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From neural network to psychophysics of time:
Exploring emergent properties of RNNs using novel
Hamiltonian formalism

Rakesh Sengupta,Anindya Pattanayak,Raju Surampudi Bapi,

Abstract—The stability analysis of dynamical neural network
systems generally follows the route of finding a suitable Liapunov
function after the fashion Hopfield’s famous paper on content
addressable memory network or by finding conditions that make
divergent solutions impossible. For the current work we focused
on biological recurrent neural networks (bRNNs) that require
transient external inputs (Cohen-Grossberg networks). In the
current work we have proposed a general method to construct
Liapunov functions for recurrent neural network with the help
of a physically meaningful Hamiltonian function. This construct
allows us to explore the emergent properties of the recurrent
network (e.g., parameter configuration needed for winner-take-
all competition in a leaky accumulator design) beyond that
available in standard stability analysis, while also comparing well
with standard stability analysis (ordinary differential equation
approach) as a special case of the general stability constraint
derived from the Hamiltonian formulation. We also show that
the Cohen-Grossberg Liapunov function can be derived nat-
urally from the Hamiltonian formalism. A strength of the
construct comes from its usability as a predictor for behavior in
psychophysical experiments involving numerosity and temporal
duration judgements.

Index Terms—Recurrent neural networks, Liapunov function,
Winner-take-all, Time’s subjective expansion, Temporal Oddball

I. INTRODUCTION

Recurrent neural network (RNN) consists of interconnected
neurons that have some feedback loops built-in between the
nodes. The feedback can come from the same or different node
at each time point of the network’s evolution and the behavior
of the network resembles a nonlinear dynamical systems.
These networks have been used for constructing neural models
for memory [1], decision making [2], visual sense of numbers
[3] to name a few. Some dynamic vision algorithms include
recurrent neurons as building blocks for their usefulness in
integrating and spreading local and global influences across
the network [4]. The biological RNNs (bRNN) are mostly
imagined as a single layer of neurons.

The on-center off-surround kind of recurrent networks have
been very popular in the literature involving short-term mem-
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ory, decision making, contour enhancement, pattern recogni-
tion, and several other problems because of their versatility and
ability to produce self-organized outputs based on underlying
non-linear mathematical properties of the network. One of the
standard approaches towards the stability of these networks has
always been to find a suitable Liapunov function or finding
the condition for which network trajectories do not diverge
[5], [6]. A detailed review of Liapunov and other stability
approaches can be found in [7]. In the current paper we
show a novel intuitive general purpose method for constructing
a Liapunov function for recurrent networks in general and
show several specific cases to show the effectiveness of the
formalism. We also compare the stability criterion obtained
from Hamiltonian formalism with ordinary differential equa-
tion approach. Towards the end of the paper we show how such
general purpose construct can be used to generate predictions
in actual biological systems.

II. HAMILTONIAN FUNCTION FOR GENERAL RECURRENT
NETWORK

A. Cohen-Grossberg Liapunov function derived from Hamil-
tonian formalism

We begin by considering a single layer of fully connected
recurrent neural nodes. The activation of i—th node is given
by x;. If we consider a general recurrent shunting networks
with dynamics given by'

z; = —Ajw; + (B — x;)(1i + S(xi))
(1
7(561‘ + Cl) Ji + Z wjis(xj)
J#i

where I and J are excitatory and inhibitory inputs to the
node ¢ and S is a sigmoid function. B and —C' are constants
determining the upper and lower bound for the network
activation respectively. We can transform Eq. 1 with symple
variable change (y; = x; + C;) to the form

v =i | bilyi) = Y wsuS(y; — Cy) )
j=1
where,
1
bi(y:) = ;[Aici — (Ai + i)y
+(Bi + Ci —yi) (Ii + S(ys — Ci))]

3)

'In this paper we will ignore the noise terms in the analysis.
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As z; is the activation of a particular node ¢ of a recurrent
network with n nodes, the general time evolution of all Cohen-
Grossberg systems can be written as

d.’L'Z'

pr ai(z;) |bi(w;) — ;Cijdy(x )

where ¢;; are symmetric coefficient. The above formula-
tion is in fact quite general and the equation can be used
for both additive and shunting model networks, continuous-
time McCulloch-Pitts model, Boltzmann machines, mean field
model among others?.

The global Liapunov function used by Cohen and Grossberg
is given by [5], [6]

“4)

Z/ bi(€:)d}(&:)dé: +

The steady-state or equilibrium solution in the time evolu-
tion of the network implies that the activations of the nodes
will be unable to influence each other in the long-term, i.e.,
all the local instabilities will decay. It allows us to consider
the set {x;} as a set of generalized co-ordinates describing
the state of the network. It follows then that we can use the
Hamiltonian principle from classical mechanics and say

Z cjkdj(w;)di(zr) (6)

jkl

o > o, )
ot; 0H;
ot x o0x; ®)

where z; = dll. If the proportionality constants in Eq. 7

and 8 are unequal (the equality leading to a trivial case), the
Hamiltonian for a particular node ¢ will follow

OH OH
In the above we have used the identity z;dz; = Z;dx;,

anticipating the final derivation.
Using Eq. 4, we have

dir; = [ai(xi) [bi(z;) — cudl(z;)] + Zigz;xl} dz; (10)
dydi; = (ai(xi))2 [0 (:)bi ()
—ciibi () d} () + ¢ ch i(@i)di(z;) (1)
_ZC’J i(25)dj(x;)]dz; + O( %)
where O(i:3) represents terms that are of the order to i3

2For example, continuous-time Hopfield networks with network model [8]

dz;
dt

= =Xz (t) + Z Cijdj (a:j) + I; (@)
J

is a special case of Eq. 4 with a;(z;(t)) = 1 and b; (z;(t)) = =Xz (t) + 1;

Near equilibrium (&; — 0), we can safely ignore the
terms O(i3) = (M

ai(x;)
have b;(z;) = ) ¢i;d;(x;) and thus the first and last terms
in the sum within parenthesis cancel each other. Ignoring

multiplicative coefficients, we can say that near equilibrium,

)j:fdt and also as #; — 0, we

ZdH o — Zb (wi)d}(x;)da; + - ch dj(z;))
(12)

and thus the full Hamiltonian for the system can be written as
(with some changes in the dummy indices),

H—zn:/dHi

Z cjrdj(z)di ()

jkl

13)

x - Z/ (6l (6:) s +

Thus we can show that the Cohen-Grossberg Liapunov
function is a special case of and can be derived from general
Hamiltonian formalism. This has a far reaching consequence
for neural networks. As Eq. 4 is applicable for a large variety
of neural networks, we can now derive energy functions based
on the first principles rather than inspired guesses.

In the next section we will show certain special cases of
the general formalism and how stability criteria could be
found for several different kinds of recurrent networks. We
also compare the stability criterion from the Hamiltonian with
stability criterion derived from divergence tests.

B. Coupled oscillatory brain network from the Hamiltonian
Sformalism

Another interesting contribution of the Hamiltonian formal-
ism is its application towards oscillatory neural theories. From
Eq. 4 we can say that

i = (ai(x:))

2bi(2i)® = 2)  bia)eijd; ()

s Tn)

non (14)
+ 30 cijeind; () dy(xy)]
ik
Since near equilibrium, we have b;(x;) = Y ¢;;d;(x;), we
can write,
(ai(z;)) Z ch]clkd x;)dg(z) | = 224+Fi (21, . ..
(15)
If C = ||ei;]] is a symmetric matrix (¢;; = c¢j;), if the
following property is satisfied
> cijeik =Y ciicin = micj (16)

then m; are the diagonal elements of the diagonal matrix
D which satisfies the following matrix relation
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Cc?=DC (17)

So using the multiplicative coefficients in Eq. 11, and using
Eq. 15, 16 and 13, we can write the full Hamiltonian as the
following

1 n )
H:§Zmixf+}"2(x1,...,xn) (18)

where m; are proportionality constants. Interestingly, the
form of the Hamiltonian given in Eq: 18 is the Hamiltonian for
multiple coupled nonlinear oscillators with equation of motion
of the form [9]
Zp) =0

mii; + fi(z1, ..., (19)

It is interesting that for the Hamiltonian to generate mean-
ingful oscillatory solution, we need transient input to the
system as well as a period where the network will be allowed
to settle or stabilize. Thus for oscillatory dynamics to be
biologically feasible in the brain we need a recurrent layer
to get transient input from a feed-forward network. The above
formulation gives very important insights and constraints of
deriving oscillatory models of the brain function.

III. SPECIAL CASES OF HAMILTONIAN FORMALISM

A recurrent shunting network with the range [—D, B] fol-
lows the dynamics

dLL'Z‘
N (20
—(D + ;) Z fzr) + I
k=1,k#i

A general additive recurrent network is given by

N
dz;
;; = \ri+aF(z)—B Y. Fle)+L @
j=1.5#i

For the additive network we assume a decay constant of .

A. Additive recurrent network with slower than linear activa-
tion function

Let us assume that in Eq. 21,

F(z) = {‘L

14+x

for x <0

22
for x > 0 22)

The network should reach steady state activity when the
external input is taken away. If we disregard noise, at steady
state, i.e. when da;

) di )
N
Ar; = aF(x;) =B Y F(z)) (23)
j=1,j#i
As the equation is symmetric under permutation of units,
the system should have symmetric solutions characterized by

3

number of active units n, and their activation z(n), all other
units having 0 activation.

o) = () Pt e
Using Eq. 22, we get
(n) = (W) 1 (25)

Noise can bring in additional fluctuation that can destabilize
the solution for a pair of active modes (with equal activation
according to Eq. 25), unless the the difference of activations
between the said nodes Az = x; — x; decays. Using Eq. 21
& 25 we get

dAx a+p
—C =Nz |2+ N ———F—— 26
i o[ (G e)] e
Thus the fluctuation decays only if ddAt”” <0, ie.,
1
ath @7)

(@=(n—-1)5)> ~ A
As we can see that the decay parameter, excitation param-
eter and inhibition parameter are not completely independent
for stable solutions. For the present purposes we use A = 1
(we will keep using this value for the rest of the paper for
simplicity).
From Eq. 21 and 22 we have

2
F(xZ)) dz; (28)
x;

It is easy to show that from the definition given in 9,

H:Z:Hioc—zi:/<l—a<}7gi)>2> Z2dt  (29)

From Eq. 25 we can substitute terms in steady state to get

i3 [ (1= i) o

Now if dH < 0 and thus a monotonically decreasing
Liapunov type function in absence of external input, we have
the stability condition as

dCU1 = —d.’L‘Z' —+ « (

(30)

o
CETEVI ey
Comparing this to Eq. 27, we can see that the conditions
derived from the energy value is slightly different and diverges
greatly for higher 3. This is due to the fact that Eq. 27 excludes
winner-take-all mechanisms operating at higher inhibition,
whereas the energy function does not. And it is evident that
for all j3,

« a+p
(= (n-1B) " (a=(n-1)p)
and thus the energy function is a very suitable candidate for
the network as it is in line with the stability analysis derived
from the dynamics of the network.

<1 (32)
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B. Shunting recurrent network with constant activation func-
tion

Here we assume in Eq. 20,

f(z) = {0 =0r

33
kK >0 (33)

A search for a symmetric solution at steady state leads to
steady state activation value
o) = (B= D= D)f(a(m) _ (B Dln—1)
A+nf(zx(n)) A+ nk

The stability criterion is determined considering the decay
of Az = x; — x; and is calculated to the following condition

e

nk < —A (35)
Constructing the energy function using
N
di; = | —A— Z fa;) | da; (36)
j=1

and Eq. 9, we have

N
HZZHiO(—Z/ A+z;f(xj) i2dt - (37)
) 7 Jj=

As Zjvzl f(z;) = nk near steady state, we have the same
criterion for stability from the energy function as Eq. 35.

C. Shunting network with linear activation function

The activation function for such networks is given by

ﬂm{0x<0 (38)

r x>0

Using the above activation function in Eq. 20 we have at
steady state condition,

meJBfDmeﬁmm»:
A+nf(x(n))

(B - D(n - 1))a(n)

A+ nz(n)
(39)

This leads to the non-trivial solution

:B—A—D(n—l)

n

x(n) (40)

Looking at the decay of Ax = x; —z; leads to the stability
criterion,

D<O0 (41)
The Hamiltonian constructed using
N
dx; = —dx; + (B - .%‘l)d.lﬁz — Zf(xj)dxz 42)
j=1

and Eq. 9 leads to,

B—-A-D(n*-1)<0 (43)

which upon substituting B — A = nz(n) + D(n — 1) (from
Eq.40) yields nz(n) —nD(n—1) < 0. For the situation where
total network activation nx(n) > 0, we have D > 0 for n > 1.
In fact this leads to a better stability criterion combining the
stability criterion given in Eq. 41 with the condition D > 0

obtained from the Hamiltonian
D=0 44)

This is a sensible result as by definition of shunting networks
B and D are positive real quantities.

D. Shunting network using reciprocal activation function

The activation function for such networks is given by

ﬂwz{?

x

<0

x>0 43)

The steady state solution (assuming the positive root of a
quadratic equation) is given by,
—-n+k
*n) = —53
where k = \/n%+ 4A(B — D(n — 1)).
The stability criterion from decay condition is derived to be

(46)

4(B+ D)+ 2n(—
(B + D)+ 2n( n—Hf)Z_l 47
(—n + k)2
Constructing the energy function in the now familiar way,
we get
2B+n—k)2+2n(—n+k)
(—n + k)2
It can be shown that both the criteria given by Eq. 47 and
48 are same if n — k = 2D.

> -1 (48)

IV. ANALYTICAL PREDICTION OF WINNER-TAKE-ALL

In section III-A we have shown that there are constraints on
the stability of the network response in an additive recurrent
model, i.e., the condition that allows for the activation of two
nodes to not diverge during the simulation. The constraint was
given by

__atf
(a—(n—1)B)?
where n is the number of nodes active after the simulation is

run. We also obtained another similar stability condition after
consideration of the novel Hamiltonian formulation, mainly,

<1 (49)

(6%
(@ = (n—1)B)?
However, for a very important behavior of the network,
the winner-take-all dynamics requires activation differences
between nodes to be amplified until only one node emerges
as winner. Now if n = 1, as in standard WTA interaction, Eq.
50 transforms into

<1 (50)
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Fig. 1. A plot of & —a.— 2 for different 3 values. Blue line for 8 = 0.25,
green for S = 0.3 and magenta for S = 0.35. In the bottom right quadrant
of the plot bound by the lines a®> —a — 28 = 0 and a = 1 we get the «
values desired for WTA interaction, mainly o > 1 and a2 —a—-23<0.
For 8 = 0.25 the range is 1 < o < 1.37, for 8 = 0.3, 1 < a < 1.42, for
B =0.35,1<a<147.

Parameter Value
N 10
e 0.5:0.01:1.5
0.3
No. of nodes receiving input 2
Total duration of simulation in time steps 2500

TABLE I
SIMULATION PARAMETERS

a—1>0 (51)

This gives the lower limit of o for WTA. The upper limit
will be set by Eq. 49, i.e. when n = 2 reaches stability, i.e.,

a?—a—-28>0 (52)

Thus WTA behavior will be supported by a range of « that
satisfies the conditions o > 1 and o? — a — 25 < 0. This
is shown in Fig. 1. It shows how the a ranges should be
calculated for different 8 values. For § = 0.25 the range is
1<a<137 for 5 =03,1< a< 142, for § = 0.35,
1<a<147.

We also confirmed the parameters with actual simulation.
We chose a network of 10 nodes and gave inputs to 2 nodes
for each simulation. The input level was clamped at 0.3. The
probability of WTA interaction was calculated as the fraction
of time out of 1000 simulations, that only one node survives.
We varied the o between 0.5 and 1.5. Both stimuli were
presented for 255 time steps each and the total duration of
simulation was 2500 time steps. Noise was sampled from
normal distribution of mean 0 and standard deviation 0.1. The
results are shown in Fig. 2. The analytic limits obtained in
Fig. 1 are closely confirmed by the simulation as well. The
specific parameter values for the simulation are given in Table
L.

5

Probability of winner-take-all response

[
o
-
-
o

Fig. 2. Probability of winner take all interaction plotted against « for three
different 8 values 0.25 (blue line), 0.30 (green line) and 0.35 (magenta line).
For o« > 1, the WTA probability increases beyond chance level (0.5). The
analytical limits on « obtained in Fig. 1 are shown in correspondingly colored
lines.

V. APPLICATION OF WTA IN TEMPORAL ODDBALL
EXPERIMENTS IN PSYCHOLOGY

Subjective expansion of time (TSE) is the phenomenon
where human beings perceive an oddball stimulus in a stream/
series of identical standard stimuli to have lasted longer in
terms of percept duration [10]. There are several competing
theories that have tried to explain this phenomenon. However,
they can be roughly classified into - a) dedicated internal
clock b) information based decision mechanism [11]-[13].
Here we have used a computational model to explore the
hypothesis that recurrent on-center off-surround network [3]
(with the hypothesis that oddball is more perceptually salient
than standard stimuli) executing a winner-take-all decision can
account for the oddball effect.

In the context of perceptual decision making, a winner-take-
all mechanism is a prime candidate for a biologically plausi-
ble neuro-computational approach [14]. In case of temporal
oddball paradigm, we observed that the experiment follows a
two-alternative forced choice (2AFC) task. The 2AFC task led
to the idea that time’s subjective expansion factor observed in
temporal oddball paradigm might arise from a flexible decision
boundary arising from a neural WTA mechanism.

The on-center off-surround architecture we have used here
has been described in more detail in [3], [15]. Here we will just
mention the salient points. The differential equation governing
the time-evolution of the network of IV nodes is given by

dx i
dt

N
=—z;+aF(x;)— 0 Z F(z;) + I; + noise (53)
J=1,j#i

x;(t) is the activation of node ¢ at time ¢. I; represents
the intensity of external input (V¢,0 < I; < 1), it is zero if
the stimulus is absent for a particular node at that time point.
Input is only presented for a finite amount of time, typically
much less than total time of simulation. F'(x) is the activation
function given by the formula,
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Time's subjective expansion factor (TSE) =
standard duration/PSE

1.6 — T T —
——low habituation
——medium habituation
1.4r *—high habituation
1.2r

w s
& o8 /
0.8r & Y
So6
H
0.61 ?‘:0‘4 /
2 / Polnt of subjective
B2 |, equality (PSE)
0.4t/
002 04 06 08 1 12
Oddball time interval (sec)
02 . . . . .
o] 200 400 600 800 1000 1200
Standard durations (ms)
Fig. 3. TSE values for different standard durations at different levels of

oddball input. Blue line has oddball input at 0.3, red line has oddball input at
0.4, green line has oddball input at 0.5. The different levels were interpreted
as arising from different levels of habituation, i.e., if the oddball appears in
a stream of 6 standard stimuli, its salience would be less than that appearing
in a stream of 11 stimuli, and thus the former will have lower stimulus level
(see appendix). The inset shows an example psychophysical curve generated
in order to calculate the point of subjective equality.

Parameter Value
N 10
a 1.05
0.3
No. of nodes receiving input 2
Total duration of simulation in time steps 2500

TABLE I
SIMULATION PARAMETERS

0 for x <0

T
s for x > 0

F(z) = (54)
The network has a stable dynamics, i.e., the activated states
at equilibrium do not diverge from the steady state dynamics
if
a+f

s =1 (55)

(@ —(n—1)B)?
Considering a Liapunov function for energy for the same
network we get another stability criterion

o

CETE VI 0
Considering these two we get a condition for winner-take-
all (WTA) interaction for a range of « that satisfies the
conditions o > 1 and o? — « — 283 < 0. After some rigorous
convergence tests we used the following modeling parameters
In a standard oddball task for temporal judgements involve
showing a participant a series of frequent standard stimuli fol-
lowed by infrequent oddball stimulus. A few standard frequent
stimuli might also be shown after oddball presentation. The
participant makes a judgement whether the oddball stimulus
was longer in duration than the standard or not. Our model

6

assumes that a normalized input is given to two nodes of
varying durations simultaneously as the duration judgements
are post-event judgements in temporal oddball, it is not such
an unreasonable assumption.

Now we ran 100 simulations for each duration pairs (30 vs
660 ms steps, 75 vs. 600 ms steps,... 1200 vs. 660 ms steps)
for the two nodes and calculated the probability of response
that one duration will be judged longer than the other by
counting the fraction of times the node with the variable input
is the winner of WTA interaction. In reality it is rare that
both the units to be excited with the same level of input. It is
more likely that the salience of the inputs differ. The standard
stimuli is more frequent and thus prone to habituation and
should receive lesser level input than the oddball stimuli. So
the temporal oddball should correspond to the case where the
standard interval gets a clamped input at level 0.2 and oddball
interval gets clamped input at 0.3.

Now we calculated the values for the probability that
oddball duration would be perceived as longer for each of the
standard durations in the set (30:45:1200) (to be given input of
0.2). The oddball durations are also (30:45:1200) (to be given
input 0.3). We calculated the points of subjective equality
(PSE) through sigmoid fits and time’s subjective expansion
by dividing the standard durations by corresponding PSE’s.
The result is given in Fig. 3. The overall pattern of the results
is strikingly close to TSE pattern observed in experimental
results given in [10].

VI. DISCUSSION

In the current work we have shown how analytical Hamil-
tonian formalism developed by the authors can derive Cohen-
Grossberg Liapunov function for general single-layer shunting
recurrent neural networks. This has a far reaching consequence
the dynamics of such networks can be used to model a wide
variety of neural networks including additive recurrent net-
works, continuous-time McCulloch-Pitts neurons, Boltzman
machines, and Mean field models, etc.

We have also shown how the analytic stability criteria
derived from the Hamiltonian function fares against the sta-
bility criterion emerging from the network analysis for a wide
range of activation functions, as well as for both additive and
shunting networks. The agreement between the two stability
criteria is indeed quite close.

For the additive variant, the stability criterion derived from
the Hamiltonian has the advantage of predicting onset of
Winner-take-all (WTA) behavior in the additive recurrent
networks. In fact the two stability criteria (derived from
Hamiltonian and network analysis) appear to complement each
other. We have also shown how the WTA decision making
process be used to predict interesting consequences for studies
involving subjective expansion of time in temporal oddball
paradigm in psychology.

Furthermore in our previous work [3], we have shown how
the Hamiltonian function for the network can be used to
derive predictions for psychophysical attributes like reaction
times in constructions of biological recurrent networks for
humans. We used the Hamiltonian successfully to explain
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reaction time distributions for visual sense of numbers. To
derive the prediction for reaction time (RT) we used only
the assumption, RT o« —H, i.e., reaction time should be
correlated with the energy that will be needed for resetting
the network. Experimentally, the fMRI activation patterns for
enumeration and visual working memory task were predicted
from the model and subsequently verified through human
experimentation [16].

In recent years the understanding of neural codes has
provided us with insights that go beyond the concepts of rate
coding and it is increasingly more commonplace to speak of
temporal codes that use spike timing and phase information
in order to transmit and process information reliably [17]-
[20]. However, most of these attempts are to look at neu-
ral codes after the presentation of stimulus. Recently, some
studies have looked at pre-stimulus brain states in MEG and
EEG based studies and have found that it is possible to
predict conscious detection of stimuli based on pre-stimulus
oscillatory brain activity [21]-[24]. For instance in case of
near threshold stimuli some researchers have found the pre-
stimulus « frequency band modulation to be important [22].
These attempts have drawn a large amount of interest, but
have revealed little towards a theoretical or physiological
understanding of such phenomena. In section IIB, we have
shown the possibility of oscillatory brain states under certain
equilibrium conditions for a neural assemble consisting of both
feed-forward and recurrent connections. Interestingly, we this
leads to an important understanding that the delay between
feed-forward and recurrent connections is very important to-
wards understanding the distribution of oscillatory brain states.
An alternative approach to oscillatory brain states has been
explored in [25].

Overall, the current work not only brings a novel formalism
to recurrent neural networks, but also shows way to connect
the neural network properties for the purpose of predict-
ing diverse psychophysical parameters in biological systems
including but not limited to time perception, enumeration,
working memory, oscillatory brain dynamics to name a few.

REFERENCES

[1] M Usher and J D Cohen. Short term memory and selection processes in
a frontal-lobe model. In Connectionist models in cognitive neuroscience,
pages 78-91. Springer, 1999.

[2] Rafal Bogacz, Marius Usher, Jiaxiang Zhang, and James L McClelland.
Extending a biologically inspired model of choice: multi-alternatives,
nonlinearity and value-based multidimensional choice. Philos. Trans. R.
Soc. Lond., B, Biol. Sci., 362(1485):1655-70, September 2007.

[3] R Sengupta, S Bapi Raju, and D Melcher. A visual sense of number
emerges from the dynamics of a recurrent on-center off-surround neural
network. Brain Research, 1582:114—-124, 2014.

[4] Alexander Andreopoulos and John K Tsotsos. 50 years of object recog-
nition: Directions forward. Computer Vision and Image Understanding,
117(8):827-891, 2013.

[5] Michael A Cohen and Stephen Grossberg. Absolute stability of global
pattern formation and parallel memory storage by competitive neural
networks. IEEE transactions on systems, man, and cybernetics, (5):815-
826, 1983.

[6] Stephen Grossberg. Nonlinear neural networks: Principles, mechanisms,
and architectures. Neural networks, 1(1):17-61, 1988.

[7] Huaguang Zhang, Zhanshan Wang, and Derong Liu. A comprehensive
review of stability analysis of continuous-time recurrent neural net-
works. IEEE Transactions on Neural Networks and Learning Systems,
25(7):1229-1262, 2014.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

John J Hopfield. Neurons with graded response have collective compu-
tational properties like those of two-state neurons. Proceedings of the
national academy of sciences, 81(10):3088-3092, 1984.
Seher Durmaz, S Altay Demirbag, and MO Kaya.
Approach to Multiple Coupled Nonlinear Oscillators.
Polonica-Series A General Physics, 121(1):47, 2012.
Peter Ulric Tse, James Intriligator, Josée Rivest, and Patrick Cavanagh.
Attention and the subjective expansion of time. Attention, Perception,
& Psychophysics, 66(7):1171-1189, 2004.

Ake Hellstrom. The time-order error and its relatives: Mirrors of
cognitive processes in comparing. Psychological Bulletin, 97(1):35,
1985.

Michel Treisman. Temporal discrimination and the indifference inter-
val: Implications for a model of the “internal clock”. Psychological
Monographs: General and Applied, 77(13):1, 1963.

Ewart AC Thomas and Wanda B Weaver. Cognitive processing and
time perception. Attention, Perception, & Psychophysics, 17(4):363—
367, 1975.

Kong-Fatt Wong and Xiao-Jing Wang. A recurrent network mechanism
of time integration in perceptual decisions. Journal of Neuroscience,
26(4):1314-1328, 2006.

Rakesh Sengupta, S Bapiraju, Prajit Basu, and David Melcher. Ac-
counting for subjective time expansion based on a decision, rather than
perceptual, mechanism. Journal of Vision, 14(10):1150-1150, 2014.
André Knops, Manuela Piazza, Rakesh Sengupta, Evelyn Eger, and
David Melcher. A shared, flexible neural map architecture reflects
capacity limits in both visual short-term memory and enumeration.
Journal of Neuroscience, 34(30):9857-9866, 2014.

Garrett B Stanley. Reading and writing the neural code.
neuroscience, 16(3):259-263, 2013.

Rufin Van Rullen and Simon J Thorpe. Rate coding versus temporal
order coding: what the retinal ganglion cells tell the visual cortex. Neural
computation, 13(6):1255-1283, 2001.

Timothée Masquelier. Relative spike time coding and STDP-based
orientation selectivity in the early visual system in natural continuous
and saccadic vision: a computational model. Journal of computational
neuroscience, 32(3):425-441, 2012.

J Gautrais and S Thorpe. Rate coding versus temporal order coding: a
theoretical approach. BioSystems, 48(1-3):57-65.

Kyle E Mathewson, Gabriele Gratton, Monica Fabiani, Diane M Beck,
and Tony Ro. To see or not to see: prestimulus « phase predicts visual
awareness. The Journal of neuroscience, 29(9):2725-2732, 2009.
Nathan Weisz, Anja Wiihle, Gianpiero Monittola, Gianpaolo Demarchi,
Julia Frey, Tzvetan Popov, and Christoph Braun. Prestimulus oscilla-
tory power and connectivity patterns predispose conscious somatosen-
sory perception. Proceedings of the National Academy of Sciences,
111(4):E417-E425, 2014.

Elisabeth S May, Markus Butz, Nina Kahlbrock, Nienke Hoogenboom,
Meike Brenner, and Alfons Schnitzler. Pre-and post-stimulus alpha
activity shows differential modulation with spatial attention during the
processing of pain. Neuroimage, 62(3):1965-1974, 2012.

Julian Keil, Nadia Miiller, Niklas Thssen, and Nathan Weisz. On the
variability of the McGurk effect: audiovisual integration depends on
prestimulus brain states. Cereb. Cortex, 22(1):221-31, January 2012.
Rakesh Sengupta. Pre-stimulus oscillatory brain states and cognition: a
theoretical approach. arXiv preprint arXiv:1508.02257, 2015.

Hamiltonian
Acta Physica

Nature


https://doi.org/10.1101/125849
http://creativecommons.org/licenses/by-nc-nd/4.0/

