016). Since the package was developed fairly recently and spans
a wide collection of inference tools we also comment on our experiences with the package and discuss
its scientific as well as practical use. The present work is organized as follows. In Section 2 we
present three different but related transmission models, namely a general stochastic SIR-type model,
a stochastic SIR model with stochastic transmission rates and a limiting deterministic SIR model.
We explain how the transmission models are connected to the data via an observational component
and shortly present the inference framework for each model. Before carrying out the inference we
mathematically investigate how many parameters are actually identifiable with the information the
data contains and fix the other parameters at literature informed values. In Section 3 we present
our inference results and compare the findings to the approach used in Weidemann et al. (2013). In
Section 4 we discuss the gained knowledge, limitations of the model and conclusions.

2 Methods

In the following, we formulate a transmission model for rotavirus which is inspired by the work of
Weidemann et al. (2013). It is simplified concerning the number of states and age classes but includes
more variability than just over-dispersion by allowing for structural noise in the transmission rates.

2.1 Partially observed dynamical system

One practical way to answer infectious epidemiology related questions in a model and data driven way
is the use of partially observed dynamical systems (Ionides et al., 2006). These models explain how
data and a disease transmission model are related as they consist of two components: an unobserved,
time-continuous state process, which operates on the population level describing the dynamics of
disease spread, and an observation model, which describes how the data collected at discrete points in
time is connected to the transmission model. The transmission model can be either deterministic or
stochastic, while observations are most often assumed to be stochastic, centered around an adequate
summary of the transmission model. If the transmission model is assumed to be a Markov process then
the system is called a partially observed Markov process (short: pomp) (King et al., 2016). Figure 2
illustrates the components of a partially observed dynamical system.

2.2 Stochastic transmission model

We assume that the transmission model is a Markov process where individuals move between com-
partments at random times, as described in detail in what follows.
The schematic representation of our model is given in the flow diagram of Figure 3 where arrows indi-
cate the movement between the compartments. We subdivide the population into nine discrete com-
partments, stratified by the age and health status of the individuals. Although age is time continuous,

4

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 13, 2017. ; https://doi.org/10.1101/125880doi: bioRxiv preprint 

https://doi.org/10.1101/125880
http://creativecommons.org/licenses/by-nd/4.0/


Observational model

Transmission model

X1X0
... Xn−1 Xn

...

Y1 Yn−1 Yn

| | |

States

Data

Time

t1 tn−1 tn

t

Figure 2: A partially observed dynamical system where Yi, i = 1, . . . , n denotes the observations at time ti, which depend
on the state of the transmission process Xi at that time.

a compartmental approach is often adequate because children are generally grouped into daycare or
school classes of a given age cohort (Keeling and Rohani, 2008).
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Figure 3: Schematic representation of the states in our SIRS
model with three age classes. The rates represented by the
arrows are explained in the text.

We consider a model that subdivides the popu-
lation into three age classes, identified by the in-
dices 1, 2 and 3 respectively. We choose this age
stratification because the disease burden is high-
est for young children, very low for children over
5 years of age and rises again later in life. The
variables Sk(t), Ik(t), Rk(t) ∈ N with k ∈ {1, 2, 3}
count the number of susceptible, infectious, and
recovered in each of the three age groups at time
t ∈ R+.

Concerning the rates, children “age” with a
rate δ1 into the second (=adult) age class and
adults “age” with a rate δ2 into the class of el-
derly. The vector λ(t) = (λ1(t), λ2(t), λ3(t))

′ is
called the force of infection and is the per capita
rate at which susceptible individuals get infected
which depends on the number of currently in-
fected individuals Ik(t). Susceptible individuals
can become infected by transmission from an in-
fectious individual in one of the three age groups.
The recovery rate γ ∈ R+ is assumed to be inde-
pendent of age. For reasons of parameter identifi-
ability, which will be discussed in detail later, we
also assume that waning of immunity is indepen-
dent of age and immunity from infection lasts for
a limited, exponentially distributed period with
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mean 1/ω ∈ R+ after which the individual is again fully susceptible.

Since the observed disease dynamics evolve over several years, the model has to account for de-
mographics. We assume that the average population size N is constant, which implies that the birth
rate αN ∈ R+ equals the overall death rate. Furthermore, it is assumed that death can only occur
in the last age class with rate µ ∈ R+ independent of the health status of the individual. This seems
reasonable because in developed countries 90 % of the mortality comes from individuals older than
60 years, hence premature death can be ignored for our purposes (Atkins et al., 2012). To keep the
population size constant on average it is assumed that α is population independent and equals the
inverse of the average lifetime and µ equals the inverse of the average time spend in the last age-class.
In the following, the notation is adopted from King et al. (2016). We let NAB(t) denote a stochastic
counting process which counts the number of individuals which have moved from compartment A to
compartment B during the time interval [0, t) with A,B ∈ X , where X = {S1, S2, S3, I1, I2, I3, R1, R2,
R3} contains all compartments of our model. Furthermore, N�A(t) counts the number of births and
NA�(t) counts the number of deaths in the respective compartment up until time t. The infinites-
imal increment probabilities of a jump between compartments connected by an arrow (Figure 3)
fully specify the continuous time Markov process describing disease transmission. Let ∆NAB(t) =
NAB(t+ τ)−NAB(t) count the number of individuals changing compartment in an infinitesimal time
interval τ > 0. Then we define for the model depicted in Figure 3 the following system of transition
rates:

P[∆N�S1(t) = 1|Ft] = αNτ + o(τ)

P[∆NSkSk+1
(t) = 1|Ft] = δkSk(t)τ + o(τ) with k ∈ {1, 2}

P[∆NSkIk(t) = 1|Ft] = λk(t)Sk(t)τ + o(τ) with k ∈ {1, 2, 3}
P[∆NIkIk+1

(t) = 1|Ft] = δkIk(t)τ + o(τ) with k ∈ {1, 2}
P[∆NIkRk

(t) = 1|Ft] = γIk(t)τ + o(τ) with k ∈ {1, 2, 3}
P[∆NRkRk+1

(t) = 1|Ft] = δkRk(t)τ + o(τ) with k ∈ {1, 2}
P[∆NRkSk

(t) = 1|Ft] = ωRk(t)τ + o(τ) with k ∈ {1, 2, 3} (1)

P[∆NA(t)�(t) = 1|Ft] = µA(t)τ + o(τ) with A(t) ∈ {S3(t), I3(t), R3(t)}

with the filtration Ft = {S1(u), I1(t), R1(u), S2(u), I2(u), R2(u), S3(u), I3(u), R3(u), ∀ 0 ≤ u ≤ t} de-
noting the history of the process until time t. The transmission rates are related with the state
variables in the following way:

∆S1(t) = ∆N�S1(t)−∆NS1S2(t)−∆NS1I1(t) + ∆NR1S1(t)

∆I1(t) = ∆NS1I1(t)−∆NI1I2(t)−∆NI1R1(t)

∆R1(t) = ∆NI1R1(t)−∆NR1R2(t)−∆NR1S1(t)

∆S2(t) = ∆NS1S2(t)−∆NS2S3(t)−∆NS2I2(t)

∆I2(t) = ∆NS2I2(t) + ∆NI1I2(t)−∆NI2I3(t)−∆NI2R2(t) (2)

∆R2(t) = ∆NI2R2(t) + ∆NR1R2(t)−∆NR2R3(t)−∆NR2S2(t)

∆S3(t) = ∆NS2S3(t) + ∆NR3S3(t)−∆NS3�(t)−∆NS3I3(t)

∆I3(t) = ∆NS3I3(t) + ∆NI2I3(t)−∆NI3�(t)−∆NI3R3(t)

∆R3(t) = ∆NI3R3(t) + ∆NR2R3(t)−∆NR3�(t)−∆NR3S3(t)
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A consequence of the above model formulation is that we assume that individuals change from one
compartment to another according to an exponential distribution. The number of newly infected
individuals in age class k accumulated in each observation time period [tj , tj+1) is then given as

Hstoch
k (tj) = NSkIk(tj+1)−NSkIk(tj). (3)

The force of infection, written in vector notation, consists of the following components

λ(t) = β · I(t) · κ(t) · 1

N
, (4)

where I(t) = (I1(t), I2(t), I3(t))
′. Disease transmission is represented in a transmission-matrix β =

(βkj)k,j∈{1,2,3}, which is often called a WAIFW (who acquires infection from whom)-matrix (Keeling
and Rohani, 2008). The parameter βkj denotes the average number of infectious contacts of infected
individuals of age group j with susceptible individuals of age group k per time unit and hence is
the product of contact rates and transmission probability. Our modelling should account for the
possibility that individuals in each age class k could have a different immune status due to age
and hence having differing susceptibility to the disease. For this work we assume age dependent
infectious contact numbers such that βkj = βk for all k, j ∈ {1, 2, 3}. Furthermore, motivated by
the rotavirus application, we introduce a seasonal periodic forcing because we assume that those
pronounced fluctuations are likely due to social aggregations of the host like in daycare institutions
and schools which are closed during summer or climate changes. In contrast to λ(t) which is state
dependent, the seasonal forcing function κ(t) is assumed to be purely time dependent i.e. it has the
same effect in all age groups. We let

κ(t) =

(
1 + ρ cos

(
2π

w
t+ φ

))
, (5)

where ρ ∈ [0, 1] is the amplitude of the forcing, 2π/w ∈ R+ is the period of the forcing (e.g. if the time
unit is weeks, then w = 52) and φ ∈ [0, 2π] is the phase shift parameter. Note that with the choice
of forcing in equation (5) the parameter βk denotes the baseline or average transmission rate of an
individual of age group j with age group k which varies between (1 − ρ)βk and (1 + ρ)βk during the
year (Keeling and Rohani, 2008).

Extension: structural noise

Including sufficient stochasticity in a model as a way to capture drivers and phenomena not covered
otherwise by the model (e.g. late season start) is essential if one wants to assess the predictive power
of the model (Bretó et al., 2009). So far, we have accounted for stochasticity in the underlying system
by assuming that individuals move between classes at random times. However, for large population
sizes the stochastic system approaches the deterministic system and, hence, the role of randomness
diminishes as the population size increases. The same occurs by modelling disease spread via stochas-
tic differential equations (Fuchs, 2013). One way to introduce variability, which is independent of
population size, is to assume stochastic fluctuations in the transmission rates. In this work, we will
follow the approach of Bretó et al. (2009) and introduce a time continuous stochastic process ξ(t)
which fluctuates around the value one and is multiplied onto the transmission rate. It can be shown
that by choosing the corresponding integrated noise process Γ(t) in a way such that its increments
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are independent, stationary, non-negative and unbiased the Markov property is retained (Bretó et al.,
2009). One convenient example for a process which satisfies these conditions is a Lévy process with

ξ(t) =
d

dt
Γ(t), where marginally Γ(t+ τ)− Γ(t) ∼ Gamma

( τ
σ2
, σ2
)
,

and where τ/σ2 denotes the shape and σ2 the age-independent scale parameter with corresponding
mean τ and variance τσ2. Note, that the integral of ξ(t) over a time interval is well defined even
though the sample paths of Γ(t) are not formally differentiable (Karlin and Taylor, 1981; Bretó et al.,
2009). The parameter σ2 is called the infinitesimal variance parameter (Karlin and Taylor, 1981). We
build this into the model by letting the force of infection be

λ(t) = β
I(t)

N
κ(t)ξ(t). (6)

2.3 Deterministic transmission model

Calculating the expected values of the equations in (2) with the aid of (1), dividing by τ , and taking
the limit as τ → 0, we obtain the underlying deterministic form of the three age strata model:

dSk(t)

dt
= αN1{k=1} + δk−1Sk−1(t)1{k=2,3} − δkSk(t)1{k=1,2} − µSk(t)1{k=3} − λk(t)Sk(t) + ωRk(t),

dIk(t)

dt
= λk(t)Sk(t) + δk−1Ik−1(t)1{k=2,3} − δkIk(t)1{k=1,2} − µIk(t)1{k=3} − γIk(t), (7)

dRk(t)

dt
= γIk(t) + δk−1Rk−1(t)1{k=2,3} − δkRk(t)1{k=1,2} − µRk(t)1{k=3} − ωRk(t),

for k = 1, 2, 3 and initial values satisfying
∑3

i=1 Si(0) + Ii(0) + Ri(0) = N . The number of newly
infected individuals in age class k accumulated in each observation time unit [tj , tj+1) is then given as

Hdet
k (tj) =

∫ tj+1

tj

λk(t)Sk(t)dt. (8)

Analytical solution of the deterministic transmission model without seasonality

Optimally, all parameters of a model can be inferred from the data, however, as we only observe an
aggregation of a part of the system at discrete times we would like to investigate which and how many
parameters of our model are actually identifiable from data. We note that the seasonal component
in the data allows us to estimate the phase shift parameter φ and the amplitude of the forcing ρ,
however, there is no closed form solution for those two parameters. What remains to be investigated
is how many parameters can be estimated from the data without this seasonal component which
corresponds to analyzing the system in endemic state. For this purpose, we divide the ODE system
in (7) by N so we obtain the fractions of the population being susceptible, infected and recovered, i.e.
sk(t) = Sk(t)/N, ik(t) = Ik(t)/N and rk(t) = Rk(t)/N, k ∈ {1, 2, 3} with the sum over all fractions
adding up to one and write λk(t) = βki(t) with i(t) =

∑3
k=1 ik(t). We are interested in the system at

equilibrium, i.e. when dsk/dt = dik/dt = drk/dt = 0. Here, we work out the values of the variables
which we denote by s̃k, ĩk, r̃k, k ∈ {1, 2, 3} (Keeling and Rohani, 2008).
In order to obtain an artificial endemic state without seasonality we take for each age group the mean
over time and treat the obtained values as our data Yk(tj) which is the number of newly reported
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rotavirus cases aggregated over reporting intervals [tj , tj+1), j ∈ {0, 1, 2, ...} in age class k ∈ {1, 2, 3}.
In the endemic state s̃k, ĩk, r̃k, k ∈ {1, 2, 3} also the number of reported cases is in equilibrium, hence
Yk(tj) = Yk(tj+1) for all j ∈ {0, 1, 2, ...}. For tj+1 − tj = 1 and assuming no observational noise, this
translates mathematically to

Yk(tj) =

∫ tj+1

tj

βk ĩs̃kNdu = βk ĩs̃kN, (9)

with ĩ(t) =
∑3

k=1 ĩk(t) and which is independent of the time point tj . Hence, we will only write
Yk := Yk(tj) in what follows. Plugging (9) into the transformed equations (7) at equilibrium we
obtain

ĩ1 =
Y1

(γ + δ1)N
, ĩ2 =

Y2 + δ1ĩ1N

(γ + δ2)N
, ĩ3 =

Y3 + δ2ĩ2N

(γ + µ)N
. (10)

We conclude that the data thus can inform the three endemic states ĩk, k ∈ {1, 2, 3}, if we assume
that the demographic parameters for µ, δ1, δ2 as well as the recovery rate γ, are fixed and known.
Furthermore, since in the deterministic model the total population size N as well as the population
sizes Nk = Sk(t) + Ik(t) +Rk(t) of age class k are constant, we know that

s̃1 + ĩ1 + r̃1 =
N1

N
=
α

δ1
, s̃2 + ĩ2 + r̃2 =

N2

N
=
α

δ2
, s̃3 + ĩ3 + r̃3 =

N3

N
=
α

µ
. (11)

These equalities follow from the fraction of the population in age class k being equal to the fraction of
the average lifetime spend in each age class. We can therefore express r̃k in terms of s̃k and ĩk, if we
assume additionally that the birth rate parameter α is fixed and known. The variables that remain
to be estimated are s̃1, s̃2 and s̃3. It can now be seen that by further assuming ω to be fixed and
known we can also estimate β1, β2 and β3. For this, we equate the above system to zero and solve the
equations. We obtain by analytical derivations

s̃1 =
α− (γ + δ1)̃i1 + ω( αδ1 − ĩ1)

δ1 + ω
, β1 =

(γ + δ1)̃i1

s̃1ĩ
,

s̃2 =
δ1s̃1 − (γ + δ2)̃i2 + δ1ĩ1 + ω( αδ2 − ĩ2)

δ2 + ω
, β2 =

(γ + δ2)̃i2 − δ1ĩ1
s̃2ĩ

, (12)

s̃3 =
δ2s̃2 − (γ + µ)̃i3 + δ2ĩ2 + ω(αµ − ĩ3)

µ+ ω
, β3 =

(γ + µ)̃i3 − δ2ĩ2
s̃3ĩ

.

We thus conclude the following: by assuming the demographic parameters α, µ, δ1, δ2, the recovery
rate γ and the immunity waning rate ω to be fixed and known it is possible to estimate for φ, ρ, β1, β2
and β3 from the available data. In case that more parameters should be estimated from the data
additional sources of information are needed.

2.4 Calculation of R0

An important mathematical characteristic of an epidemic model is its basic reproduction number R0.
It is the expected number of new infections by a typical infectee during the early stage of an epidemic
when everyone is susceptible (Andersson and Britton, 2000). We can calculate the basic reproduction
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number R0 for the deterministic transmission model which is, also, representative for the stochastic
transmission model, because it approaches the deterministic system for a large population size N .
Hence, let πk = Nk/N denote the community fraction of age class k ∈ {1, 2, 3} in the population
and νk = 1/(γ + δk) for k = 1, 2 or νk = 1/(γ + µ) for k = 3 the average length an individual of
type k ∈ {1, 2, 3} stays in the infectious compartment- note that the infectious period is reduced due
to some individuals ageing or dying while infectious Keeling and Rohani (2008). With the seasonal
forcing function chosen as in equation (5) the expected number of k individuals a j individual infects
if everyone is susceptible is βkπkνj , which represents a yearly average. The matrix

M = (mkj)k,j∈{1,2,3} with mkj = βkπkνj

defines the expected number of new infections of individuals of a certain age caused by individuals of a
certain age if everyone is susceptible. The basic reproduction number R0 can then be calculated as the
largest eigenvalue of this matrix Andersson and Britton (2000), pp. 51-62. However, if mkj = βkπkνj
(i.e. “proportionate mixing” Diekmann et al. (2013), p. 176) the basic reproduction number can be
written as

R0 =
3∑

k=1

βkπkνk. (13)

This yearly average will vary between (1− ρ)R0 and (1 + ρ)R0 during the year.

2.5 Observation model

To incorporate the count nature of the observations a natural first assumption would be to model the
reported cases as realizations of a Poisson distributed random variable with a given time dependent
mean. However, the data suggests that the sample variance is larger than the sample mean, i.e. there
is indication of over-dispersion in the data. A better choice in this case is therefore the negative
binomial distribution which allows for additional variance.
Let the number of recorded cases Yk(tj), k ∈ {1, 2, 3} within a given reporting interval [tj , tj+1),
j ∈ {0, 1, 2, . . . } be

Yk(tj) ∼ NBin

(
Hk(tj),

1

θ

)
,

with Hk(tj) being the true number of accumulated incidences in age class k per time unit [tj , tj+1)
in the model, cf. equation (3) for the stochastic model and (8) for the deterministic model. Here
NBin(µ, 1/θ) denotes the negative binomial distribution with mean µ and variance µ + θµ2. To
reduce the number of parameters, the same dispersion parameter θ for all age classes is chosen as in
Weidemann et al. (2013).

2.6 Inference and Implementation

2.6.1 Simulation from the stochastic model

To generate realizations from the stochastic transmission model in (2) we can use the Gillespie algo-
rithm (Gillespie, 1977). Given the current state of the system, the algorithm simulates the waiting
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time for every possible next event given its current state. Then it chooses the shortest waiting time
and updates the number of individuals in each compartment and the overall time is incremented ac-
cordingly. The whole procedure is then repeated until a pre-defined stopping time is reached. The
simulation of every individual event gives us a complete and detailed history of the process, however,
it is usually a very time-consuming task for systems with large population and state space, because of
the enormous number of events that can take place (Gillespie, 2001).
As a way to speed up such simulations we choose an approximate simulation method, the so called
τ -leap algorithm which is based on the Gillespie algorithm. It holds all rates constant in a small time
interval τ and simulates the numbers of events that will occur in this interval, then updates all state
variables, computes the transition rates again and the procedure is repeated until the stopping time
is reached (Erhard et al., 2010; King et al., 2015). Given the total number of jumps, the number
of individuals leaving any of the states by the routes indicated by arrows (cf. Figure 3) during a
time interval τ is then multinomially distributed (King et al., 2015). This is because Poisson random
variables X1, . . . , Xn conditioned on their sum, i.e.

∑n
k=1Xk = k, result in a multinomial distributed

random variable with size parameter k and the transition probabilities proportional to their respective
rates. Under appropriate conditions this procedure can produce significant gains in simulation speed
with acceptable loss in accuracy (Gillespie, 2001).

2.6.2 Likelihood for partially observed dynamical systems

Let Yn = (Y1n, . . . , Y3n)′ denote the random variable counting the observations at time tn in each
of the three age-classes depend on the state of the transmission process Xn = (S(tn), I(tn),R(tn))
at that time where, e.g. S(tn) = (S1(tn), S2(tn), S3(t3))

′, cf. Figure 2. Furthermore, we denote
X0:N = (X0, . . . ,XN ) and the parameter vector by ψ. The joint density of the states and the
observations is then defined as the product of the one-step transmission density, fXn|Xn−1

(xn|xn−1;ψ),
the observation density, fYn|Xn

(yn|xn;ψ), and the initial density fX0(x0;ψ) as

fX0:N ,Y1:N (x0:N ,y1:N ;ψ) = fX0(x0;ψ)

N∏
n=1

fXn|Xn−1
(xn|xn−1;ψ)fYn|Xn

(yn|xn;ψ).

The likelihood of the parameter vector can then be written as the marginal density for a sequence of
observations, Y1:N , evaluated at the data, y∗1:N as

L(ψ) = fY1:N (y∗1:N ;ψ) =

∫
fX0:N ,Y1:N (x0:N ,y

∗
1:N ;ψ)dx0:N , (14)

compare e.g. King and Ionides (2016a). Note that for our model this is a high-dimensional integral of
dimension (N + 1)× 9, which is hard if not impossible to solve by any analytical means, see Section
2.6.4.

2.6.3 Maximum likelihood estimation for determistic transmission model

Inference for partially observed dynamical systems with a deterministic underlying transmission model
is relatively straightforward, because eq. (14) is computable. This is because the likelihood of ob-
servations depends only on the solution of the deterministic system (cf. (7) and (8)). More precisely,
Xn = xn(ψ) is a known function of ψ for each n. What is generally not known is the initial density
fX0(x0;ψ), however we overcome this by initializing the system well ahead of the first observations
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such that simulations will equilibrate before the first observation is made. Hence, we choose the es-
timates from equations (10), (11) and (12) as the initial distribution and start the system 6 years
prior to our first observation. The solution of the ordinary differential equation system can then be
calculated numerically with, e.g., Runge-Kutta methods (Press et al., 2007). Given this solution, max-
imum likelihood estimation boils down to a classical numerical optimization problem for a non-linear
function of the parameter vector.

Implementational details

Maximum likelihood estimation for partially observed dynamical systems with a deterministic under-
lying transmission model is, e.g., implemented in the traj.match function in the R package pomp (King
et al., 2016) which accesses R’s optim function. As optimizing algorithm we chose the Nelder-Mead
method Nelder and Mead (1965). In order to address the potential problem of local maxima in the
optimization we use 100 randomly chosen parameter constellations as starting values for the fitting
algorithm. These values are drawn uniformly from a hypercube which contains all sensitive parameter
values. In general, if the inference procedure gives consistent results for starting values drawn at
random from a hypercube this indicates that a global maximum has been found and a reliable global
search has been performed King and Ionides (2016b). One practical problem for the models at hand is
that if the relative convergence tolerance in the Nelder-Mead algorithm is very small, estimation fails
due to a degeneracy of the Nelder-Mead complex. To get around this, we choose the relative tolerance
as small as possible so the algorithm does not fail and re-use the obtained estimates as starting values
for a second run of the inference algorithm with the same tolerance. Surprisingly, the implementation
of the algorithm then usually takes a few additional iterations. This way we make sure that the algo-
rithm really converges. Based on the obtained maxima for all starting values we select the one with
the highest likelihood as our maximum likelihood estimator (MLE). To determine a 95% confidence
interval (CI) for the obtained estimates we calculate the profile log-likelihood for each parameter of
interest and invert Wilk’s (likelihood ratio) test to get the desired intervals Held and Sabanés Bové
(2013). To construct a 95% pointwise prediction interval (PI) for model realizations we calculate the
2.5% as well as the 97.5% quantile of the respective response distribution at each observation time
tj with mean Hdet

k (tj) (eqn. (8)) using plug-in of the MLE and hence ignoring uncertainty in the
parameters.

2.6.4 Maximum likelihood estimation for stochastic transmission model

For a partially observed stochastic transmission model the likelihood is not tractable, because knowl-
edge of the parameters does not uniquely determine the solution of the transmission model and
marginal likelihoods are very computationally demanding. During recent years different methods
have been developed to overcome this problem. With increasing computational power, simulation-
based methods gained more and more attention as well as modified likelihood-based approaches such
as iterated filtering Ionides et al. (2011), simulated moments Kendall et al. (1999), synthetic likelihood
Wood (2010), non-linear forecasting Sugihara and May (1990). Another track have been Bayesian ap-
proaches such as approximate Bayesian computations Toni et al. (2009); Liu and West (2001) and
particle MCMC Andrieu et al. (2010). A good survey of such and other inference methods can be
found in O’Neill (2010). In this work we will use iterated filtering which is a simulation and likelihood-
based method which uses trajectories generated by the underlying transmission model as the basis for
inference Bretó et al. (2009). To evaluate the likelihood of a partially observed Markov model for a
set of parameters, the standard approach is to approximate the integral in equation (14) by Monte
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Carlo methods Robert and Casella (2004). However, it turns out that this method would not be very
efficient because the way trajectories are proposed is completely unconditional of the data which leads
to very imprecise estimates. A more efficient alternative is to factorize the likelihood in eq. (14) as

L(ψ) = f(y∗1:N |ψ) =
N∏
n=1

f(y∗n|y∗1:n−1;ψ) =
N∏
n=1

∫
f(y∗n|xn;ψ)f(xn|y∗1:n−1;ψ)dxn. (15)

This formulation serves as basis for particle filter methods which efficiently use re-sampling techniques,
details about which can be found in Doucet et al. (2001).

Implementational details

Iterated filtering as introduced by Ionides et al. (2006) and improved in Ionides et al. (2015) explores
the parameter space by adding noise to the parameters of interest and at each iteration calculates the
likelihood of the perturbed model by evaluating the particle filter. The algorithm is implemented in the
mif2 function in the R package pomp King et al. (2016). As the iterations proceed the intensity of the
perturbation is successively reduced (“cooling”) and the loglikelihood of the perturbed model gradually
approaches the loglikelihood of the model of interest. However, for a finite number of iteration steps,
the loglikelihoods of the two models are not identical and a particle filter evaluation of the mif2 model
output using equation (15) is necessary. For the fitting carried out in the following we use 20 starting
values drawn uniformly from a hypercube covering reasonable parameter values. To make calculations
feasible with respect to time we accept approximation errors of the underlying stochastic transmission
process by choosing a rather large time step size of 1/10 in the τ leaping algorithm, see Section 2.6.1.
For the following inference procedure we use Nmif=300 iterations, Np=5000 particles, a cooling of the
perturbations of cooling.fraction.50=0.5 and random walk standard deviations rw.sd which vary
dependent on the parameter between 0.001 and 0.2. For details see the pointed out manual.
For each of the 20 mif2 outputs we run 10 particle filters, each with 1000 particles. From this we
calculate the estimated mean of the loglikelihood (LL) and the standard error of the Monte Carlo
approximation for every parameter set. Consequently, we choose the parameter constellation of the
20 possible with the highest loglikelihood as the maximum likelihood estimator. To obtain the 95 %
confidence intervals for the parameters we construct the profile likelihood of each parameter and use
Wilk’s test. This might seem overcomplicated at first sight since, intuitively, the parameter swarm
should contain some measure of uncertainty. However, due to particle depletion the information about
the local shape of the likelihood surface contained in the particles is not very reliable. It turns out that
the profile likelihood is much more robust since it relies on multiple independent mif2 computations.
The 95% prediction intervals for the model realizations are calculated out of 1000 realizations of
the model when using plug-in of the MLE, ignoring any uncertainty. To evaluate the model fit we
investigate how often the data does not lie in this interval, for the transmission model as well as the
whole model including the observational model. The implementation of the following calculations are
available at Stocks (2017).

3 Results

In the following we will compare the model fit of four different models which are based on the same
conceptual modelling of rotavirus transmission (cf. Figure 3) but differ with respect to the handling of
stochasticity. We differentiate between deterministic and stochastic transmission models and consider
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Model name Transmission model Observational model

DtSt deterministic Poisson
DtSt+ deterministic negative binomial
StSt+ stochastic negative binomial
St+St+ stochastic with structural noise negative binomial

Table 1: Specification of the four investigated models.

stochastic observation processes with and without overdispersion. Model DtSt captures the least
stochasticity and Model St+St+ the most, for model details compare Table 1. Our practical experience
shows that for a stochastic model without overdispersion the iterated filtering algorithm fails, because
the model is not variable enough to explain the data. Hence, we do not carry out inference for a
stochastic transmission model with Poisson observations.
As a first inference step we calculate the βk’s from the analytical solution given in Section 2.3. To
demonstrate the performance of the methods used, we carry out a simulation study for each model
first. In the second step we will use the insights gained to fit the four models to the observed rotavirus
time series described in Section 1.1. In the previous section we found that only the susceptibility
parameters βk with k ∈ {1, 2, 3} and the parameters for the seasonal forcing function ρ and φ can
be estimated from the available data. Moreover, we will estimate the overdispersion parameter θ for
the Models DtSt+, StSt+ and St+St+ and additionally the shape parameter of the structural noise
σ2 for Model St+St+. All other parameters are fixed at biological plausible values shown in Table 2.
The inverse of the yearly birthrate equals the sum of the inverses of the yearly aging and death-rates
which add up to 78.9 which is the total life expectancy at birth in Germany averaged between the
years 2001 to 2008, taken from The World Bank (2016). The averaged population size N in Germany
during that time period is taken from Statistisches Bundesamt (2016) and the reporting interval is
one week. As in Atkins et al. (2012) we assume that all individuals are immune against rotavirus for
an average of one year, after which they return to full susceptibility. A more detailed discussion on
the choice of this assumption can be found in Section 4.

3.1 Analytical solution of βk

Our investigations showed that the inference algorithms are very sensitive to starting values of the
parameters. Hence, we use the analytical solution of the deterministic transmission model without
seasonality from Section 2.3 as a first step. We then use the obtained estimates for βk as starting
values for the other estimation procedures of all four models and the endemic state estimates as initial
values for the transmission model.
In the rotavirus data the mean number of weekly reported new cases in each age group between the
years 2001 and 2008 are 10009, 2254, and 1364 for children, adults and elderly respectively. Solving
the calculations from equation (12) we obtain

β̂1 = 12.66, β̂2 = 0.24, β̂3 = 0.42,

for the deterministic system. This supports what was stated initially that children are highly suscep-
tible to the disease while adults enjoy a higher protection. However, with higher age the susceptibility
increases slightly again. Moreover, calculating the basic reproduction number it follows from equation
(13) that R̂0 = 1.07. One could argue that this value is surprisingly close to the value one for a highly
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Parameter Explanation Value Unit

N population size 82 372 825 individuals
α individual birth rate 1/(52 · 78.86912) week−1

δ1 ageing from age group 1 (age 0-4) to 2 (age 5-59) 1/(52 · 5) week−1

δ2 ageing from age group 2 (age 5-59) to 3 (age 60+) 1/(52 · 55) week−1

µ death rate (from age group 3 (age 60+) ) 1/(52 · 18.86912) week−1

βk susceptibility of age group k ∈ {1, 2, 3} to be estimated individuals/week
ω immunity waning rate 1/(1 · 52) week−1

γ recovery rate 1 week−1

φ phase shift of the seasonal forcing to be estimated 1
ρ amplitude of the seasonal forcing to be estimated 1
λk(t) force of infection of age group k ∈ {1, 2, 3} defined by eq. (4) individuals/week
κ(t) seasonal forcing function defined by eq. (5) 1
θ overdispersion parameter to be estimated 1
σ2 scale parameter of the Γ-noise to be estimated 1
τ time step to be estimated week
R0 basic reproduction number to be estimated individuals

Table 2: Full list of notation and parameter values used in the model.

infectious disease as rotavirus. It should, however, be noted that the susceptibility for children is
very high, but children in our model only make up approximately 6% of the total population. That
the susceptibilities of the two older age groups are this low depends on the assumption of an average
length of immunity of one year in all age classes. One possible explanation is that this is not adequate
and that immunity lasts longer or under-reporting is higher in the older age classes which both leads
to higher values for R0. We refer to Section 4 for a more detailed interpretation of these findings.

3.2 Simulation Study

In this section we perform a simulation study to demonstrate the correctness of the inference method
for each of the four models. For this we generate one realization of each model with parameters
chosen as the analytical solution, which we then treat as data to estimate parameters from. Note,
that since the data is different for each simulation study the loglikelihoods of the four models are not
directly comparable. After the inference we compare the obtained estimates to the true parameters
which serves as validation of our implementation. The results can be found in Table 3. For all models
the estimated parameters are in good accordance with the true parameters. As an example, Figure
A.9 shows the simulated data from Model DtSt+, together with pointwise 95% prediction intervals
obtained from the model when using plug-in of the MLE for the solution of the ODE. In order to
check if observational noise and structural noise are distinguishable and how the estimation results
change under model miss-specification we carried out a robustness study (not shown here). For this we
generated one realization of each model and additionally a realization of a model with structural noise
and Poisson observations and fitted the obtained realizations to every model respectively. We found
that both noise components are indeed distinguishable from each other and parameters are estimated
correctly even under model miss-specification.
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Model DtSt (LL: -6 517.864)
β1 β2 β3 ρ φ

SI [12.000, 16.000] [0.200, 0.400] [0.300, 0.500] [0.120, 0.160] [0.00, 0.200]
TP 12.657 0.238 0.420 0.150 0.100
MLE 12.657 0.238 0.420 0.150 0.100
CI [12.651,12.664] [0.238,0.238] [0.419,0.421] [0.150,0.150] [0.099,0.100]

Model DtSt+ (LL: -10 597.1)
β1 β2 β3 ρ φ θ

SI [12.000, 14.000] [0.200, 0.400] [0.300, 0.500] [0.120, 0.160] [0.000, 0.050] [0.300, 0.600]
TP 12.657 0.238 0.420 0.150 0.100 0.500
MLE 12.658 0.235 0.429 0.156 0.135 0.473
CI [12.316,12.998] [0.219,0.253] [0.398, 0.463] [0.15,0.162] [0.097,0.173] [0.441,0.509]

Model StSt+ (LL: −11 310.29 ± 0.06)
β1 β2 β3 ρ φ θ

SI [12.000, 14.000] [0.200, 0.400] [0.300, 0.500] [0.120, 0.160] [0.000, 0.050] [0.300, 0.600]
TP 12.657 0.238 0.420 0.150 0.100 0.500
MLE 12.794 0.235 0.407 0.149 0.102 0.467
CI [12.475, 13.099] [0.222, 0.250] [0.380, 0.440] [0.144, 0.156] [0.061, 0.143] [ 0.437, 0.509]

Model St+St+ (LL: −11 102.11 ± 0.13)
β1 β2 β3 ρ φ θ σ

SI [12.000,16.000] [0.200,0.400] [0.300,0.500] [0.120,0.160] [0.000,0.200] [0.100,0.500] [0.001,0.200]
TP 12.657 0.238 0.420 0.150 0.100 0.300 0.050
MLE 12.390 0.248 0.431 0.152 0.113 0.313 0.034
CI [12.057, 12.684] [0.235, 0.262] [0.408, 0.460] [0.145, 0.159] [0.072, 0.163] [0.291, 0.338] [0.020, 0.052]

Table 3: Simulation study results for the models with starting interval (SI), true parameter (TP),
maximum likelihood estimator (MLE) and calibration of the 95% confidence interval (CI). Moreover,
we report loglikelihood (LL) plus/minus the standard error of the Monte Carlo approximation of the
loglikelihood.

3.3 Inference for rotavirus data

Parameter estimates as well as model diagnostics for the four models are given in Table 4. We report
in the in the column ’coverage’ how often the actual data is covered by the pointwise 95% prediction
interval of the respective model. For the stochastic transmission models StSt+ and St+St+ we also
report how often the 95% prediction interval of the stochastic transmission model covers the data
in order to investigate how much the observational noise additionally contributes to explaining the
data. We find that matching Model DtSt to the data coincides surprisingly well with the analytical
results for the susceptibility parameters, although, this model neither has an observational model nor
a seasonal forcing component. However, the 95% prediction interval only covers 8.8% of the observed
data and, hence, the model only poorly explains the variation in the data as is also reflected in a
very low loglikelihood. Fitting the deterministic model with overdispersion (Model DtSt+) to the
data improves the fit by several thousands log units. The 95% prediction interval of the estimated
parameter values covers now 96.2% of the data.
The difference between Model DtSt+ and Model St+St+ is the nature of their transmission model and
we find that a stochastic transmission model improves the fit by additional 180 log units. We find that
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the coverage of the 95% prediction interval decreases to 90.6%, however, the coverage of the prediction
interval of the transmission model is 28.9%. The diagnostic plots (cf. Figures A.10 and A.12) show how
the loglikelihood of the mif2 model and the parameters evolve with each iteration. In the diagnostic
plot for Model StSt+ (Figure A.10) one can observe that after the loglikelihood of the perturbed
model has increased significantly there is a small drop of the likelihood before stabilizing at a value
which seems not optimal after having seen higher loglikelihood values at earlier iterations. However,
re-running the particle filter at each iteration returned by the mif2 model gives that the loglikelihood
of the model of interest is increasing before stabilizing, cf. Figure 11. One possible explanation for the
observed phenomenon is that the mif2 model of Model StSt+ which includes extra variability in the
parameters via random-walk perturbations explains the data better if the perturbations are larger.
This indicates that the actual target model i.e. the one without perturbations, is not variable enough
to explain the data well.
This leads us to Model St+St+ which allows for additional variability by having stochastic transmission
rates. It has the highest loglikelihood of the four models and is hence the best suited model to explain
the data. The prediction interval covers 96.5% of the data. What is really interesting to note is
that now the transmission model by itself is able to explain nearly all the data because its prediction
interval covers 93.7%. This indicates that the observational noise component is not as strong as the
three previous models suggested.
Although the data clearly lies in the 95% prediction interval for all models with overdispersion, we
noticed that the model mean for the children in these models is slightly lower than the data for the
first three years of our investigations. This does not occur for Poisson distributed observations so we
initially presumed that the phenomenon might be an artifact of the negative binomial distribution.
We carried out some additional analysis in order to understand this better. Firstly, we introduced
age-dependent overdispersion parameters which improved the loglikelihood, however, did not raise
the mean in the children compartment. Secondly, we assumed observations to be drawn from a left-
censored normal distribution with the same mean and variance as for the negative binomial distribution
in order to avoid the skewness of the negative binomial distribution. Also this approach did not raise
the mean in the first age group so we conclude that the observed underestimation is not due to the
negative binomial distribution but rather a general consequence of having overdipsersion in the model.

3.3.1 Comparison with results from Weidemann et al. (2013)

We find that Model St+St+ explains the data very well, although the transmission component does
not go into the same epidemiological detail as e.g. the work of Atkins et al. (2012) or Weidemann
et al. (2013). Instead the model focuses on better capturing variability. Since we analysed the same
data as in Weidemann et al. (2013) with the only difference that we directly scaled the data for
under-reporting, it is very insightful to compare the model fits in order to see if it is worthwhile to
model disease transmission very detailed and to give recommendations to future modellers of what we
consider important. In Weidemann et al. (2013) a very detailed but deterministic transmission model
with negative binomially distributed observations was used including 19 age classes, 3 susceptibility
states, maternal antibody protection, distinguishing between symptomatic and asymptomatic cases
resulting in an overall number of 266 age specific states. Moreover, the data was split into two data
sets (former eastern (EFS) and western federal states (WFS)) so a region specific analysis was carried
out and time specific birth and migration rates between age classes were included. In order to compare
the fit of the models to the scaled up rotavirus data on equal grounds we slightly modified the inference
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Model DtSt (LL: -371 713, AIC: 743 436, coverage: 8.8% )
β1 β2 β3 ρ φ

SI [12.000, 16.000] [0.200, 0.400] [0.300, 0.500] [0.120, 0.160] [0.000, 0.200]
MLE 12.659 0.237 0.418 0.151 0.037
CI [12.658, 12.659] [0.237, 0.238] [0.418,0.419] [0.151,0.151] [0.036,0.038]

R0= 1.065 (1.065-1.066), seasonal range: [0.904, 1.226]

Model DtSt+ (LL: -10 383.05, AIC: 20 778.1, coverage: 96.2%)
β1 β2 β3 ρ φ θ

SI [12.000, 16.000] [0.200, 0.400] [0.300, 0.500] [0.120, 0.160] [0.010, 0.200] [0.100, 0.400]
MLE 11.718 0.284 0.477 0.129 0.067 0.221
CI [11.474, 11.956] [0.270, 0.298] [0.454, 0.503] [0.125, 0.133] [0.034, 0.100] [0.205, 0.238]

R0=1.052 (1.021-1.083), seasonal range: [0.916, 1.188]

Model StSt+ (LL: −10 201.64 ± 1.94, AIC: 20 415.28, coverage: 90.6% [only transmission model: 28.9%])
β1 β2 β3 ρ φ θ

SI [10.000,14.000] [0.200,0.400] [0.300,0.500] [0.110,0.160] [0.010,0.500] [0.001,1.000]
MLE 11.198 0.266 0.450 0.142 0.075 0.150
CI [10.939, 11.322] [0.268, 0.291] [0.434, 0.472] [0.136, 0.144] [0.037, 0.102] [0.149, 0.173]

R0=1.000 (0.981-1.031), seasonal range: [0.859, 1.142]

Model St+St+ (LL: −10060.19 ± 0.25, AIC: 20 134.38, coverage: 96.5% [only transmission model: 93.7%] )
β1 β2 β3 ρ φ θ σ

SI [10.000,15.000] [0.200,0.400] [0.300,0.500] [0.110,0.160] [0.010,0.300] [0.001,0.300] [0.001,0.200]
MLE 11.298 0.267 0.433 0.148 0.085 0.111 0.091
CI [11.130, 11.555] [0.263, 0.271] [0.418, 0.452] [0.138, 0.155] [0.007, 0.172] [0.111, 0.121] [0.082, 0.111]

R0 = 1.004(0.986 − 1.027), seasonal range: [0.855, 1.152]

Table 4: Inference results for the four models with starting interval (SI), maximum likelihood esti-
mator (MLE), 95% confidence intervals (CI), basic reproduction number R0, 95% confidence interval
for R0, seasonal variability of R0, coverage of the data by the 95 % prediction interval of the full model
(coverage of the data 95 % prediction interval only generated by the transmission model), loglikelihood
(LL), Akaike information criterion (AIC) and standard error of the Monte Carlo approximations.
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Figure 4: Model fit of Model DtSt to rotavirus incidence data (solid back line) and the model mean (solid light line).
The 95% prediction interval is very thin so it is nearly indistinguishable from the model mean.
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Figure 5: The 95% prediction interval (shading) for realizations of Model DtSt+ evaluated at the maximum likelihood
estimator for the rotavirus incidence data (solid back line) and model mean (solid white line).
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Figure 6: The 95% prediction interval (light shading) for 1000 realizations of Model StSt+ evaluated at the maximum
likelihood estimator for the rotavirus incidence data (solid back line) and the median (solid white line). Furthermore,
the 95 % prediction interval of these 1000 realizations for only the transmission model is shown (darker shading).

children

adult

elderly

0

20000

40000

60000

0

5000

10000

15000

0

2500

5000

7500

10000

2001 2002 2003 2004 2005 2006 2007 2008 2009
Time (weeks)

W
ee

kl
y 

ne
w

 c
as

es

Figure 7: The 95% prediction interval (light shading) for 1000 realizations of Model St+St+ evaluated at the maximum
likelihood estimator for the rotavirus incidence data (solid back line) and the median (solid white line). Furthermore,
the 95 % prediction interval of these 1000 realizations for only the transmission model is shown (darker shading).
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Figure 8: The 95% prediction interval (shading) for the model in Weidemann et al. (2013) assuming no underreporting,
the model mean (solid white line) and the rotavrius incidence data (solid black line).

sampling procedure which can be found on the Github repository indicated in Weidemann (2015). For
the comparison we sampled 1000 times from the posterior distributions of the estimated parameters
from their fit and solved the ODE system for the deterministic disease transmission model for each
of the parameter constellations. From these solutions we then calculated the expected number of
cases in each age group, respectively. Assuming that all region specific under-reporting rates were
one (no decomposition of the expected number of incidences into the two regions) we then sampled
the reported incidences according to a negative binomial observational distribution for each of the
1000 series and calculated the 2.5% and 97.5% sample quantiles. Note, that we have used the same
dispersion parameter as in Weidemann et al. (2013) which is a fair approximation as long as the
number of cases is fairly large. The plot of these prediction intervals and the rotavirus data used in
our analysis is shown in Figure 8. The prediction bands for the resulting model are thinner than in
Figure 7, however, if we as a measure of calibration calculate how many data points are covered by
the prediction band we obtain 81.2%.
We conclude that a model which is simpler with respect to clinical detail in the disease transmission

is sufficient to explain the rotavirus data as long as it accounts for structural and observational noise.

4 Discussion

In this paper we fitted four models, which differed with respect to the amount of stochasticity they
allowed for, to routine rotavirus surveillance data from Germany. We demonstrated that a model
which is simple with respect to rotavirus disease progression, but includes additonal population size
independent variability in the underlying transmission model as well as over-dispersion in the obser-
vational model, is capable of explaining the available incidence data in a very satisfactory way. We
also showed that a more detailed, but deterministic transmission model which only includes stochas-
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ticiticy as part of the observation process does not, from a fitting point of view, perform as well as the
simpler model does. We find that structural noise in the transmission model clearly provides a better
explanation of the data at hand. As stated in Bretó et al. (2009) such modelling is an appropriate way
to “quantify the contributions of unknown and/or unmodelled processes” in the transmission model.
We have evaluated our model fit with respect to how well the model is calibrated. Another method
could be to assess the model’s sharpness by e.g. proper scoring rules (Gneiting and Raftery, 2007).
Although our model was focusing on rotavirus transmission in Germany it could easily be modified to
explain other infectious diseases which have comparable transmission characteristics such as influenza,
chickenpox or pneumococcal disease. We conclude that an important modelling aspect for population
based models is the adequate inclusion of variability: deterministic transmission models can be mis-
leading because they hide model miss-specifications or unmodelled characteristics, which influence the
disease transmission, in the observational noise component.
Throughout, we used a frequentist approach rather than a Bayesian setting for fitting the models.
One advantage of this is that we did not have to assume priors for the unknown parameters. Such
assumptions could obscure the fact that the models reach a complexity which makes individual pa-
rameters hardly identifiable and consequently the prior plays a crucial, but sometimes unintended,
role. In this work we clearly address the question of identifiability and mathematically derive how
many parameters can be estimated from the available data. Due to the simplicity of our model, every
parameter is clearly understood and as a consequence we were able to estimate the basic reproduction
number R0. However, it should be noted, that due to seasonal forcing this value is a yearly average,
which changes the interpretation of R0 as a threshold value for an epidemic. Only if the yearly range
does not cover the value one it can be interpreted in the traditional way. In our setting, the estimated
R0 of all four models turned out to be close to one because the susceptibility parameter for children
(β1) is pretty high while the ones for adults and elderly people (β2 and β3) are extremely low. This
might have different reasons: first of all children might truly have a higher susceptibility to the disease
than older individuals. Although our model indicated this, this might not be the most likely expla-
nation. Secondly, it is possible that infants mix at a higher rate and expose themselves more to the
disease by close body contact. Another possible scenario is that with higher age there might be partial
immunity from earlier infections left which is why older individuals do not get ill. Furthermore, the
severity of symptoms could play an important role for the reporting behaviour of the disease: it might
be that symptoms are very severe (symptomatic cases) in infants which lead to a higher reporting
rate, while cases in adults are less symptomatic or even asymptomatic and hence are not reported.
However, even if symptoms are the same in all age classes, older individuals might not consult the
doctor so often. Both of the last two explanations we would not detect, because we assumed the same
scaling rate for the underreporting and fixed the rate of waning of immunity, ω, for all age classes.
A sensitivity analysis for ω indicated that the longer the time of natural immunity last, the higher
is R0. For example, if we choose the time of natural immunity 50 years, the basic reproduction rate
increases to 1.44. Moreover, R0 depends heavily on the reporting rate we used to scale up the data- if
the true underreporting rate is lower than we assumed, R0 increases. Of course we would have liked
to disentangle all the previously mentioned explanations from each other, but the important message
is that without any addition structural insights the available data is too coarse to do that. If the
susceptibility parameters are not known the data cannot inform about the underreporting rate nor
the duration of natural immunity which are necessary to calculate R0. We hence recommend to carry
out studies specifically targeted to estimate these two quantities.
We have applied the R package pomp to rotavirus reporting data and gained helpful insights of how to
handle this comprehensive package. It is a powerful package, however, inference is very time consum-
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ing and implementation requires non-intuitive model specific adjustments at times. More precisely, a
major problem we faced initially was the high sensitivity of the estimation procedure with respect to
starting values. We solved this problem by carrying out a detailed mathematically analysis investigat-
ing which parameters were actually identifiable. We were able to obtain an analytic solution for the
susceptibility parameters of a simplified model, which we then used as a reasonable range for starting
values. Furthermore, in order to make inference for the stochastic underlying transmission models
feasible with respect to time, we had to accept an approximation error of the τ -leaping algorithm by
choosing the simulation time interval rather big (1/10 week). The question arose if this approximation
error is causing parts of the structural and observation noises. We carried out a sensitivity analysis
for the simulation step size and decreased the step size to 1/40 weeks without finding a significant
change of the noise parameters. Hence, we believe that the choice of the step size does not increase
the structural and observational noise noticeably. Moreover, it turned out to be important to start
the system well ahead of time so it could equilibrate before the actual observations start. Another
valuable insight was that for a stochastic transmission model, Poisson distributed observations were
not feasible because the model was simply not variable enough so the particle filter failed. Hence,
overdispersion is a very important ingredient for successful estimation in the pomp model. It turned
out that there is no precise rule of how to choose the magnitude of the random walk perturbations
which the parameters undergo in the iterated filtering algorithm. It took some try and error to find
reasonable values. Overall, the iterated filtering algorithm for the Models StSt+ and St+St+ took
approximately 11h respectively when working with a computer with 20 cores. Therefore, we can highly
recommend working with a computer cluster and parallelized R code as done by us. A comprehensive
manual for seasonal incidence data can be found in Stocks (2017).
The reduced complexity of our model came at the cost of neglecting some potentially important clin-
ical details of rotavirus transmission. We did not consider the short incubation time nor maternal
immunity, we assumed that the waning immunity as well as the reporting rate, structural noise and
dispersion parameter are age independent. Premature death was neglected and we did not use weekly
demographic data or contact data such as the POLYMOD study (Mossong et al., 2008). Furthermore,
we made the rather strong assumption that the time until an individual recovers as well as the time
individuals stay in the different age classes is exponentially distributed. Despite this lack of detail the
model still does its job and fits the data very well. Nevertheless, if the model is not only judged on the
basis of model fit but is, e.g., used to investigate specific interventions such as vaccination strategies,
more detailed models might be needed.

Acknowledgements

We thank Aaron A. King for his very useful and detailed help with questions concerning the R package
pomp. We furthermore thank Felix Weidemann for interesting discussions and sharing the code of his
paper (Weidemann et al., 2013) and Gilles Kratzer for working on this topic in his master thesis. The
computations were performed on resources provided by the Swedish National Infrastructure for Com-
puting at PDC Centre for High Performance Computing. This manuscript was part of TS licentiate
thesis so we thank the opponent Niel Hens and the examiner Martin Sköld for useful comments. TS
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rotavirus vaccination in Germany - a Bayesian approach. Vaccine, 32(40):5250–5257.

Wood, S. N. (2010). Statistical inference for noisy nonlinear ecological dynamic systems. Nature, 466:1102–1104.

A Diagnostic plots

children

adults

elderly

0

20000

40000

60000

0
5000

10000
15000
20000

0

3000

6000

9000

2001 2002 2003 2004 2005 2006 2007 2008 2009
Time (weeks)

N
um

be
r 

of
 n

ew
 c

as
es

Figure 9: The 95% prediction interval (shading) for realizations of Model DtSt+ evaluated at the maximum likelihood
estimator for simulated data (solid back line) and model mean (solid white line).
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Figure 10: Diagnostic plot of the iterated filtering algorithm for Model StSt+for the rotavirus incidence data. Shown is
the evolution of the loglikelihood and parameter estimates per mif2 iteration for 20 trajectories with random starting
values drawn from a hypercube.
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Figure 11: Particle filter evaluation for each iteration of one mif2 run from Model StSt+ (Figure 10).
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Figure 12: Diagnostic plot of the iterated filtering algorithm for Model St+St+ for the rotavirus incidence data. Shown
is the evolution of the loglikelihood and parameter estimates per iteration for 20 trajectories with random starting values
drawn from a hypercube.
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