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Abstract

Polymers growing against a barrier generate force and push it forward. We study here force generation by
a bundle ofN rigid polymers growing in parallel against a diffusing, rigid, flat barrier, resembling a bundle
of microtubules. To estimate the polymerization force, the barrier is subjected to a forcef acting against the
direction of growth of the polymers and the mean velocityVN (f) of the filament assembly is computed. The
maximum polymerization force (aliasstall force)fN

s is deduced from the conditionVN (fN

s ) = 0. This problem
has been studied in the literature earlier, but two important aspects have escaped attention: (a) free diffusion of
monomers is hindered by the barrier, even when it is far from the growing tips and (b) parallel filaments could
interact through the monomer density field (“diffusive coupling”), leading to negative interference between them.
In our model, both these effects are investigated in detail. A mathematical treatment based on a set of contin-
uum Fokker-Planck equations for combined filament-wall dynamics suggests that the barrier reduces the influx of
monomers to the growing polymer tip, thereby reducing the growth velocity and also the stall force, but it doesn’t
affect the scaling of the stall force with number, i.e.,fN

s = Nf1

s . However, Brownian dynamics simulations
show that the linear scaling holds only when the filaments are far apart; when they are arranged close together,
forming a bundle, sublinear scaling of force with number appears. We argue that the nonlinear scaling could be
attributed to diffusive interaction between the growing tips which becomes significant when the tips are close
together. These conclusions, initially established for simple flat-faced polymers, are also found to hold true for
microtubules with their characteristic hollow cylindrical geometry and rugged tip structure. In particular, simula-
tions show conclusively that the stall force of a single microtubule is a fraction of the combined stall force of the
13 protofilaments. This result is supported by a simple analytical estimate of the force using diffusive coupling
theory, and is in agreement with earlier experimental observations.
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1 Introduction

The cytoskeleton, a network of filaments composed of actins and microtubules forms one type of force generators
inside a eukaryotic cell and is crucial in moving cyotoplasmic material within the cell [1]. One manifestation
of such force generation includes formation of the mitotic spindle, an apparatus formed by microtubules with
associated molecular motors during cell division where the genetic material (chromosome pairs) are being pulled
and pushed by microtubules until the sister chromatids are separated to each daughter nuclei [2, 3]. Yet another
instance is the migration of a cell from one place to another by crawling; in this case, polymerizing actin filaments
pushing the plasma membrane of the cell provides the mechanism for motility[4, 5].

Outside the cytoplasmic environment, even a minimal system comprising of biofilaments growing against a
barrier (rigid or elastic) has been shown to be capable of generating forces of the order of a few piconewtons [6–
11]. For instance, a single microtubule grownin vitro can generate a maximum of 5pN force against a rigid barrier
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[6]. Microtubules growing against obstacles, tend to bend fromtheir straight trajectory and then proceed to grow;
a condition known as buckling [6, 8]. Mechanically induced changes stemming from confinement are observed to
alter the intrinsic dynamics of microtubules [8, 12]. The catastrophe transition becomes pronounced in the vicinity
of the barrier [12, 13], while the dynamic instability is observed to be regulated by force [8].

It is well known that the physical barrier (the plasma membrane or proteinous kinetochorein vivo) in contact
with the microtubule will affect the filament dynamics, by rendering steric hindrance to further polymerization.
Evidence for this scenario may be found in the reduced growth velocity near the cell boundary, as reported by [13]
in fission yeast cells; here, the reduction in growth velocity is speculated to be mechanical in origin. However, a
slightly different explanation could be offered. Prior to the assembly, the monomers are diffusing in the cytoplasm
or the available space of the experimental chamber, and any hindrance to free diffusion would have observable
consequences; in particular, growth rate may be reduced due to hindrance to free diffusion offered by the barrier.
This scenario appears to be partly supported by observations which find that growth of microtubule in the interior
of the cell is different from near the boundary [14]. This effect is distinct from the steric hindrance to monomer
addition, which comes into play only at extremely small barrier-tip separation (of the order of monomer length). A
clear distinction between these two cases is not apparent from the existing experimental observations, and therefore,
we investigate it in detail here.

The origin of the polymerization force is to be traced to the free energy change associated with polymerization[1].
For example, the free energy released per GTP-tubulin addition to a microtubule is nearly5− 10 kBT, equivalent
to a force of50 pN if a microtubule grows by 8nm; similarly the gain in free energy per GDP-tubulin dissociation
from a microtubule is nearly5 − 10 kBT [11]. However, experimental measurements suggest that the force pro-
duced by a microtubule is only a fraction of the maximum force predicted by theoretical arguments, suggesting that
not all the free energy available from polymerization of the13 protofilaments is converted to work[6]. Obtaining
insights into this interesting nonlinear scaling behaviour is another important motivation for us in undertaking the
present study.

With the primary objectives having been outlined above, it would be appropriate to summarize our methods
and important results here, before going into the details of both: we first study a mathematical model for collective
dynamics of a bundle of filaments that grow via diffusion limited adsorption in a confined space, against a mobile
barrier that is subjected to an external force acting against the direction of growth of the polymers, as well as
thermal noise. Unlike previous models, we do not treat the growth rate of the filament as a constant parameter;
rather, it is regarded as a continuous function of the distance from the barrier, derived by solving the steady state
diffusion problem in the presence of absorbing (filament tip) and reflecting (wall) surfaces. A number of analytical
results are derived from this model, built on continuum Fokker-Planck equations for combined barrier-filament
dynamics. In particular, for monomers in the shape of flat-faced disks (FFD), the model predicts that barrier-
induced hindrance is significant if the radius of cross section of the diska ≫ δ, the length of the monomer. In
this case, both growth velocity and force of the filament assembly is reduced by this effect; but the combined
force still scales linearly with the number of filaments. Support to these predictions, as well as further insights
are provided by Brownian dynamics simulations, which are performed first with FFD filaments (with various radii
of cross-section), and later with filaments with microtubule-like geometry. The simulations clearly show that
the force-number scaling depends on the lateral separation between the filaments; when the filaments are placed
closed together, the scaling is sublinear. We argue that the origins of this sublinear scaling of force with number
may be traced to a subtle effect, i.e.,diffusive interactionbetween the filament tips, which arises out their mutual
competition for monomers. Specifically, we find that a simple theoretical expression based on diffusive coupling
successfully predicts the reduced stall force of a single microtubule (when compared with the combined force of
the13 protofilaments).

2 Materials and Methods

2.1 Model details

Our model consists of a bundle ofN filaments growing from one fixed wall of a compartment, towards the opposite
wall, which is a diffusing barrier (diffusion coefficientDw), also being pushed backward with a constant forcef ,
see Fig.1. The filaments grow by diffusion-limited polymerization of monomers, which are present in the solution
at concentrationC0. A filament also shrinks by random detachment of monomers, with ratekoff . The filaments in
the bundle are identical, and have equal base separation from each other. No interaction is assumed to exist between
the filaments or between a filament and the barrier, except that neither of them can penetrate each other (see [15–
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Figure 1: Schematic diagram for a bundle of inflexible filaments pushing against a movable rigid barrier acted
upon by a constant forcef . The rigid barrier also undergoes thermal motion characterised by diffusion coefficient
Dw.

17] which explicitly considers the energy of interaction between the filaments). The filaments are assumed rigid,
unaffected by thermal noise. We do not include the chemical switching activity of the monomers, similar to some
earlier studies [16, 18–20], our filaments are chemically inert.

2.2 Mathematical formalism: Fokker-Planck equations

Most of the mathematical models that dealt with polymerization-driven force generation do not explicitly consider
the wall movements. Rather, the presence of wall is encapsulated in the growth rate and detachment rate of the
filament [16, 17, 19–21]. In these ‘Brownian ratchet’ models, the filament in contactwith the wall is assumed to
grow with an on-rate proportional toexp (−qfδ/kBT ) and off-rate proportional toexp (−(q − 1)fδ/kBT ) with
‘q’ being the load sharing factor. Here, our approach is different; we adopt a formalism similar to [18]. In this
model, the wall executes a combination of diffusive (arising from thermal noise) and directed (due to the external
force) motion. Also, a continuum approximation is adopted for the filament dynamics as we find it is convenient to
incorporate the continuous variation of on-rate with the wall-filament separation (discussed in more detail later).

The joint probability density functionP (X, z; t) for the filament tip positionsX ≡ {x1, x2, .., xN} and wall
positionz, in the continuum limit, satisfies the diffusion-drift equation

∂P (X, z; t)

∂t
= − ∂

∂z
Jw(X, z; t)−

N
∑

i=1

∂

∂xi

Ji(X, z, t). (1)

Eq.1 is a Fokker-Planck equation inN + 1 variables, with bothxi andz lying in the interval(−∞,+∞). The
individual probability currents corresponding to the dynamics of wall and filaments are given by

Jw(X, z; t) = VwP (X, z; t)−Dw

∂

∂z
P (X, z; t), (2)

Ji(X, z; t) = V (z − xi)P (X, z; t)− ∂

∂xi

[D(z − xi)P (X, z; t)]. (3)

The ‘diffusion coefficient’D and ‘velocity’V are expressed in terms of the on- and off-rates of monomers by
the standard expressions [22]

D(z − xi) = [kon(z − xi) + koff ]
δ2

2
; V (z − xi) = [kon(z − xi)− koff ]δ, (4)
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wherekon(z − xi) is the position-dependent on-rate for monomer adsorption to the filament tip, the position
dependence arising from the modification of the steady state concentration field due to the presence of the barrier
(see Appendix A for details).koff , the off-rate of monomers is assumed to be a constant. Using fluctuation-
dissipation theorem, the wall velocityVw = −fDw/kBT . The currents are subjected to the boundary conditions

Jw(X, z; t)|z=xi
= 0

Ji(X, z; t)|xi=z
= 0

}

∀ i ∈ [1, N ]. (5)

Let the instantaneous separation between theith filament and the wall be denoted

yi = z − xi, ∀i ∈ [1, N ] (6)

which we shall refer to as ‘gaps’. Given the reflecting boundary conditions in Eq.5, we expect the gap probability
distribution (see Eq.15 later) to become stationary for non-zerof , in the long-time limit. This conjecture helps us
derive an expression for our main quantity of interest, i.e., the average filament/wall velocity, in a straightforward
way. Considering this, we implement a change of variables in Eq.1. All xi are thus transformed intoyi by
the relations given by Eq.6. We denote the transformed probability density function asΠ(Y, z; t), whereY =
{y1, y2, ., yN}, hence Eq.1 becomes,

∂Π(Y, z; t)

∂t
= − ∂

∂z
J̃w(Y, z; t)−

N
∑

i=1

∂

∂yi
Ki(Y, z; t), (7)

where,Ki(Y, z; t) ≡ J̃w(Y, z; t)− J̃i(Y, z; t). J̃w(Y, z, t) andJ̃i(Y, z, t) are the transformed probability currents,
in terms of the new variables, which are, respectively,

J̃w(Y, z; t) = VwΠ(Y, z; t)−Dw

[

∂

∂z
+

N
∑

i=1

∂

∂yi

]

Π(Y, z; t), (8)

J̃i(Y, z; t) = V (yi)Π(Y, z; t) +
∂

∂yi

[

D(yi)Π(Y, z; t)
]

. (9)

J̃w(Y, z; t) andKi(Y, z; t) satisfy the boundary conditions (for1 ≤ i ≤ N )

J̃w(Y, z; t)|z=±∞ = 0 (10)

Ki(Y, z; t)|yi=0 = 0; Ki(Y, z; t)|yi=∞ = 0. (11)

The average position of the wall is given by

z̄(t) =

∫ ∞

−∞

∫ ∞

0

Π(Y, z; t)zdzdY. (12)

Applying Eq.12 in Eq.7 and using the boundary condition given by Eq.10 and 11, we arrive at the following
expression for the steady state mean wall velocity

VN (f) ≡ dz̄

dt
= Vw +NDwφN (0), (13)

whereφN (y) is the stationary probability density for the separationy between the wall and one of the filaments
(single filament gap size distribution), i.e.,

φN (y) =

∫

Φ(y, y2, ...yN )dy2...dyN . (14)

The integrandΦ(Y ; t), gives the joint probability distribution of gap lengths:

Φ(Y ; t) =

∫

Π(Y, z; t)dz. (15)

From Eq.6, it follows that in the long time limit, the average wall velocity becomes equal to the average filament
velocity, hence it is sufficient to get an expression for the wall velocity using Eq.13, using which one can study the
wall-induced effects on the kinetics of polymerization and force generation.
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Figure 2: Schematic diagram of the cubical box, containing a bundle of filaments growing by a diffusion-limited
reaction used in Brownian dynamics simulations. One face of the cubical box facing the filament tip is movable
(the barrier); it is acted on by a constant forcef in the backward direction and also undergoes random motion
characterised by diffusion coefficientDw.

2.3 Brownian dynamics simulations

The mathematical formalism presented earlier has two limitations: (i) diffusion of monomers is not taken into
account explicitly, rather, it enters through the gap-dependent on-rate of monomers (ii) the length of the polymers
is treated as a continuous variable, ignoring the discreteness of monomer addition and dissociation processes.
To overcome these limitations, we also carried out Brownian dynamics simulations; here, the free monomers
are treated as point particles, and diffuse inside a rectangular box, with the walls of the box acting as reflecting
boundaries, see Fig.2.

The positions of the individual monomersrm(t) and the wall (movable face of the rectangular box) are updated
using overdamped Langevin equations. Over a small time step∆t, the updating rules have the form,

rm(t+∆t) = rm(t) +
√
2D∆t η,

z(t+∆t) = z(t)− fDw

kBT
∆t+

√

2Dw∆t ηw, (16)

whereη = (ηx, ηy, ηz), the latter being random numbers drawn from independent Gaussian distributions with zero
mean and unit variance. Similarly,ηw is a Gaussian random variable with zero mean and unit variance. We used
∆t = 10−4 s,Dw = 103 nm2s−1 andD = 105 nm2s−1; for diffusing monomers, this implies a mean free path
∼

√
D∆t ≃ 3 nm between successive changes in direction. A ratio of100 : 1 was kept between the diffusion

coefficients of the wall and the monomers since the objects that obstruct the free growth of microtubule as well
as free diffusion of tubulins include the lipid membranes or a kinetochore, which are massive compared to tubulin
monomers. Three boundary conditions are imposed on the diffusing monomers, (i) reflecting boundary conditions
on the walls of the rectangular box, (ii) reflecting boundary condition on the cylindrical wall of the filament and
(iii) absorbing boundary condition at the circular face/tip of the filament. Although the monomers are treated as
point particles when simulating their diffusion, once a monomer is adsorbed onto a polymer tip, the length of the
polymer increases byδ (however, this requirement was waived in one set of simulations, see (i) below). The initial
spatial distribution of free monomers is uniform, with concentrationC0. In order to ensure that adsorption events
at polymer tips do not cause depletion in thetotal number of monomers, every time a monomer disappeared from
the solution by binding to a polymer tip, a new monomer was added at a random location inside the box. This pro-
cedure ensures that the free monomer concentration far from the absorbing tips is alwaysC0. In the simulations,
we analyzed three different cases and are summarized below.

(i) On-rate of monomers binding to static disk-shaped absorbing surface
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In the first set of simulations, we looked at the steady state adsorption of particles to a static filament (filament
length remains the same irrespective of monomer adsorption) with all the faces of the box kept fixed, by varying
the separation between the filament tip and the face opposite to it. Here, the filament as well as the wall are static
in space.

(ii) FFD filaments growing against a mobile barrier

In the second set of simulations, we studied the force-velocity relation for rigid linear polymers with monomeric
units modeled as flat-faced disks of different radii of cross section. In addition, we also varied the base separation
between the filaments. Unlike the earlier case, here, whenever a monomer is adsorbed, the length of the filament
increases byδ; the mean length of a filament grows linearly with time. We also allow a bound monomer to oc-
casionally detach from the filament after adsorption, and this is accounted for in the simulations by including a
non-zero off-rate. Our simulations are done at fixedmeanmonomer concentrationC0 (as explained earlier). The
mean velocity of growth of a filament was measured as the slope of the graph of the mean length versus time, with
the averaging done over1000 independent runs. For different values off , we calculated the average velocity of
growth of the filament, fora = 20 nm,10 nm and2 nm, withδ = 2 nm in all the three cases. The mean velocity
was plotted as a function of the forcef ; the stall forcefs, the point of zero-crossing of theV − f curve, was
determined by linear interpolation.

(iii) Multi-stranded polymers with microtubule-like geometry

� �

Figure 3: A schematic diagram of a multi-stranded filament with microtubule-like geometry.

In the next stage, we extended our simulations to multi-stranded polymers with microtubule-like geometry
(but without hydrolysis or dynamic instability, see the schematic figure, Fig.3). Here, each polymer consists of
13 protofilaments (with each protofilament being a FFD polymer with radiusa = 2.5 nm, similar to one of the
cases studied in (ii)), arranged in a circular fashion, with outer radius12.5 nm and inner radius7.5 nm. Each
protofilament here grows and shrinks individually, with diffusion-limited binding and random detachment (off-rate
koff ) of monomers. The monomers here are circular disks of radius2.5 nm and lengthδ = 8 nm. To calculate
the mean velocity of growth, we tracked the time evolution of the length of one randomly chosen protofilament
belonging to one of the microtubules (if there are more than one) in one simulation. The results are averaged over
500 independent runs.
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3 Results

3.1 Mathematical results: Gap distribution and mean filament velocity

To derive an expression for the mean velocity of the filament/wall, we first need to find the expression for the
single filament gap distribution,φN (y). To derive the equation forφN (y), we first integrate outz from the general
equation forΠ(Y, z; t) given by Eq.7 and using the boundary conditions forJ̃w(Y, z; t) andKi(Y, z; t) given by
Eq.10-11we get,

∂Φ(Y ; t)

∂t
= −

N
∑

i=1

∂

∂yi
Ki(Y ; t). (17)

In the long-time limit, the gap size distributionΦ(Y ; t) is expected to become stationary, hence the L.H.S of Eq.17
can be put to zero to give

N
∑

i=1

∂

∂yi
Ki(Y ) = 0. (18)

The simplest (but not the most general) solution to the above equation isKi(Y ) = Ci, with Ci being arbitrary
constants. In this case, the boundary conditions given by Eq.11 requires thatCi = 0 identically. Hence, let us
continue on the presumption that the set of equations

Ki(Y ) = 0 ∀ i ∈ [1, N ], (19)

will provide the steady state solution forΦ(Y ) we are looking for. Applying Eq.14 in Eq.19, we get the equation
for single filament gap size distributionφN (y) as

[V (y)− Vw]φN (y) +
∂

∂y
[D(y) +Dw]φN (y)− (N − 1)DwFN (y) = 0, (20)

where

FN (y) =

∫

Φ(y, y2 = 0, y3, .., yN)dy3..dyN N ≥ 3,

F2(y) = Φ(y, y2 = 0), (21)

such that
∫ ∞

0

FN (y)dy = φN (0). (22)

The formal solution to Eq.20can be written as

φN (y) =
e−

∫
y Γ(y′)dy′

D(y) +Dw

[

A+Dw(N − 1)

∫ y

dy′e
∫
Γ(y′′)dy′′

FN (y′)

]

, (23)

with

Γ(y) =
V (y)− Vw

D(y) +Dw

. (24)

In order to calculateφN (y), we use the following mathematical forms forV (y) andD(y), obtained using the
approximate position-dependent on-ratekon ≃ kon(∞)[1 − e−λy] (see Appendix A) for FFD polymers. Here, we
expect from scaling considerations thatλ ∼ 1/a, wherea is the radius of the disk. It then follows from Eq.4 that

V (y) = V0 − V1e
−λy; D(y) = D0 −D1e

−λy, (25)

where

V0 = [kon(∞)− koff ]δ; V1 = kon(∞)δ. (26)
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Similarly,

D0 = [kon(∞) + koff ]
δ2

2
; D1 = kon(∞)

δ2

2
. (27)

ForN = 1, the gap size distribution is given by

φ1(y) = Ae−Q2y
[

1−De−λy
]−P2 (28)

where,

Q2 =
V0 − Vw

D′
; P2 =

[

1 +
V0 − Vw

λD′
− V1

λD1

]

;D =
D1

D′
D′ = D0 +Dw. (29)

The normalization constantA is given by

A =

[ ∞
∑

n=0

(P2)nDn

n!

1

[Q2 + nλ]

]−1

. (30)

The corresponding results forN = 2 are given insupplementary material.

3.2 General solution forλ = ∞ (constant on-rate)

The simplest limit, corresponding toλ = ∞, is similar to the studies by [18]; here, we have

V (y) ≡ V0 = [kon(∞)− koff ]δ; D(y) ≡ D0 = [kon(∞) + koff ]
δ2

2
. (31)

In this limit, the single filament gap distribution (Eq.23) is given by

φN (y) =
e−∆1y

D0 +Dw

{

A+Dw(N − 1)

∫ y

dy′ e∆1y
′

FN (y′)

}

, (32)

with

∆1 =
V0 − Vw

D0 +Dw

; (33)

The expression forFN (y) is a simple exponential here:

FN (y) = Be−∆2y, (34)

where

∆2 =
V0 − Vw

D0 +NDw

. (35)

Now, substituting Eq.32and Eq.34 in Eq.S16, we get

A = B
[

D0 +Dw

∆2
− (N − 1)Dw

∆1 −∆2

]

. (36)

On using the normalization condition (Eq.S15) in Eq.32we find that

B = ∆1∆2

[

1 +
(N − 1)Dw

D0 +Dw

]−1

. (37)

Substituting Eq.34with B given by Eq.37 in Eq.32and performing the integration we get

φN (y) = ∆2e
−∆2y. (38)
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Substitution ofφN (0) = ∆2, as calculated using Eq.38, in the general expression for the average velocity given
by Eq.13gives

VN (f) =
VwD0 +NDwV0

D0 +NDw

(λ = ∞). (39)

The stall force, corresponding to zero mean velocity, is obtained by puttingVN (f) = 0 in Eq.39, and is given
as

fN
s =

2NkBT

δ

[

kon(∞)− koff
kon(∞) + koff

]

(continuum model). (40)

For constant on-rate case, the stall force scales linearly with the number of filaments, similar to earlier prediction
[20]. But the mathematical dependence of stall force on the on-rate and off-rate differ, the difference clearly
arising from the continuum treatment in this paper as opposed to the discrete approach in [20]. The corresponding
prediction of the discrete model [20] is

fN
s =

NkBT

δ
ln

[

kon(∞)

koff

]

(discrete model). (41)

Note thatfs(N) = 0 in both Eq.40 and Eq.41 when kon = koff . The latter corresponds to the state of
chemical equilibrium of the system, where growth and detachment processes balance each other on average (with
corresponding drop in the free monomer concentration in solution), and there is no net growth for the polymer
(hence no more work can be extracted). It is also easily verified that in the limitkon(∞) ≈ koff , Eq.41agrees with
Eq.40, which is to be expected, as a continuum approximation works best when the (length) increment per unit
step is small.

In Appendix B, we show that the linear scaling of stall force with number holds true toO(1/λ), although
both the filament velocity and the stall force are found to be reduced. These predictions are subjected to further
examination in the following subsection.

3.3 Simulation results

In the first set of simulations we studied the on-rate of monomer adsorption to a static surface, in the presence of
a reflecting wall, as mentioned in case (i) of Sec.2.3, for various radii of cross-section of the circular absorbing
surface. From the simulation results, it is observed that the on-rate of monomers is dependent on the separation
between the surface and the wall; as the separation decreases, a substantial drop in the on-rate is seen. The data
along with the analytical results is discussed in detail in Appendix A, and was used in analytical calculations in the
previous subsection.

In the second set of simulations, we studied the force-velocity relation for FFD filaments. Fig.4a shows the data
for a = 10 nm, for one and two filament systems. In the second case, two values for the lateral base separation
between filaments was studied; 0 and100 nm (here, zero base separation refers to the filaments touching each
other). The two cases are distinguished in the plots as “near” and “far”. The stall force for a single filament is
found to be≃ 1.94 pN. By comparison, Eq.41 predicts a stall force of≃ 2.62 pN. The discrepancy is almost
certainly arising from the barrier-induced reduction in the on-rate, which is significant fora = 10 nm. The inset of
the same figure shows the dimensionless on-rate for monomer binding onto an absorbing disk of the same radius,
as a function of its distance from a reflecting barrier. Fitting the data to an exponential curve yields the parameter
λ, which is then used to predict the force-velocity relation using the relevant equations from Sec.3.1, viz., Eq.13,
Eq.28 (for N = 1) and Eq.S19 (supplementary material, for N = 2). The theoretical predictions are also shown
alongside the simulation results in the same figure. ForN = 1, the agreement between the theoretical curve and
simulation data is excellent in the sub-stall regime, while significant deviation is observed post-stall. ForN = 2,
the far-data shows reasonable agreement with the theoretical curve except at very smallf , but the near-data is
significantly different. More importantly, while the two-filament stall forcef

(2)
s ≃ 2f

(1)
s for filaments far apart,

f
(2)
s < 2f

(1)
s for near-filaments, i.e., sublinear scaling of stall force with number is observed when the filaments are

close together, but linear scaling is restored when they are far apart. This observation is in disagreement with the
prediction of the Brownian ratchet model [18]. We strongly believe that the sublinear scaling arises fromdiffusive
interactionbetween the filaments, a phenomenon that occurs whenever multiple ‘sinks’ compete for diffusing
particles that form a common pool [23–25].
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Figure 4: The force-velocity curve for a single filament versus two filaments, obtained from Brownian dynamics
simulations, for (a)a = 10 nm and (b)a = 2 nm. For (a), the off-rate of monomers iskoff = 2 s−1 while for (b),
koff = 0.2 s−1. Analytical results are shown for best fit value ofλ; 0.275 nm−1 in (a) and0.4 nm−1 in (b). In the
insets, fits for (scaled) separation-dependent on-rateα(d) = kon(d)/kon(∞), using the sameλ are shown. The
other parameter values are given in Table1. Here,nearmeans zero base separation between polymers, wherasfar
refers to a base separation10a. The error bars are typically smaller than the size of the symbols.

We repeated the above investigations for a smaller radius of cross-section,a = 2 nm. The results are shown in
Fig.4b. The observed single filament stall force here is nearly2.27 pN, while the theoretical prediction from Eq.41
of the discrete model is≃ 2.6 pN. The velocity-force curves predicted using the continuum model also agree with
the simulations over a larger range of force. Coming now to two-filament data, unlike the previous case, the near
and far cases forN = 2 are practically indistinguishable here, and both agree very well with the theoretical curve
(here, “far” refers to a base separation of20 nm). Finally, the two-filament stall force is very nearly twice the
single filament force, indicating that diffusive interaction is negligible here, at least forN = 2. However, we shall
see in the next subsection that for larger numbers, this interaction becomes significant even fora ∼ 2 nm. For two
filaments, the observed doubling of stall force forN = 2, when the filaments are far apart, is also consistent with
the results of the asymptotic analysis (λ → ∞) presented in Appendix B.

As further verification of the continuum theory presented in the last section, we also found the single-filament
gap distribution functionφN (y) (defined in Eq.14), and compared with the theoretical predictions given in Eq.28
(N = 1) and Eq.S19 (N = 2). The results are given in Fig.5 (a = 10 nm) and Fig.6 (a = 2 nm). Quantitative
agreement is better fora = 10 nm compared toa = 2 nm, as expected.

Fig.7 shows the force-velocity curve for one (N = 1) and two (N = 2) microtubule-like filaments. The
observed stall force for a single microtubule is found to be nearly5.17 pN in simulations for the parameters used
here. For comparison, for the same set of parameters, the prediction of the Brownian ratchet model (Eq.41) for
the combined stall force of13 independent protofilaments is12.24 pN. Therefore, we again encounter sublinear
scaling of stall force, here as a function of the number of (proto)filaments, similar to the experimental observations
in [6]. This can be explained using two different, but essentiallyequivalent arguments:

(a) a protofilament here is part of the larger microtubule, which has an outer radius of nearly12.5 nm, large
enough for significant barrier-induced reduction in the on-rate, when the filament is close enough to the wall. This
causes each protofilament to grow much slower than it would have, if it were alone in the solution. Consequently
growth is stalled at a lower value of the opposing force.

(b) each protofilament is diffusively coupled to the other protofilaments, and hence the on-rate for one is
reduced by the presence of the others. Forn disk-shaped absorbers (each with radiusa) arranged uniformly in
a circle, with centre-to-centre separationR, it has been proposed that, forR ≫ a, the effective diffusion-limited
on-rate for one of the disks is given by the approximate formula [26]
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Figure 5: The gap distribution fora = 10 nm, for two forces, far from and near to stall, with (a)N = 1 and (b)
N = 2. Fits of the analytical results, Eq.28 for N = 1 and Eq.S19 forN = 2 are also shown for the best fit value
λ = 0.275 nm−1, with kon(∞) = 7.5 s−1. For both (a) and (b),koff = 2 s−1. The other parameter values are
listed in Table1.
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shown forN = 2. A fit of the analytical results (Eq.28 for N = 1 and Eq.S19 forN = 2) also shown for the best
fitting value ofλ = 0.4 nm−1, with kon(∞) = 0.73 s−1. For both (a) and (b),koff = 0.2 s−1. The other parameter
values are listed in Table1.

11

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 8, 2017. ; https://doi.org/10.1101/125690doi: bioRxiv preprint 

https://doi.org/10.1101/125690
http://creativecommons.org/licenses/by-nc-nd/4.0/


Parameter Symbol FFD MT-like geometry

Monomer length δ 2 nm 8 nm

Radius a variable 2.5 nm

Diffusion coefficient(monomer) D 105 nm2s−1 105 nm2s−1

Diffusion coefficient(wall) Dw 103 nm2s−1 103 nm2s−1

Concentration C0 3.3µM 33.3µM

Monomer dissociation rate koff variable 3 s−1

Table 1: Numerical values of the various parameters used in the Brownian dynamics simulation for flat-faced
filaments (FFD) and microtubule-like geometry.

kon ≃ 4DaC0

1 + 2a
πR

ln
(

2n
π

) R ≫ a (42)

In a microtubule, protofilaments are tightly packed, this corresponds to the situation withR ≃ 2a in the above
formula. However, protofilament lengths can be different in general, hence it is not cleara priori if Eq.42 can
be applied in this case. Nevertheless, it is remarkable that the stall force of a single microtubule calculated using
Eq.41, with the on-rate given by Eq.42 (after substitutinga = 2.5 nm,R = 2a, n = 13 andδ = 8 nm), turns out
to be3.94 pN, closer to the observed value. The velocity-force curves of two microtubule-like filaments, bothnear
(base separation zero) andfar (base separation150 nm), show a surprising feature. A close inspection (see inset of
Fig.7) reveals that the two-filament mean velocity remains close tozero after reaching stall (|V2(f)| < 10−3 nm
s−1 for f ≥ f

(2)
s ). This counter-intuitive behaviour persists for forces up to10 pN; the growth velocity remains

close to zero for a large range of force in the super-stall regime. At present, we do not have an explanation for
this observation. Nevertheless, Fig.8 provides some insights. Here, we show comparisons of the time-dependence
of the mean position of the barrier and a randomly chosen protofilament forN = 1 (a) andN = 2 (b and c),
at super-stallforces. ForN = 1, the wall and the filament keeps moves leftward on average, keeping a constant
mean separation between them. Something different happens forN = 2. Here, as the force is increased, the mean
positions of both the filament tip and the wall shifts leftwards, but settles in a new equilibrium position, with a
constant, force-dependent mean separation between the two (Fig.8). Since both near and far configurations show
similar qualitative behaviour, it appears that the large number of individual (proto)filaments forN = 2 (26 in total)
might be the crucial factor here; this issue requires further investigation.

The deviation from linear scaling of the stall force may be characterised using a scaling parameterν =

f
(2)
s /2f

(1)
s , which is always 1 for perfect linear scaling. In Table2, we collect together the different values of stall

forces observed in our simulations, as well as the computedν, for FFD filaments and multi-stranded microtubule-
like filaments.

4 Discussion

Polymerization-driven force generation by filaments has many biological applications, and the problem has been
extensively studied experimentally as well as theoretically. A central quantity of interest here is the stall force of
a bundle ofN filaments, and its scaling behavior withN . Recent years have seen a spurt of activity in theoretical
modeling in this field, but these models are typically one-dimensional in nature, and do not consider explicitly
monomer diffusion in space [18–21, 27], or even the dynamics of the object (barrier) that is being pushed by
the filaments [19–21, 27]. Here, we have introduced and studied a more general model inwhich the effects of
polymerization-driven growth of the filament and the presence of the physical barrier on monomer concentration
are included, and the consequent fall in the monomer adsorption rate is estimated. We showed that, in general, the
physical barrier affects the monomer concentration profile, causing a drop in the growth rate in addition to being a
steric hindrance to growth, when the filament tip and the barrier are within a distance of approximately3-4 times
the radius of cross-section of the filament tip (imagined as having a solid disk-like face). We then investigated,
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Figure 7: Force-velocity relation for a single microtubule and two microtubules, bothnear(zero base separation)
and far (base separation of150 nm). The values of the parameters used in the simulation are listed in Table1.
The inset zooms the force range where the velocity vanishes. Note that while the single filament curve crosses the
x-axis after touching zero at stall, the two-filament velocity remains close to zero after stall. In most cases, the
error bars are smaller than the size of the symbols. For two filaments, ‘near’ means zero base separation, while
‘far’ refers to a base separation150 nm.

by mathematical analysis as well as Brownian dynamics simulations, how the collective dynamics of a bundle
of filaments is affected by this barrier-induced hindrance to free diffusion. In the process, we also encountered
diffusive interaction between filaments that naturally appears when nearby filaments grow together by diffusion-
limited adsorption, but its effects are particularly noticeable in the presence of a barrier as the latter reduces the
spread in length across different filaments and thereby forces the tips to be close to each other.

In the mathematical part of our study, we set up a continuum Fokker-Planck equation to describe together
the collective growth ofN identical filaments against a rigid barrier, the latter’s motion including drift towards
the filaments and random diffusive motion powered by thermal noise. We then use an adiabatic approximation
where the stationary monomer density profile is assumed to respond instantly to changes in the positions of the
filament tips and the barrier. The on-rate for adsorption of monomers onto a filament tip is calculated, and also
measured directly in simulations. By assuming a simple analytical form for the boundary-affected reduced on-rate,
consistent with observations, we studied steady state properties of the filament population. In particular, we derived
analytical expressions for the mean filament growth velocity and the stall force of an assembly. These expressions
involve the probability distribution for the filament tip-barrier separations (‘gaps’), which was calculated explicitly
in a few special cases of interest. All analytical predictions were subjected to verification in Brownian dynamics
simulations, which were also used to explore the consequences of having more complex microtubule-like multi-
stranded structure for the filaments.

Among the important conclusions arising out of this study, we have established clearly that, in general, a
physical barrier may be expected to cause reduction in the rate of growth of a polymer growing towards it, and this
effect also reduces the stall force of the filament. However, as long as the filaments have sufficient lateral separation
from each other, the stall force forN filaments increases linearly withN . Nonlinear scaling appears when the
filaments are brought close together to form a bundle; in this case, diffusive interaction between the growing
filament tips leads to a non-additive combined stall force of the bundle. The effects of this diffusive interaction are
most visible in a multi-stranded filament like a microtubule; here, we show conclusively in simulations that the net
stall force of the filament is much less than the sum of the stall forces of the individual protofilaments [6]. Similarly,
the combined stall force for two microtubules is generally less than twice the stall force of one. Diffusive coupling,
when significant, leads to sublinear scaling of stall force with the number of filaments, a notable prediction from
our studies. Specifically, in microtubules, we report the existence of strong diffusive coupling between different
protofilaments, arising by virtue of their tight packing, which leads to smaller combined stall force, compared to
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Figure 8: The time evolution of the average positions of the wall and one of the protofilaments is shown for (a) one
microtubule, (b) two microtubules (near) and (c) two microtubules (far). In the inset of (a), the average position of
wall alone shown. The parameters common for all the three cases are listed in Table1. For two filaments, ‘near’
means zero base separation, while ‘far’ refers to a base separation150 nm.

Filament f1
s (pN) f2

s (pN) ν

FFD (a = 2 nm, near) 2.27± 0.05 4.58± 0.05 1.01± 0.022

FFD (a = 2 nm, far) 2.27± 0.05 4.53± 0.05 0.99± 0.043

FFD (a = 10 nm, near) 1.94± 0.05 3.05± 0.05 0.79± 0.026

FFD (a = 10 nm, far) 1.94± 0.05 3.73± 0.05 0.96± 0.012

FFD (a = 20 nm, near) 1.88± 0.25 2.76± 0.25 0.73± 0.075

FFD (a = 20 nm, far) 1.88± 0.25 3.55± 0.25 0.94± 0.059

Microtubule-like geometry (near) 5.17± 0.25 6.48± 0.25 0.63± 0.18

Microtubule-like geometry (far) 5.17± 0.25 8.02± 0.25 0.76± 0.14

Table 2: The stall forces for single and two filaments, and the scaling parameterν = f2
s /2f

1
s , for N = 1 and 2,

for flat-faced disk polymers and microtubule-like polymers. The deviation from unity indicates sublinear scaling
with N . The error bar in the stall force data is estimated as half of the step size for force used in the simulations.
For two filaments, ‘near’ refers to zero base separation and ‘far’ refers to base separation 10 times the radius of
cross-section (except for the last, where the base separation is150 nm).

a hypothetical situation where each protofilament grows independent of the others. We also observe a remarkable
phenomenon in our simulations; two microtubules, when growing against asuper-stallforce, stand their ground
after retreating to a new ‘equilibrium’ position, and refuse to be continuously pushed backward unlike a single
microtubule, or simpler (single-strand) flat-faced filaments. At the moment, we lack a clear understanding of the
mechanism or the implications of this observation, and investigating it further is one of our immediate goals for
the future.

Among the limitations of our study, we have treated diffusing monomers as point point particles devoid of
size and shape; therefore, Brownian rotation of monomers and orientational constraints to their adsorption at the
growing tip have been ignored. We do not believe that this will impact our principal conclusions, but if taken
into account, could reduce the on-rate uniformly everywhere. Yet another important omission in our model, in
the context of microtubules, is that we have not included GTP hydrolysis and the consequent dynamic instability.
Recent theoretical work [21] has shown that the combined stall force of a bundle ofN microtubules with dynamic
instability scales superlinearly withN . Bundle catastrophes, observed in microtubules growing close together [10]
seems to be a collective catastrophe phenomenon which could be studied further using the approach developed
in this chapter. In general, it would be interesting to see how the competition between diffusive coupling and
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dynamic instability, which appear to have opposite effects on the scaling of force with number, affects collective
force generation and dynamic instability in a microtubule bundle.
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A Modification of monomer binding rate by the wall
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Figure 9: (a)Schematic figure of the geometry used to solve Eq.43. A thin circular disk of radius ‘a’ kept in
between two rigid infinite walls, which acts as an absorbing region for the incoming particles. (b) Schematic figure
of the geometry used in Brownian dynamic simulations. In addition to the conditions in (a), a reflecting boundary
condition is imposed on the cylindrical wall.

Assuming the filament to be a linear chain of monomers, the probability that a monomer adds in the time
interval dt iskon(d)dt, wherekon(d) is the rate at which monomers are added to the tip. In our model,kon(d) in
general depends on the separation between the filament tip and the barrier, denoted asd. When the filament tip
is far away from the barrier,kon(d) → kon(∞), equivalent to the case studied earlier[18–21]. Due to the steric
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hindrance arising out of the presence of the wall, a monomer can be added only if there exists a sufficient space
between the filament tip and the barrier, equal to the size of the monomer.

Assuming steady state conditions, the monomer concentrationC(r, t) satisfies Laplace’s equation

D∇2C(r) = 0, (43)

wherer is the position measured with respect to the centre of the surface andD is the diffusion coefficient of
monomers. In diffusion-limited growth, the steady state adsorption rate of monomers to a surfaceS is given by the
integral

kon = D

∫

S

∇C · dS. (44)

To findC(r), we solved Eq.43 in a geometry (having cylindrical symmetry) as shown in Fig.9a, consisting of
an absorbing disk of radiusa and zero thickness placed atz = 0 and an infinite reflecting boundary atz = d.
Given this geometry, the solution of Eq.43, denoted asCd(r), is given by

Cd(ρ, z) =

∫ ∞

0

αkJ0(kρ) e
−kz [1 + e−2k(d−z)]dk z > 0 (45)

Cd(ρ, z) =

∫ ∞

0

βkJ0(kρ) e
kz [e2kd + e−2kz]dk z < 0, (46)

whereαk andβk are constants to be fixed and the subscriptd indicates the location of the barrier. To see how the
presence of the reflecting wall atz = d affects the on-rate of particles coming fromz > 0, we evaluate the integral
in Eq.44using Eq.45. The constantαk in Eq.45is fixed such thatCd(ρ, z) in the positivez region satisfies the full
set of boundary conditions:

Cd(ρ, z = 0+) = 0 0 ≤ ρ ≤ a

Cd(ρ, z) = C0 ρ ≫ a

∂Cd(ρ, z)

∂z

∣

∣

∣

∣

z=d

= 0 0 ≤ ρ ≤ ∞. (47)

Consistent with the above boundary conditions, the solution in the regionz > 0 becomes,

Cd(ρ, z) = C0 −
2C0

π

∫ ∞

0

dk
sin(ka)

k
J0(kρ) e

−kz

[

1 + e−2k(d−z)

1 + e−2kd

]

. (48)

As a special case, forz = d, the solution, obtained after performing the integration in Eq.48is

Cd(ρ, d) = C0 −
4C0

π

∞
∑

n=0

(−1)n sin−1

[

2a

ρ+ + ρ−

]

, (49)

where

ρ+ =
√

(ρ+ a)2 + (2n+ 1)2d2; ρ− =
√

(ρ− a)2 + (2n+ 1)2d2. (50)

For comparison, if the wall were not present, the corresponding solution (again, atz = d) would be

C∞(ρ, d) = C0 −
2C0

π
sin−1

[

2a
√

(ρ+ a)2 + d2 +
√

(ρ− a)2 + d2

]

. (51)

In Fig.10, we show the concentration profile (dimensionless, scaled using the asymptotic valueC0) in the radial
direction, given by Eq.49and Eq.51, for a = 20 nm andd = 10 nm. The figure shows that the presence of the wall
enhances monomer depletion in front of the growing filament tip, and this effect is found over a (radial) distance
nearly4 times the radius of cross-section of the absorbing disk. It is natural to expect that this depletion will also
cause a fall in the rate of adsorption of the monomers at the disk, which we calculate next using Eq.44.

kon(d) = −D

∫ a

0

2πρdρ
∂Cd(ρ, z)

∂z

∣

∣

∣

∣

z=0+
. (52)
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Figure 10: A comparison of the concentration profile of free monomers along the radial direction, given by Eq.49,
and Eq.51, for disk radiusa = 20 nm atz = 10 nm, when the reflecting barrier is placed atz = 10 nm (green)
andz = ∞ (red). Far away from the barrier, the concentration is given by the asymptotic valueC0. Note that the
presence of the barrier enhances depletion of monomers in front of the absorbing disk.

Using the expression forCd(ρ, z) in the regionz > 0 given by Eq.48, we have

∂Cd(ρ, z)

∂z

∣

∣

∣

∣

z=0+
= −D

2C0

π

∫ ∞

0

dk sin(ka) J0(kρ)

[

1− e−2kd

1 + e−2kd

]

. (53)

Substituting Eq.53 in Eq.52and performing the integration, we find

kon(d) = 4C0Da

[

1− 2

∞
∑

n=0

(−1)n
a−

√
a2 − l2

a

]

. (54)

with

l2 =
1

4

[
√

4a2 + 4(n+ 1)2d2 −
√

4(n+ 1)2d2
]2
. (55)

In the limit d → ∞ (disk far away from the barrier), the quantityl2 given by Eq.55 goes to zero and the on-rate
takes the simple expression [28],

lim
d→∞

kon(d) ≡ kon(∞) = 4DC0a, (56)

as expected.
The on-rate decays monotonically as the wall-disk separation decreases, suggesting that the presence of a bar-

rier decreases the likelihood of particles being getting trapped and hence slows down the growth rate, see Fig.11.
We also verified the prediction for on-rate given by Eq.54, by doing Brownian dynamics simulations, for more de-
tails see section on simulations case (i) discussed in Sec.2.3. A visual inspection of Fig.11suggests that boundary
induced drop in on-rate comes into play when the separation between the barrier and radius of cross section of the
absorbing disk are comparable , i.e.,d ∼ a. Unfortunately, the expression for the flux given in Eq.54is not simple
enough to be used directly for further mathematical calculations, hence we approximate Eq.54 by the simpler
form: kon ∼ kon(∞)(1− e−λd). The inverse of the parameterλ gives a measure of the size of depletion zone, i.e.,
λ ∼ 1/a . In Fig.11b, we give a fit of the approximate expression for on-rate with the simulation data fora = 10
nm. The best fit parameter value ofλ in this case is 0.275 nm−1.
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Figure 11: (a) On-rate of particles to a circular disk of radius ‘a’ as a function of distance between the disk and
the reflecting wall for different disk radii, given by Eq.54. (b) A comparison of analytical result for the on-rate
given by Eq.54with results from Brownian dynamics simulations discussed in Sec.3.3. The Brownian dynamics
simulations are carried out for a geometry shown in Fig.9b; for more discussions on details of simulations, see Sec.
2.3. The thick line is shown for the approximated scaled expression of the on-rate,kon(d)/kon(∞) = 1−exp(−λd)
with the best fit value ofλ = 0.275 nm−1. The dotted line is the analytical expression given by Eq.54.

B 1/λ expansion forVN(f) and fN
s :

As a simple extension of the calculation discussed in Sec.3.2, an asymptotic expansion of the expressions for
average filament velocity and stall force in the largeλ limit is carried out, to quantify small deviations from
the constant on-rate case. Consider the equation for single filament gap distribution,φN (y) given by Eq.20.
Performing an integration with respect toy in Eq.20, and using Eq.S15 and Eq.S16 we get,

〈V (y)〉 − Vw − [D(0) +Dw]φN (0)− (N − 1)DwφN (0) = 0, (57)

which yields

φN (0) =
〈V (y)〉 − Vw

D(0) +NDw

. (58)

Substituting Eq.58 in the expression forVN (f) given by Eq.13gives

VN (f) =
VwD(0) +NDw〈V (y)〉

D(0) +NDw

. (59)

In general,φN (y) is a function ofλ as well, therefore let us expressφN (y) explicitly as a function ofλ andN i.e.,

φN (y) ≡ φ(y;N, λ). (60)

The quantity〈V (y)〉 is calculated using Eq.25,

〈V (y)〉 = V0 − V1

∫ ∞

0

e−λyφ(y;N, λ)dy. (61)

Next, we expandφ(y;N, λ) in powers ofλ:

φ(y;N, λ) = φ0(y;N) +
1

λ
φ1(y;N) +O(

1

λ2
)... (62)

From Eq.38, we have

φ0(y;N) = ∆2e
−∆2y, (63)
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where∆2 is given by Eq.35. To evaluate〈V (y)〉, we substitute Eq.62in the integral given in Eq.61, also substitute
φ0(y;N) from equation Eq.63, and we find

〈V (y)〉 ≈ V0 −
V1∆2

λ
+O(

1

λ2
). (64)

Therefore, from Eq.59, we have

VN (f) ≈ VwD0 +NDwV0

D0 +NDw

[

1− 1

λ

V1(V0 − Vw)

D0 +NDw

+O(
1

λ2
)

]

. (65)

The stall force is obtained from Eq.65 using the defining relationVN (fN
s ) = 0, and takes the form of an power-

series expansion in1/λ:

fN
s ≈ 2NkBT

δ

(

kon(∞)− koff
kon(∞) + koff

)[

1− 2

λδ

kon(∞)

[kon(∞) + koff ]
+O(

1

λ2
)

]

. (66)

From Eq.65and Eq.66, it is evident that the barrier-induced inhibition of free diffusion causes a drop in the mean
velocity and stall force, while the linear scaling of stall force with the number of filaments holds, at least to first
order in1/λ. Numerical simulations, discussed in the main text, indicate that this result holds for arbitraryλ, under
conditions where the filaments grow independent of each other.
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