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ABSTRACT 21 

 Characterizing dispersal and movement patterns are vital to understanding the 22 

evolutionary ecology of species. For many reclusive species, such as reptiles, the observation of 23 

direct dispersal may be difficult or intractable. However, dispersal distances and patterns may be 24 
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characterized through indirect genetic methods. We used genetic and capture data from the island 25 

night lizard (Xantusia riversiana) to estimate natal dispersal distances through indirect genetic 26 

methods, characterize movement and space use patterns, and compare these distances to previous 27 

estimates made from more traditional ecological approaches. We found that indirect estimates of 28 

natal dispersal were greater than previous field-based estimates of individual displacement of 3-5 29 

m. Parent-offspring differences had a mean of approximately 14 m on Santa Barbara Island 30 

(SBI) and 41 m on San Clemente Island (SCI) whereas Wright’s σ was estimated at 16 m on SBI 31 

and 20 m for SCI. Spatial autocorrelation with correlograms of Moran’s I revealed large 32 

differences in the scale of autocorrelation between islands (SBI=375 m, SCI=1,813 m). 33 

Interpretation of these distances as average per generation distance of gene flow was incongruent 34 

with parentage analyses and σ. We also used variograms to evaluate the range of spatial 35 

autocorrelation among two inter-individual genetic differences. The range of spatial 36 

autocorrelation again identified different scales on the two islands (102 - 169 m on SBI and 955 - 37 

1,424 m on SCI). No evidence of sex-biased dispersal was found on either island. However, a 38 

permutation logistic regression revealed that related individuals >0.8 years old were more likely 39 

to be captured together on both islands. Overall, our findings suggest that field-based estimates 40 

of individual displacement within this species may underestimate genetic dispersal. We suggest 41 

indirect inferences of natal dispersal distances should focus on parentage analyses and Wright’s 42 

σ for parameter estimation of individual movement, whereas the ranges identified by spatial 43 

autocorrelation and variograms are likely to be relevant at the metapopulation or patch scales. 44 

Furthermore, characterization of capture patterns and relatedness revealed kin-affiliative 45 

behavior in X. riversiana, which may be indicative of delayed dispersal and cryptic sociality. 46 

These results highlight the power of parentage- and relatedness-based analyses for characterizing 47 
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aspects of the movement ecology of reclusive species that may be difficult to observe directly. 48 

These data can then be leveraged to support future conservation and population modeling efforts 49 

and assess extinction risks and management strategies.  50 

 51 

INTRODUCTION 52 

 The dispersal and movement of organisms is a fundamental process in population 53 

biology, yet may be difficult to characterize even in abundant species. Dispersal studies provide 54 

insight into the evolutionary ecology of focal species and inform conservation planning and 55 

management (e.g. Bowler & Benton 2005; Dussex et al. 2016; Hawkes 2009). Dispersal, defined 56 

here as the movement of individuals away from their natal sites, may be quantified directly 57 

through long-term capture-mark-recapture (CMR) studies and spatial monitoring, or indirectly 58 

through genetic inference methods.  59 

Both approaches to characterizing dispersal have limitations. Direct observations of 60 

dispersal are labor intensive and time consuming, resulting in reduced sample sizes that may 61 

underestimate typical dispersal rates and distances (e.g. Dussex et al. 2016), whereas genetic 62 

inference may be complicated through modeling assumptions and challenges in study design and 63 

sample collection (Broquet & Petit 2009). While few studies use both direct and indirect 64 

inference methods, the proliferation of genetic methods has led to a variety of analytical 65 

approaches for detecting dispersed individuals (Manel et al. 2005), categorize age and sex biases 66 

in dispersal patterns, and characterize dispersal distances (Broquet & Petit 2009; Goudet et al. 67 

2002). The processes and potential confounds of these methods are important to understand, as 68 

incorporating unrealistic assumptions or parameters within spatial models of dispersal may yield 69 

inaccurate results and directly impact management actions and efficacy (Bowler & Benton 2005; 70 

Hawkes 2009). However, for reclusive species the characterization of dispersal from field data 71 
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may be especially problematic due to low probabilities of recapture (e.g. Pimm et al. 2015); thus 72 

indirect methods present a compelling tool for characterizing dispersal patterns and distances. 73 

 Genetic methods are an increasingly common tool for elucidating species dispersal 74 

ecology. Recently, Moore et al (2014) used parentage analyses with pairwise distances between 75 

dyad members to characterize condition-dependent dispersal patterns in American black bears. 76 

Dussex et al (2016) found that assignment methods were generally inconsistent with CMR and 77 

parentage analyses inferences. Furthermore, they found that parentage analyses were the most 78 

powerful approach at fine scales for elucidating dispersal ecology of the greater white-toothed 79 

shrew. In addition to understanding dispersal, managers often need to determine the spatial 80 

extent over which landscape influences a focal species (Jackson & Fahrig 2014). Jackson and 81 

Fahrig (2014) found that the scale at which landscape structure affects species varies with the 82 

population outcome measured. The simulation study conducted by Jackson and Fahrig (2014) 83 

suggested that the scale of landscape structure for population persistence should be a lower 84 

bound for conservation as the scale needed for supporting genetic diversity is much larger. Taken 85 

together, statistical methods that help characterize the dispersal of species and the scale at which 86 

landscape affects genetic structure can provide vital information in the context of conservation. 87 

The island night lizard (Xantusia riversiana) was recently delisted from the Endangered 88 

Species Act and provides a unique opportunity to evaluate the utility of indirect methods to 89 

elucidate dispersal ecology. This species has been well studied, has few documented predators, 90 

and exists in discrete insular populations with high regional abundances of 3,200 individuals/ha 91 

in prime habitat. Even with long-term study, direct observations of individual movement suggest 92 

very small individual displacement distances of 3 to 6 m over multiple years (Fellers & Drost 93 
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1991; Mautz 1993). The dearth of information on island night lizard dispersal ecology is a direct 94 

obstacle to modelling metapopulation dynamics and potential threats due to climatic change.  95 

 We applied genetic inference methods to characterize dispersal ecology and infer natal 96 

dispersal distances in X. r. reticulata. We used genetic and capture data from our landscape 97 

genetics analysis (Rice & Clark 2016) to characterize dispersal ecology and space use on two of 98 

the three California Channel Islands this species is known to occupy. The goal of this study was 99 

to leverage existing data to assess different techniques for estimating dispersal from genetic data 100 

and compare these patterns to values derived from ecological studies. 101 

 102 

METHODS 103 

Study System and Data 104 

 Island night lizards are endemic to three California Channel Islands, two of which were 105 

evaluated by Rice and Clark (2016): Santa Barbara Island (SBI) and San Clemente Island (SCI). 106 

In brief, we captured 917 island night lizards across both islands utilizing a clustered sampling 107 

approach. Individuals were genotyped at 23 microsatellite loci (Rice et al 2016) and first-order 108 

relatives, defined as parent-offspring and full siblings, were identified using a consensus 109 

approach between three methods: COLONY vers 2.0.5.9 (Jones & Wang 2010), CERVUS vers 3.07 110 

(Kalinowsi et al 2007), and the DyadML estimator (Milligan 2003) as calculated in COANCESTRY 111 

vers 1.0.1.5 (Wang 2011). The current study draws on the capture data, individual genetic 112 

profiles, relatedness and relationship analyses of Rice and Clark (2016). 113 

Statistical Approaches 114 

 We used 4 approaches to quantify dispersal distances in the island night lizard: pairwise 115 

distances between inferred relationships in Rice and Clark (2016), estimation of Wright’s gene-116 

dispersal distance (Wright 1946), correlogram of Moran’s I (reviewed in Hardy & Vekemans 117 
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1999), and range estimates from variograms (reviewed in Wagner et al. 2005). We characterized 118 

sex-biases in dispersal using the approach of Goudet et al. (2002). We evaluated predictors of co-119 

capture among individuals with a permutation based logistic regression on distance matrices 120 

(LRDM, Prunier et al. 2015). Statistical analyses were carried out in R (R Core Team 2016) 121 

using the packages adegenet (Jombart 2008), hierfstat (Goudet & Jombart 2015), coin (Hothorn 122 

et al. 2006), phylin (Tarroso et al. 2015), and fmsb (Nakazawa 2015). We estimated Wright’s 123 

gene dispersal distance, σ, and Moran’s I using the program SPAGEDI vers 1.5 (Hardy & 124 

Vekemans 2002). 125 

Distances Between First-Order Relatives 126 

The pairwise distances between parents and offspring have been demonstrated to be a 127 

powerful tool in the characterization of dispersal ecology (e.g. Dussex et al. 2016; Moore et al. 128 

2014). We utilized the data of Rice and Clark (2016) to characterize distances between inferred 129 

relationship classes. First-order relatives consisted of individuals identified through the 130 

consensus method in Rice and Clark (2016) wherein dyads were considered first-order relatives 131 

when the inferred relationship was parent-offspring, full sibling, or the relatedness coefficient, 132 

DyadML, was greater than 0.35. Relationship classes of parent-offspring, full sibling, and half 133 

sibling were inferred by COLONY. Unrelated samples were all relationships not detected by 134 

COLONY.  135 

We used an approximate general independent test of distances between ordered 136 

relationship groups in the package coin to test whether pairwise geographic distances differed 137 

between relationship groups within and between islands. To correct for the presence of neonates 138 

captured in close proximity to adults, we present analyses based on the full data sets and data sets 139 
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consisting only of individuals greater than 40 mm snout-to-vent length (SVL) which equates to 140 

approximately 0.8 years old (Fellers & Drost 1991). 141 

Wright’s σ 142 

 Wright (1946) described an isolation by distance model in which the genetic 143 

neighborhood is a 2-dimensional area in which most mating events occur. This model can be 144 

used to estimate σ from a regression of the inter-individual genetic distance, Rousset’s a 145 

(Rousset 2000), on the logarithm of the inter-individual distance (Hardy et al. 2006; Rousset 146 

2000). We assumed drift-migration equilibrium and estimated σ, interpreted as mean natal 147 

dispersal distance, for each island across 3 distance classes and 5 density estimates (Table 1). 148 

Density estimates were based on the average effective population size per sample site as 149 

estimated by the linkage-disequilibrium method (Hill 1981) and confidence intervals from the 150 

program NEESTIMATOR vers 2.01 (Do et al. 2014). Additional estimates of density were derived 151 

from the census population size over the entire area of each island and the prime-habitat area 152 

listed in the United States Fish and Wildlife Service post-delistment monitoring plan (USFWS 153 

2014). 154 

Moran’s I 155 

 Moran’s I is a common measure of spatial autocorrelation of individual allele frequencies 156 

(Hardy & Vekemans 1999). Moran’s I was calculated for each pairwise distance bin, set at 157 

increments of 150 m for SBI and 500 m for SCI, and significance was tested with 1000 158 

permutations. The increments for distance bins were assigned based on the smallest distance at 159 

which all bins had observations. For each island, we produced a correlogram of Moran’s I at 160 

each distance class. The distance at which the value of Moran’s I became ≤ 0 was interpreted as 161 

the point at which individual allele frequencies were no longer spatially autocorrelated. We 162 
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interpreted this point as the average maximum dispersal distance of island night lizards (e.g. 163 

Yaegashi et al. 2014). 164 

Variograms 165 

Variograms assess the spatial autocorrelation of a variable by depicting the semivariance 166 

(defined as half the variance of all pairwise differences) against distance, and may identify the 167 

spatial scale of dispersal processes (Dutech et al. 2008; Le Corre et al 1998). The empirical data 168 

is used to generate a variogram which is then fit with a theoretical variogram with parameters for 169 

nugget (semivariance associated with non-spatial effects), sill (the value at which semivariance 170 

stabilizes), and range (the scale of effect or threshold of spatial independence) (Wagner et al. 171 

2005). There are few guidelines for determining the increment or maximum distances considered 172 

in empirical variograms; therefore, we followed the conventions of using the minimum lag 173 

distances which produced a minimum of 30 observations per bin and limited variograms to one-174 

half the maximum pairwise distance compared (Rossi et al. 1992). Lag distances differed 175 

between Moran’s I and variogram analyses, due to variogram constraint to a smaller maximum 176 

distance. 177 

We used the package phylin to produce empirical and theoretical variograms. For 178 

theoretical variograms, exponential models were fit to all data sets with the nugget set to the 179 

semivariance of the first distance bin and the remaining parameters estimated within the package. 180 

The variogram approach implemented in phylin requires pairwise distance variables; therefore 181 

we evaluated DPS, an inter-individual genetic distance calculated as 1 – proportion of shared 182 

alleles in adegenet, and a measure of (un)relatedness by subtracting DyadML values from 1, the 183 

theoretical maximum probability under identity by descent (Milligan 2003). 184 

Sex-Biased Dispersal 185 
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The methods of Goudet et al (2002) identify a permutation t-test approach to test for sex-186 

biases in dispersal based on four metrics derived from genetic data of each sex: mean and 187 

variance of the corrected assignment index (mAIc and vAIc, respectively), Fst, and Fis. 188 

However, these methods have been reported to perform well only in the presence of strong sex-189 

biased dispersal (Goudet et al. 2002). Statistical tests to detect sex bias were conducted in the 190 

package hierfstat with the metrics mAIc, vAIc, Fst, and Fis (Goudet et al. 2002). Significance for 191 

comparisons based on mAIc and vAIc were ran with 10,000 permutations whereas tests based on 192 

Fst and Fis were based on 1,000 permutations due to computational constraints. 193 

LRDM 194 

We used an extension of permutation-based LRDM (Prunier et al. 2015) to assess 195 

whether the probability of capturing individuals together could be attributed to the predictors of 196 

pairwise sex, sexual maturity, relatedness, or relationship. We used a binary response variable 197 

with success defined as being captured together. Predictors were pairwise distance matrices with 198 

sex and sexual maturity coded as categorical comparisons. 199 

Models were constructed from single variable up to full models; due to the highly 200 

collinear nature of DyadML and COLONY -inferred relationships (data not shown) these 201 

predictors were not included in the same models. Logistic regression models were constructed 202 

with the glm function and a binomial ‘logit’ link. Nagelkerke’s R2 (Prunier et al. 2015; Smith & 203 

McKenna 2013) was calculated for each model using the NagelkerkeR2 function in the package 204 

fmsb and served as the reference distribution statistic for determining significance by permuting 205 

the binary response matrix 10,000 times and recalculating Nagelkekre’s R2 for each permutation. 206 

Semi-standardized beta weights for the full models were calculated as in Prunier et al. (2015) 207 
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with the odd’s ratios calculated as the exponentiated semi-standardized beta weights following 208 

King (2007). 209 

 210 

RESULTS 211 

Mean pairwise distances (Table 2) were significantly different for each relationship group 212 

within both islands (p < 2.2 x 10-16). Mean pairwise distances for full siblings and parent 213 

offspring were not significantly different within either island (SBI p=0.1017, SCI p=0.7566); all 214 

other comparisons were significant at the p<0.005 level. When controlling for young of year 215 

(SVL < 40 mm), mean pairwise distances were significantly different between islands for first-216 

order relationship (p=0.0062) and parent-offspring dyads (p=0.0228). When young of year were 217 

included there were no significant differences. When controlling for young of year, mean parent-218 

offspring distance for SBI was 13.93 m and 40.68 m on SCI. 219 

The gene dispersal estimate, σ, ranged between approximately 7 m and 31 m for SBI and 220 

approximately 7 m to 23 m for SCI. Estimates of σ were sensitive to density estimates. However, 221 

estimates of σ were consistent across different distance classes when density was constant and 222 

robust to the inclusion of young of year (Table 1). Constraining density estimates to average 223 

effective density (Ne/km2) across sample locations resulted in estimates of 16 m for SBI and 19 224 

m for SCI for full data sets and 16 m for SBI and 18 m for SCI when young of year were 225 

removed. 226 

Spatial autocorrelation on SBI, as represented by Moran I, was significantly positive 227 

(p≤0.005) at distances less than 375 m at which Moran’s I became negative but not significant 228 

(Figure 1). On SCI, spatial autocorrelation was significantly positive (p≤0.001) up to distances of 229 

1,395 m and had standard errors overlapping 0 at a distance of 1,813 m (Figure 2). Variograms 230 

based on relatedness had higher support, as indicated by R2, than those based on DPS for both 231 
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islands (Figures 3,4). On SBI, the range for the DyadML variogram was approximately 102 m 232 

whereas SCI had a range estimate of 955 m. The genetic distance measure, DPS, resulted in 233 

greater range estimates on SBI at 169 m and SCI at 1424 m.  234 

We found no statistical support for sex-biased dispersal on either island. We utilized 235 

LRDM in both exploratory and predictive contexts. Exploratory analyses revealed that 236 

relatedness and relationship were the only significant predictors of co-capture when controlling 237 

for young of year on each island (Table 3). Pairs of individuals were 1.067 times more likely to 238 

be captured at the same point with a one standard deviation change in DyadML relatedness 239 

estimates on SBI and 1.031 times more likely on SCI. To examine the predictive ability of these 240 

patterns we utilized a traditional logistic regression with SBI as the training dataset and SCI as 241 

the test dataset. This predictive analysis DyadML and COLONY -inferred relationships had high 242 

accuracy (0.9996) and low misclassification (0.0004) rates when predicting capture success 243 

trained on SBI and tested on SCI.  244 

 245 

DISCUSSION 246 

 We found inferred parent-offspring distances were between 2 and 13 times greater than 247 

the individual displacement distances of long-term CMR studies of 3 to 6 m (Fellers & Drost 248 

1991; Mautz 1993). We provide the first quantitative estimates of dispersal distances in the 249 

species (14 m on SBI and 41 m on SCI) and found spatial autocorrelation of allele frequencies, 250 

genetic distance, and relatedness at previously unrecorded scales. The LRDM approach of 251 

Prunier et al. (2015) resulted in relatedness and relationships being the strongest predictors of 252 

island night lizard co-captures, suggesting a social structure with kin-affiliative behavior.  253 

Distances Between First-Order Relatives 254 
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 Fellers and Drost (1991) found 12 juveniles on SBI 30 to 40 m from prime habitat over a 255 

6 year study and surmised these represented juvenile dispersal, whereas individual recapture data 256 

suggested average displacements of 5.6 m. While there is no indication of juvenile dispersal 257 

distances for SCI, Mautz (1993) found that individual relocations to be only an average of 3 m 258 

apart, with the longest recorded displacement at 18.5 m. Our findings provide the first 259 

quantitative estimates of juvenile dispersal distances, although the distance between parent-260 

offspring pairs is approximately 3 times shorter than the estimates of Fellers and Drost (1991). 261 

However, our estimates of dispersal distance are approximately 2.5 times greater than the 262 

individual movement distances on SBI and 13 times greater than those on SCI.  263 

Moore et al. (2014) and Dussex et al. (2016) both found parentage analyses more 264 

accurate in describing dispersal ecology than alternate genetic methods. Our results support the 265 

utility of parentage and kinship analyses in characterizing natal movement, especially when 266 

focused on parent-offspring pairs. Estimation of first-order relationships as described in Rice and 267 

Clark (2016) and their pairwise differences may be informative in the characterization of 268 

dispersal when few parent-offspring comparisons are available. Comparisons of mean pairwise 269 

distance for COLONY -inferred relationships were not significantly different between parent-270 

offspring or full sibling groups for either island. The mean distances inferred for first-order 271 

relationships differed between islands, potentially due to differences in island scale and 272 

population densities. It is notable that the maximum distance between first-order relatives is very 273 

close (SBI=158.63 m, SCI=156.75 m) between both islands, although these maximums belong to 274 

different relationship groups (full sibling and parent-offspring respectively) for each island. 275 

Gene Dispersal Distances 276 
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Estimates of gene dispersal were also remarkably close between each island at the same 277 

lag distances and density estimate methods. Comparing these two metrics, distances from 278 

inferred parentage and sigma estimated distances were within 3 m on SBI and SCI when 279 

evaluating distances with young of year included, and remained consistent when young of year 280 

were excluded. The discrepancy between parent-offspring distance and σ for SCI when 281 

controlling for young of year may be attributable to changes in sample size and analytical 282 

method. Future research should consider simulation-based approaches to evaluate the accuracy 283 

of these metrics compared to the known simulation parameters; however, in the context of 284 

estimating parameters for natural populations characterized by an isolation by distance pattern, 285 

parentage analyses and σ both appear to yield consistent results. 286 

Spatial Autocorrelation 287 

Spatial autocorrelation analyses, such as Moran’s I, have been used to understand the 288 

scale of autocorrelation for individual allele frequencies and interpret this scale as a measure of 289 

dispersal (e.g. Epperson & Li 1997; Yaegashi et al. 2014). The interpretation of the 290 

correlogram’s x-intercept as average maximum dispersal distance is uncommon in the literature, 291 

and generally noted as the scale at which allele frequencies are become spatially independent. 292 

This method returned notable differences between islands, with SBI reaching this point at 375 m 293 

and SCI at 1,813 m. These scales are much larger than the displacement estimates from long-294 

term field studies and are also much larger than our dispersal estimates from parentage analyses 295 

and σ. Thus, we recommend that studies focused on estimating dispersal distances should favor 296 

parentage analyses or gene dispersal distances over spatial autocorrelation analyses.  297 

Variograms 298 
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Estimates using variograms were also incongruent with parentage analyses, but provided 299 

smaller estimates of the scale of spatial autocorrelation than Moran’s I. The use of variograms to 300 

estimate dispersal has not been formally studied. These estimates could denote the scale of 301 

spatial genetic structure (Wagner et al. 2005), connectivity among localized groups (Le Corre et 302 

al. 1998), or the “patch size” of the process evaluated (Legendre & Fortin 1989). Because we 303 

generated distance measures from the proportion of shared alleles and relatedness our estimates 304 

may denote the “patch size” of relatedness, or may indicate familial territories. More meaningful 305 

biological interpretation of these field studies using long-term telemetry paired with parentage 306 

analyses would provide data on individual movement necessary for more thorough interpretation 307 

of genetic patterns. However, simulation-based approaches may offer a more tractable solution to 308 

determine whether range estimates produced from spatial autocorrelation and variogram analyses 309 

are congruent with known or simulated dispersal patterns. 310 

LRDM 311 

 The results of LRDM indicate that pairwise relatedness and relationships are the best 312 

predictors of capturing individuals together. Due to the late spring and summer sampling on SBI 313 

the removal of young of year individuals had little effect on the pseudo-R2 or odds ratio. 314 

However, extensive sampling on SCI during the autumn to capture neonates and associated 315 

adults impacted both the pseudo-R2 and odds ratio for relatedness, but this remained a significant 316 

predictor even after removal of young of year. The continued association of relatives after the ca. 317 

0.8 year mark suggests a level of previously undocumented sociality within the system, which 318 

may explain the strong signals of isolation by distance reported by Rice and Clark (2016).   319 

Cryptic sociality and kin affiliation has been noted for the sister species (X. vagilis) on 320 

the mainland, in which fostering was demonstrated to effect philopatry and kin-affiliative 321 
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behaviors through delayed dispersal (Davis 2011; Davis et al. 2010). The studies of Davis et al. 322 

(2010) highlight several similarities shared between the two species, including dense 323 

populations, low dispersal, and small home range sizes. Thus, our findings suggest island night 324 

lizards may also form kin groups through delayed juvenile dispersal and prolonged parent-325 

offspring interactions as noted by Davis et al. (2010). Some reclusive reptiles that are social also 326 

exhibit parental care, such as attendance of neonates in egg-guarding lizards (e.g. Huang 2006; 327 

Mateo & Cuadrado 2012) or maternal attendance of pre-ecdysis neonates in pit-vipers (e.g. 328 

Greene et al. 2002; Hoss et al. 2015). Given the frequent and prolonged association between 329 

adults and neonates, it is possible X. riversiana also exhibits parental care. Although predators on 330 

both islands are limited, attending parents could protect neonates from intra-specific aggression. 331 

Unsurprisingly, samples collected in autumn most frequently included neonates and associated 332 

adults as parturition occurs seasonally (Fellers & Drost 1991; Mautz 1993). However, the 333 

association of related island night lizards extending beyond this parturition period warrant further 334 

investigation into the extent of their social structure and affiliative behaviors.  335 

Conservation Implications 336 

 Our characterization of dispersal ecology of the island night lizard suggests scale 337 

dependent effects and supports the independent management of each island. On SBI, we found 338 

parent-offspring distances of approximately 14 m and spatial autocorrelation up to 375 m 339 

whereas dispersal distances on SCI were 41 m with spatial autocorrelation up to 1,813 m. These 340 

distance estimates will be useful for the management and post-delistment monitoring of 341 

populations on both islands (USFWS 2014). We suggest management actions should maintain 342 

population sizes and meta-population connectivity, and that the spatial scales derived from our 343 

spatial autocorrelation analyses be used to guide those actions. On SBI, a scale of 100 m to 375 344 
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m should be used as a focus for remediation efforts, such as direct-line connectivity between 345 

habitat patches. On SCI, management should focus at the scales of 1-2 km in efforts to connect 346 

remote patches through corridors of prime habitat, as opposed to replanting isolated or remote 347 

patches. Furthermore, these findings can inform the design and mitigation of increased 348 

infrastructure by identifying patches that would become disconnected at these scales under 349 

increased development. 350 

Conclusions 351 

 Dispersal is a key factor in the life history of a species, and a key parameter affecting 352 

conservation and management decisions (Bowler & Benton 2005; Hawkes 2009). Although 353 

dispersal can be directly observed, it is often labor and time intensive. Indirect inference of 354 

dispersal based on genetic evidence is gaining in application but lacks a framework for consistent 355 

and reliable inference. Studies utilizing both CMR and genetic inference methods have found 356 

that CMR methods generally underestimate dispersal distances, while assignment methods on 357 

genetic data can often overestimate dispersal and conflict with direct observations (e.g. Dussex et 358 

al. 2016). The application of genetic inference methods to estimate dispersal is likely to be a 359 

valuable tool for conservation management in understanding the scale of dispersal processes and 360 

the potential effects of management actions on connectivity. However, we have demonstrated 361 

that different inference methods may yield very different results which may lead to incorrect 362 

inferences and misspecification of parameters, rendering management actions ineffectual 363 

(Bowler & Benton 2005; Jackson & Fahrig 2014). Recent studies found parentage analyses to be 364 

the most accurate method for characterizing dispersal ecology, and our analyses of the island 365 

night lizard support this usage. Furthermore, our findings suggest that natal dispersal parameters 366 

should not be derived from spatial autocorrelation or variogram analyses as the parameters 367 
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inferred are highly variable and likely overestimate dispersal in the context of individual 368 

movement. However, these approaches may yield insight into the scale of fine-scale patterns 369 

relevant to conservation and suggest a minimum scale below which individuals are likely to be 370 

related and thus management actions may be confounded (e.g. Jackson & Fahrig 2014).  371 

 372 
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TABLES 

Table 1: Isolation by Distance Model Results. Results from the program SPAGEDI for estimation of Wright’s σ. Islands were 

estimated independently (SBI=Santa Barbara Island, SCI=San Clemente Island). Density (De) was estimated as individuals/km2 by 

considering the census population size (Nc) and island area, average for effective density across sampling locations (Ne) with 95% 

confidence intervals (Ne-LCI=lower, Ne-UCI=upper), and census population size over prime habitat area (Ncp). Lag distance refers to 

the increment of distance bins (m). SPAGEDI estimated the number of breeders (Nb) and σ (m); standard errors in parentheses for each 

parameter were estimated by jackknifing over loci. Two data sets were ran for each island, the full data set (All Individuals) and a data 

set in which the young of year were removed (>40 SVL Individuals). 

 All Individuals >40 SVL Individuals 
Island Density Method De Lag Nb σ Nb σ 
SBI Nc 6795.37 25 79.52 (7.69) 30.5 (1.5) 79.44 (7.70) 30.5 (1.5) 

Ncp 167619.00 25 96.33 (48.17) 6.8 (1.7) 104.63 (44.95) 7.0 (1.5) 
Ne – LCI 19157.91 25 77.22 (14.06) 17.9 (1.6) 79.90 (12.04) 18.2 (1.4) 
Ne – UCI 33679.07 25 81.58 (12.24) 13.9 (1.0) 84.23 (16.04) 14.1 (1.3) 
Ne 24291.60 25 75.58 (11.87) 15.7 (1.2) 78.57 (16.44) 16.0 (1.7) 
Ne 24291.60 50 75.58 (11.87) 15.7 (1.2) 78.57 (16.44) 16.0 (1.7) 
Ne 24291.60 200 75.58 (11.87) 15.7 (1.2) 78.57 (16.44) 16.0 (1.7) 

SCI 
 

Nc 141490.60 50 151.03 (26.84) 9.2 (0.8) 142.58 (17.30) 9.0 (0.5) 
Ncp 267991.90 50 163.56 (37.09) 7.0 (0.8) 140.68 (23.15) 6.5 (0.5) 
Ne – LCI 23016.35 50 159.12 (54.55) 23.5 (4.0) 140.85 (61.86) 22.1 (4.8) 
Ne – UCI 182711.40 50 159.00 (22.51) 8.3 (0.6) 152.20 (26.53) 8.1 (0.7) 
Ne 34631.00 50 160.18 (44.80) 19.2 (2.7) 133.94 (44.96) 17.5 (2.9) 
Ne 34631.00 100 160.18 (44.80) 19.2 (2.7) 133.94 (44.96) 17.5 (2.9) 
Ne 34631.00 200  160.18 (44.80) 19.2 (2.7) 133.94 (44.96) 17.5 (2.9) 
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Table 2: Pairwise Distances among Relatives. Islands are indicated as Santa Barbara Island (SBI) or San Clemente Island (SCI). 

Relationship were first-order (FO, based on Rice and Clark (2016)), COLONY inferred relationships of parent-offspring (PO), full 

sibling (FS), half sibling (HS) or unrelated (U). For each relationship, the number of pairwise comparisons (N), mean (Mean), 

standard deviation (Sd), median (Median), and maximum (Max) distance values (m). The P column is the approximated p-value 

comparing the same Relationships between islands. The lower half of the table displays values for each island with young of year 

samples (>40mm SVL) removed. 

 SBI SCI  
Relationship N Mean Sd Median Max N Mean Sd Median Max P 
FO 44 16.55 25.25 10.14 158.63 74 21.82 36.61 2.91 156.75 0.4109 
 PO 20 13.93 13.24 9.50 42.49 52 20.64 40.44 1.00 156.75 0.4815 
 FS 14 24.90 39.70 12.93 158.63 33 22.42 30.00 4.55 95.29 0.8244 
HS 418 243.25 404.76 38.86 1862.69 686 3480.46 5961.83 132.95 26465.22 <2.2e-16 
U 48064 831.05 502.81 778.79 2368.02 171220 11285.37 8175.89 9670.69 28258.99  

 SBI > 40 mm SVL SCI > 40 mm SVL  
Relationship N Mean Sd Median Max N Mean Sd Median Max P 
FO 44 16.55 25.25 10.14 158.63 43 37.18 41.86 16.90 156.75 0.0062 
 PO 20 13.93 13.24 9.50 42.49 26 40.68 49.99 12.79 156.75 0.0228 
 FS 14 24.90 39.70 12.93 158.63 19 38.01 31.51 25.61 95.29 0.3005 
HS 391 236.72 402.38 37.31 1862.69 613 3447.68 5994.7 136.08 26465.22 <2.2e-16 
U 45631 836.88 502.73 783.46 2368.02 141120 11193.78 7949.20 9667.75 28258.99  
 

  

.
C

C
-B

Y
-N

D
 4.0 International license

a
certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available under 

T
he copyright holder for this preprint (w

hich w
as not

this version posted A
pril 8, 2017. 

; 
https://doi.org/10.1101/125666

doi: 
bioR

xiv preprint 

https://doi.org/10.1101/125666
http://creativecommons.org/licenses/by-nd/4.0/


25 

 

Table 3: Logistic Regression on Distance Matrices Results. LRDM was conducted separately for each island (SBI=Santa Barbara 

Island, SCI=San Clemente Island) and for each data set with all individuals (All Samples) or controlled by removal of young of year 

(>40mm SVL). LRDM was conducted on each predictor variable (Model) independently to determine significance (p-value) through 

permutation and model support by Nagerkerke’s R2 (R2). Odds-ratios (Odds-ratio) were computed from 3-variable models in which 

either the DyadML estimator (Dyad) or COLONY-inferred relationships were used (COLONY) due to the collinear nature of relatedness 

and relationship. Since the predictors of sex and maturity were used in 2 3-variable models both odds ratios are listed with the forward 

slash separating the DyadML model from the COLONY relationship model. The predictors of sex and maturity were categorical 

matches between male and female (sex) and sexually mature and immature individuals (Maturity). 

 SBI SCI 
 All Samples >40mm SVL All Samples >40mm SVL 

Model 
p-

value 
Odds-
ratio R2 

p-
value 

Odds-
ratio R2 

p-
value 

Odds-
ratio R2 

p-
value 

Odds-
ratio R2 

Dyad 0.0001 1.0644 0.112 0.0001 1.0659 0.112 0.0001 1.4373 0.339 0.0001 1.0307 0.081 
COLONY 0.0001 1.7004 0.089 0.0001 1.7316 0.089 0.0001 0.9969 0.392 0.0001 0.9990 0.073 

Sex 0.6845 
1.3120/ 
2.4283 

0.008 0.7005 
1.3265/ 
2.4386 

0.008 
0.0001 1.0006/ 

1.0003 
0.018 0.3911 

1.0003/ 
1.0002 

0.005 

Maturity 0.9356 
1.3259/ 
1.2964 

0.001 0.8512 
1.3409/ 
1.3139 

0.001 0.0033 
1.0005/ 
0.9799 

0.009 0.6900 
1.0003/ 
0.9959 

0.001 
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FIGURES 

 

Figure 1: Correlogram of Moran’s I on Santa Barbara Island. Moran’s I was calculated for each distance bin and significance 

assess through permutation. Points represent the value of Moran’s I for the mean distance within each 150 m distance interval. Bars 

indicate standard error around the mean while each point color indicates significance of correlation within each point.   
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Figure 2: Correlogram of Moran’s I on San Clemente Island. Moran’s I was calculated for each distance bin and significance 

assess through permutation. Points represent the value of Moran’s I for the mean distance within each 500 m distance interval. Bars 

indicate standard error around the mean while each point color indicates significance of correlation within each point.   
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Figure 3: Variogram Analyses for Santa Barbara Island. Empirical variograms (circles) were generated from two distance 

measures: left) 1-DyadML relatedness estimates, right) Inter-individual genetic distance DPS. Circle size denotes the number of 

pairwise comparisons within each distance class. Maximum distance evaluated was 1,100 m with a lag distance of 7 m for both 

variables. Theoretical variograms (red line) were fit as fixed-nugget models. Model R2 values were used as a measure of model 

support and the point of spatial independence is denoted by the range. 
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Figure 4: Variogram Analyses for San Clemente Island. Empirical variograms (circles) were generated from two distance 

measures: left) 1-DyadML relatedness estimates, right) Inter-individual genetic distance DPS. Circle size denotes the number of 

pairwise comparisons within each distance class. Maximum distance evaluated was 14,000 m with a lag distance of 290 m for both 

variables. Theoretical variograms (red line) were fit as fixed-nugget models. Model R2 values were used as a measure of model 

support and the point of spatial independence is denoted by the range. 
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SUPPLEMENTALS: RAW DATA GRAPHS 
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