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Abstract

Estimates of functional connectivity using resting state functional Magnetic Resonance Imaging (rs-fMRI)

are acutely sensitive to artifacts and large scale nuisance variation. As a result much effort is dedicated

to preprocessing rs-fMRI data and using diagnostic measure to identify bad scans. One such diagnostic

measure is DVARS, the spatial standard deviation of the data after temporal differencing. A limitation

of DVARS however is the lack of concrete interpretation of the absolute values of DVARS, and finding a

threshold to distinguish bad scans from good. In this work we describe a variance decomposition of the

entire 4D dataset that shows DVARS to be just one of three sources of variation we refer to as D-var (closely

linked to DVARS), S-var and E-var. D-var and S-var partition the average variance between adjacent time

points, while E-var accounts for edge effects, and each can be used to make spatial and temporal summary

diagnostic measures. Extending the partitioning to global (and non-global) signal leads to a rs-fMRI DSE

ANOVA table, which decomposes the total and global variance into fast (D-var), slow (S-var) and edge

(E-var) components. We find expected values for each variance component under nominal models, showing

how D-var (and thus DVARS) scales with overall variance and is diminished by temporal autocorrelation.

Finally we propose a sampling distribution for squared DVARS (a multiple of D-var) and robust methods

to estimate this null model, allowing computations of DVARS p-values. We propose that these diagnostic

time series, images, p-values and ANOVA table will provide a succinct summary of the quality of a rs-fMRI

dataset that will support comparisons of datasets over preprocessing steps and between subjects.
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1. Introduction

Functional connectivity obtained with resting state functional magnetic resonance imaging (rs-fMRI)

is typically computed by correlation coefficients between different brain regions, or with a multivariate

decomposition like Independent Components Analysis (Cole et al., 2010). Both approaches can be corrupted
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by artifacts due to head motion or physiological effects, and much effort is dedicated to preprocessing rs-fMRI5

data and using diagnostic measure to identify bad scans.

Smyser et al. (2011) proposed and Power et al. (2012) popularized a measure to characterize the quality

of fMRI data, an image-wide summary that produces a time series that can detect problem scans. They

called their measure DVARS, defined as the spatial standard deviation of successive difference images. In

fact, DVARS can be linked to old statistical methods developed to estimate noise variance in the presence10

of drift (see Appendix A for DVARS history).

While DVARS appears to perform well at the task of detecting bad scans — bad pairs of scans — it does

not have any absolute units nor a reference null distribution from which to obtain p-values. In particular,

the typical “good” values of DVARS varies over sites and protocols. The purpose of this work is to provide

a formal description of DVARS as part of a variance decomposition of all data variance, present a more15

interpretable variants of DVARS, and compute DVARS p-values for a null hypothesis of homogeneity. By

combining information from p-values and meaningful diagnostic plots, bad scans will be able to be more

confidently identified and actioned.

The remainder of this work is organized as follows. We first describe the variance decomposition for the

4D data and how this relates to traditional DVARS, and other new diagnostic measures it suggests. We then20

describe a sampling distribution for DVARS under the null hypothesis, and mechanisms for estimating the

parameters of this null distribution. We conduct some basic simulations to validate this sampling distribution

and demonstrate the method on representative datasets.

2. Theory

Here we state our results concisely relegating full derivations to Appendices.25

2.1. Notation

For T time-points and I voxels, let the original raw rs-fMRI data at voxel i and t be Y Rit . Denote the

mean at voxel i as MR
i = 1

T

∑
t Y

R
it , and by mR some type of typical mean value (e.g. mean or median of

the mean image {MR
i }). We take as our starting point for all calculations the centered and scaled data:

Yit =
Y Rit −MR

i

mR
100. (1)

The scaling ensures that typical brain values are around 100 and are comparable across datasets, and

centering simplifies variance calculations.

2.2. DSE Variance Decomposition

Let the total (“all”) variance at scan t be

At =
1

I

I∑

i=1

Y 2
it (2)
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and define two variance terms, one for fast (“differenced”) variance

Dt =
1

I

I∑

i=1

(
Yit − Yi,t+1

2

)2

, (3)

the half difference between time t and t+ 1 at each voxel, squared and averaged over space, and one for slow

variance

St =
1

I

I∑

i=1

(
Yit + Yi,t+1

2

)2

, (4)

the average between t and t+ 1 at each voxel, squared and averaged over space.30

We then have the following decomposition of the average variance at time points t and t + 1, At,t+1 =

(At +At+1)/2

At,t+1 = Dt + St, (5)

for t = 1, . . . , T −1. This has a particularly intuitive graphical interpretation: If we plot Dt and St at t+1/2,

they sum to the midpoint between variances At and At+1 found at t+ 1/2 (see Figure 1). Noting that the

usual DVARS measure is

DVARSt = 2
√
Dt, (6)

this shows that DVARS has a concrete interpretation, with DVARS2
t /4 being the “fast” variance component

in the average variance at t and t+ 1.

This also leads to a decomposition of the total average variance. If we define the temporal averages

A =
1

T

T∑

t=1

At,

D =
1

T

T−1∑

t=1

Dt,

S =
1

T

T−1∑

t=1

St,

(7)

and lastly an “edge” variance term

E =
1

T
(E1 + ET ) ,

Et =
1

I

I∑

i=1

Y 2
it/2,

(8)

we have the following “DSE” decomposition

A = D + S + E. (9)

That is, the total variance (“A-var”) in the 4D dataset is the sum of variance terms attributable to fast

variance (“D-var”), slow variance (“S-var”) and edge variance (“E-var”).
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Figure 1: Illustration of the DSE variance decomposition, where A-var (green) is the total variance at each scan, D-var (blue) is

the variance of the half difference of adjacent scans, S-var (yellow) is the variance of the average of adjacent scans, and E-var is

the edge variance at times 1 and T . D-var and S-var for index t (Dt and St) sums to A-var between t and t+1 ((At +At+1)/2).

Note how the S-var and D-var time series allow insight to the behavior of the total variance: The excursion of A-var around

t = 2 and t = 3 arise from fast variance while the rise for t ≥ 6 is due to slow variance. For perfectly clean, i.e. independent

data, D-var and S-var will converge and each explain approximately half of A-var.
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We can further extend this decomposition into global and non-global variance at time point t

At = AGt +ANt, (10)

where

AGt =
1

I

I∑

i=1

Ȳ 2
t ,

ANt =
1

I

I∑

i=1

(
Yit − Ȳt

)2
,

(11)

and Ȳt = 1
I

∑I
i=1 Yit is the global intensity for time t. Creating temporal averages as in Eqn. (7), this likewise35

extends to a decomposition of global variance into fast, slow and edge components

AG = DG + SG + EG. (12)

Table 1 provide the full list of values that make up this decomposition, and indicate how they can be plotted.

This framework also leads to diagnostics in image form. Just as a variance image with voxels Ai =
∑
t Yit/T is useful, so could a D-var image, Di =

∑
t(Yit − Yi,t+1)2/(4T ) and a S-var image, Si =

∑
t(Yit +

Yi,t+1)2/(4T ) offer more information on the noise structure.40

2.3. DSE ANOVA Table & Reference Values

This DSE decomposition can be usefully assembled into a variant of an Analysis of Variance (ANOVA)

table that summaries contributions from fast, slow, end, global and non-global components to the total

variance in a 4D dataset. Traditionally ANOVA tables use sum-of-squares to partition variance, but we

instead focus on root mean squared (RMS) or mean squared (MS) values to leverage intuition on typical45

noise standard deviation (or variance) of resting state fMRI data. Table 2 shows the values that make up

what we call the DSE ANOVA table.

To understand this decomposition we define reference values for “good”, artifact-free data using a null

model. In Appendix C we detail the most arbitrary version of this model, based only on time-constant spatial

covariance, ΣS , and find expected values for each element of the DSE ANOVA table. More interpretable50

expected values, however, come from a slightly restrictive model with time-space-separable correlation. This

separable noise model assumes data with arbitrary spatial covariance ΣS but a common temporal autocor-

relation for all voxels with a constant lag-1 autocorrelation ρ. While this is less restrictive than an AR(1)

model, in real data temporal autocorrelation varies widely over space, and we only consider this as a tractable

working model to understand the DSE ANOVA table. (Our null model for DVARS p-values, below, is more55

realistic). We also consider the idealized model of “perfect” data with completely independent and identically

distributed (IID) 4D noise.
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Table 3 shows three sets of reference values for the DSE ANOVA table. (Going forward we drop the

third row of the DSE ANOVA table showing non-global variance, since in practice the global explains so

little variance that the first and third rows are essentially the same). The first pair of rows shows the60

expected value of the MS of each component for the separable noise model. This shows that all variance

components scale with the average voxel-wise variance (tr(ΣS)/I, where tr(·) is the trace), and as temporal

autocorrelation increases D-var shrinks and S-var grows. The global components are seen to depend on

1> ΣS 1 /I, the average summed spatial covariance, where 1 is a vector of ones. This indicates, intuitively,

that the greater the spatial structure in the data the more variance that is explained by the global.65

The next pair of rows in Table 3 show the expected MS values normalized to the expected A-var term.

The A-var-normalized D-var and S-var diverge from 1/2 exactly depending on ρ, and normalized E-var is

1/T . The global terms here depend on the balance between average spatial covariance and average variance,

1>ΣS 1 / tr(ΣS).

Finally, the final pair of rows shows expected values under the most restrictive case of IID noise. Here70

D-var and S-var are exactly equal, about 1/2, and we see that the global variance explained should be tiny,

1/I. This suggests that normalized global variance relative to the nominal IID value, i.e. (AG/A) /(1/I),

is an estimate of 1>ΣS 1 / tr(ΣS), a unitless index of the strength of spatial structure in the data. (This

particular result doesn’t depend on the separable model; see Appendix C).

These reference models provide a means to provide DSE values in three useful forms. For each A-var,75

D-var, S-var and E-var term we present:

1. RMS, the square root of the mean squared variance quantity,

2. %A-var, a variance as a percentage of total variance A, and

3. Relative IID, A-var-normalized values in ratio to nominal IID values.

For example, for A-var we have (1) RMS is
√
A, (2) %A-var is 100% and (3) relative IID is 1.0. For D-var,

(1) RMS is
√
D, (2) %A-var is D/A× 100 and (3) relative IID is

D

A

/
1

2

T − 1

T
. (13)

For DG-var, (2) RMS is
√
DG, (2) %A-var is DG/A× 100 and (3) relative IID is

DG

A

/
1

2

1

I

T − 1

T
, (14)

noting that we normalize to A and not AG.80

2.4. Inference for DVARS

We seek a significance test for the null hypothesis

H0 : E(DVARS2
t ) = µ0, (15)
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where µ0 is the mean under artifact-free conditions. Note this is equivalent to a null of homogeneity for

DVARSt or Dt. If we further assume that the null data are normally distributed, we can create a χ2 test

statistic

X(DVARSt) =
2µ̂0

σ̂2
0

DVARS2
t , (16)

approximately following a χ2
ν distribution with ν = 2µ̂2

0/σ̂
2
0 degrees of freedom, where σ2

0 is the null variance

(see Appendix D).

What remains is finding estimates of µ0 and σ2
0 . The null mean of DVARSt is the average differenced

data variance,

µ0 =
1

I

∑

i

σ2
Di, (17)

where σ2
Di is the variance of the differenced time series at voxel i. To avoid sensitivity to outliers, we robustly

estimate each σ2
Di via the interquartile range (IQR) of the differenced data,

σ̂2
Di =

IQR ({Yit − Yi,t+1}t=1,...,T−1)

IQR0

, (18)

where IQR0 = (Φ−1(0.75)− Φ−1(0.25)) ≈ 1.349 is the IQR of a standard normal, and Φ−1(·) is the inverse

cumulative distribution function of the standard normal. Below we evaluate alternate estimates of µ0,85

including the median of {σ̂2
Di} and directly as the median of {DVARS2

t}.

The variance of DVARS2
t unfortunately depends on the full spatial covariance, and thus we’re left to

robustly estimating sample variance of {DVARS2
t} directly. We consider several estimates based on IQR and

evaluate each with simulations below. Since the IQR-to-standard deviation depends on a normality assump-

tion, and we consider various power transformations before IQR-based variance estimation (see Appendix E

for details). We also consider a “half IQR” estimate of variance

hIQR
(
{DVARS2

t}t
)
/hIQR0, (19)

where hIQR is the difference between the median and first quartile, and hIQR0 = IQR0 /2. This provide

additional robustness when more than just the upper quartile of DVARS2
t values are corrupted.

Finally, the X(DVARSt) values can be converted to p-values P (DVARSt) with reference to a χ2
ν distri-

bution, and subsequently converted into equivalent Z scores,

Z(DVARSt) = Φ−1(1− P(DVARSt)). (20)

Note that for extremely large values of DVARSt numerical underflow will result in p-values of zero; in such

cases an approximate Z score can be obtained directly as Z(DVARSt) = (DVARS2
t −µ0)/σ0.90

Also note that under complete spatial independence the degrees of freedom will equal the number of

voxels I, and so ν can be thought of an effective number of spatial elements; large scale structure will

decrease ν while larger ν should be found with cleaner data. Though we caution that estimates of ν will be

very sensitive to the particular estimators used for µ0 and σ2
0 .
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2.5. Standardized DVARS95

We propose that our D-var time series, Dt = DVARS2
t /4, is a more interpretable variant of DVARS,

as it represents a particular “fast” portion of noise variance, and when added to “slow” variance St gives

the average variance At,t+1. However, there are various transformations that may be considered better for

plotting or reporting (see Table 4 and Figure 4).

In addition to the original DVARSt and our Dt, we might also consider the percent D-var variance

explained at a time point. Eqn. (5) could be used to find, in sums-of-squares units, the percent variance

attributable to D-var at t, t+ 1:
I ×Dt

I ×At,t+1
100. (21)

However, problem scans can inflate At and could mask problem time points. Hence we instead propose to

replace At,t+1 with its average A and compute percent D-var as

%D-var :
Dt

A
100. (22)

This has the merit of being interpretable across datasets, regardless of total variance. As shown in Table 3,100

IID data have D around half of A, i.e. yield %D-var of 50%.

While %D-var can be more interpretable than unnormalized D-var, its overall mean is still influenced

by the temporal autocorrelation. For example, if %D-var is overall around 30% and at one point there is a

spike up to 50%, what is interesting is the 20 percentage point change, not 30% or 50% individually. Hence

another useful alternative is change in percent D-var

∆%D-var :
Dt − µ0/4

A
100, (23)

interpretable as the excess fast variance as a percentage of average variance.

We previously have proposed scaling DVARS relative to its null mean (Nichols, 2013),

RDVARS DVARSt /
√
µ0. (24)

(While we had called this “Standardized DVARS”, a better label is “Relative DVARS.”) This gives a positive

quantity that is near 1 for good scans and substantially larger than one for bad ones. However, there is no

special interpretation “how large” as the units (multiples of µ
−1/2
0 ) are arbitrary; as noted above, DVARS105

falls with increased temporal correlation, making the comparison of these values between datasets difficult.

Finally the Z-score Z(DVARSt) or − log10 P (DVARSt) may be useful summaries of evidence for anoma-

lies.
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3. Methods

3.1. Simulations110

To validate our null distribution and p-values for DVARS we simulate 4D data as completely independent

4D normally distributed noise

Yit ∼ N (0, σ2
i ), i = 1, . . . , I, t = 1, . . . , T, (25)

for σi drawn uniformly between σmin and σmax for each i, I = 90, 000.

We manipulate two aspects in our simulations, time series length and heterogeneity of variance over

voxels. We consider T of 100, 200, 600 and 1200 data-points, reflecting typical lengths as well as those in

the Human Connectome Project. We use three variance scenarios, homogeneous with σmin = σmax = 200,

low heterogeneity σmin = 200 and σmax = 250, and high heterogeneity σmin = 200 and σmax = 500.115

We consider four estimates of µ0. First is the very non-robust sample mean of {DVARS2
t}, denoted

µ̂DVARS
0 , considered for comparative purposes. The next two are based on the IQR-based estimate of voxel-

wise variance of the differenced data, Eqn. (18), considering the mean µ̂D0 and median µ̃D0 of the robust

variances σ̂2
Di. Finally we also consider the empirical median of {DVARS2

t}, µ̃DVARS
0 . For σ2

0 all estimates

were based directly on {DVARS2
t}; for comparative purposes we considered the (non-robust) sample variance120

of {DVARS2
t}, σ̂2

0 , and IQR-based and hIQR-based estimates of variance with power transformations d of 1,

1/2, 1/3 and 1/4, denoted generically σ̃2
0 ; note d = 1/3 is theoretically optimal for χ2 (see Appendix E).

For p-value evaluations, we only evaluate the most promising null moment estimators, µ̃D0 and µ̃DVARS
0 for

µ0, and σ̃2
0 with hIQR, d = 1 and hIQR, d = 1/3. We measure the bias our estimators in percentage terms,

as (µ̂0−µ0)/µ0×100 and (σ̂2
0 −σ2

0)/σ2
0 ×100, where the true value are µ0 = 2

∑
i σ

2
i /I and σ2

0 = 8
∑
i σ

4
i /I

2
125

(as per Appendix D when ΣS = I).

For each setting we use 1,000 realisations. We obtain P-values from each method and validate them via

log P-P plots (probability-probability plots) and histograms of approximate Z-scores.

3.2. Real Data

We use two publicly available data-sets to demonstrate the results of methods proposed in this paper on130

real-data. First, we drew 20 healthy subjects at random from the Human Connectome Project (HCP,S900

release). We chose this dataset due to the high quality and long sessions of the data (Smith et al., 2013;

Glasser et al., 2013). Second, we used first 25 healthy subjects from the New York University (NYU) cohort

of the Autism Brain Imaging Data Exchange (ABIDE) consortium via Preprocessed Connectome Project

(PCP) (Craddock et al., 2013). We selected this cohort for its high signal-to-noise ratio and the more typical135

(shorter) time series length (Di Martino et al., 2014).
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3.2.1. Human Connectome Project Data

For full details see (Van Essen et al., 2013; Glasser et al., 2013); in brief, 15 minute eyes-open resting

acquisitions were taken on a Siemens Skyra 3T scanner with a gradient-echo EPI sequence, TR=720ms,

TE=33.1 ms, flip angle=52◦ and 2 mm isotropic voxels. For each subject, we used the first session, left140

to right phase encoding direction (See Supplementary Table S1 for full details of subjects). We considered

each subject’s data in three states of pre-processing: unprocessed, minimally pre-processed and ICA-FIXed

processed. Unprocessed refers to the raw data as acquired from the machine without any pre-processing

step performed, useful as a reference to see how the variance components change with preprocessing steps.

Minimally pre-processed data have undergone a range of conventional pre-processing steps such as correction145

of gradient-nonlinearity-induced distortion, realignment aiming to correct the head movements and regressing

out of motion parameters, registration of the scans to the structural (T1w) images and finally transformation

of the images to the MNI standard space.

Finally, an ICA-based clean up (Salimi-Khorshidi et al., 2014) is applied, where artifactual ICA compo-

nents, such as movement, physiological noises of the heart beat and respiration, are regressed out the data.150

Due to extent of the FIX denoising and an ongoing debate regarding the nature of the global signal, we did

not consider global signal regression with the HCP data.

3.2.2. ABIDE - New York University Data

For full details visit PCP website http://preprocessed-connectomes-project.org/; in brief, 6 minute

eyes-closed resting acquisitions were taken on an Allegra 3T scanner with a gradient echo EPI sequence,155

TR=2000ms, TE=15ms, flip angle=90◦, and 3 mm isotropic voxels (See Supplementary Table S2 for full

details of subjects). In this study, each subject was analyzed using Configurable Pipeline for the Anal-

ysis of Connectomes (C-PAC) pipeline, in three stages; unprocessed, minimally pre-processed and fully

pre-processed. The unprocessed data are raw except for brain extraction with FSL’s BET. Minimally pre-

processed data were only corrected for slice timing, motion by realignment and then the data were trans-160

formed into a template with 3mm isotropic voxels. Fully pre-processed data additionally had residualisation

with respect to 24-motion-parameters, signals from white matter (WM) and cerebrospinal fluid (CSF), and

linear and quadratic low-frequency drifts. Conventionally this pipeline deletes the first three volumes to

account for T1 equilibration effects, but we examine the impact of omitting this step for the raw data.

4. Results165

4.1. Simulations

Figure 2 shows the percentage bias for the null expected value µ0 (left panel) and variance σ2
0 (right

panel) for different levels of variance heterogeneity and time series length. In general, the bias for both

parameters is modest, increasing with greater heterogeneity and decreasing with growing T .
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The direct estimates of the mean based on the DVARS2
t time series perform best on this clean, artifact-170

free data, while mean estimated based on voxel-wise median difference variances µ̃D0 degrades the most with

increasing heterogeneity. The estimates of variance have relatively less bias but it is difficult to identify

one particular best method, save for IQR often (but not always) having less bias than hIQR, and lower d

generally associated with less bias.

On balance, given the generally equivocal results and concerns about robustness, for further consideration175

we focused on µ̃DVARS
0 (median of {DVARS2

t}) and µ̃D0 (median of σ̂2
Di) as promising candidates for µ0, and

hIQR with d = 1 and hIQR with d = 1/3 for σ2
0 .

Figure 3 shows log P-P plots for χ2 p-values and histograms of approximate Z scores, (DVARS2
t −µ0)/σ0;

values above the identity in the P-P plot correspond to valid behavior. While all methods have good

performance under homogeneous data, µ̃D0 (panels A & C) is not robust to variance heterogeneity and180

results in inflated significance. In contrast, µ̃DVARS
0 (panels B & D) has good performance over all, for

variance estimated with either d = 1 or d = 1/3 (top and bottom panels, respectively), and also yields good

approximate Z-scores.
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Figure 2: Simulation results for estimation of DVARS2 null mean µ0 (left panel) and variance σ2
0 (right panel), for no, low

and high heterogeneity of variance over voxels all estimates (rows). All estimators improve with time series length T and most

degrade with increased heterogeneity. Both the sample mean (µ̂DVARS
0 ) and median (µ̃DVARS

0 ) of DVARS2
t perform best, as

does voxel-wise median of difference data variance (µ̂DVARS
0 ) for sufficient T , though µ̂DVARS

0 lacks robustness. No one variance

estimator dominates.
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Figure 3: Simulation results for validity of DVARS p-values for different estimators of µ0 and σ2
0 . The left two panels (A &

C) use µ̃D0 , the two right panels (B & D) use µ̃DVARS
0 ; the upper two panels (A & B) use variance based on hIQR with d = 1,

the lower two panels (C & D) use hIQR with d = 1/3. P-P plots and histograms of approximate Z scores show that only use

of µ̃DVARS
0 gives reliable inferences, and power transformation parameter d seems to have little effect.
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On the basis of these results, we elected to use µ̃DVARS
0 as the only reliable option for the mean, and

hIQR, d = 1/3 as a variance estimate.185

4.2. Real Data

We first focus on selected results of two HCP subjects, then later summarize results for all HCP and

ABIDE subjects.

4.2.1. Temporal Diagnostics: Comparison of DVARS measures

Figure 4 shows different DVARS-type measures for subject 118730 of the HCP cohort. The first six190

plots corresponds to the variants listed in Table 4; the bottom two plots show “DSE plots,” plots of At,

Dt, St and Et variance components, upper plot with minimal pre-processing, lower with full pre-processing.

The grey stripes indicate 19 data points identified as having significant DVARS after Bonferroni correction.

Supplementary Table S3 shows values for all significant scans. We also show the results of this analysis for

three more subjects (HCP subject 115320, ABIDE-NYU subject 51050 and 51055) in Supplementary Figures195

S1, S4 and S7.

In Figure 4, the largest Dt occurs at index 7 (i.e. 7th and 8th data points) where
√
Dt is 4.074, corre-

sponding to 70.155% of average variance and far in excess of the nominal IID value of 50%. The equivalent

Z score is 36.330 and only indicates extreme statistical significance, while a more meaningful ∆%D-var of

41.198% indicates practical significance in terms of excess variance at this point. The least significant Dt200

occurs at index 726, with a Z score of 4.36 and
√
Dt is 5.66; here a ∆%D-var of 4.95% indicates this is

a relatively modest disturbance. In contrast, values of original DVARS or relative DVARS do not offer a

meaningful interpretation.

The bottom panel of Figure 4 shows the DSE plot for fully pre-processed data. This data now exhibits the

idealized behavior of IID data, with D-var and S variance components converging at 50% of average variance205

(see right-hand y-axis). Note how
√
Dt is around 2.6 before clean up, and 2.5 after clean up, while

√
St fell

dramatically with cleaning, indicating that nuisance variance removed was largely of a “slow” variety. Also

observe that clean up results in drops in total At variance where artifacts were observed, indicating variance

removed by the regression procedure.
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Figure 4: Comparison of different variants of DVARS-related measures on HCP 115320. The first six plots are variants of

DVARS listed in Table 4; the Z(DVARS) plot shows the one-sided 5% Bonferroni significance threshold for 1200 scans, with

vertical grey lines marking these significant scans. The bottom two plots show all 4 variance components, total At (green), fast

Dt (blue), St slow (yellow), and edge Et (purple), for minimally preprocessed (upper) and fully preprocessed (lower) data. For

minimally preprocessed data D-var is about 25% of A-var (see right axis), far below S-var. For fully preprocessed data D-var

and S-var converge to 50%A-var.
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4.2.2. Temporal Diagnostics: Before and after clean-up210

Figures 5 and 6 shows the minimally and fully pre-processed variance decompositions, respectively, of

HCP subject 115320.

Figure 5, upper panel, shows that if the strict FD threshold were used 47% of scans would be flagged,

while the lenient threshold appears to miss several important events. For example, around scans 775 and

875 there are two surges in
√
Dt, rising to about 60% and 40% average variance (excesses of 30% and 10%,215

respectively, from a baseline of about 30%) while FD remains low. The lower panel’s pie chart shows that

slow S-var explains just under 75% of total variance, and almost all of global variance; edge variance is also

1.5 above expected.

In Figure 6, the fully preprocessed data-set shows roughly equal of fast and slow variance, as reflected

in the overlapping Dt and St time series (blue and yellow, respectively) and the pie and bar charts for total220

variance. Edge E-var has also dropped to fall in line with IID expectations. This convergence, however is

not homogeneous over scans, and excursions of S-var are still found after scan 650. However, these are much

reduced excursions of St (no more than 75% of average variance, compared to over 150% in Fig. 5).

Note that while significant DVARS are found, they are small in magnitude: Table 5 lists the 10 significant

tests, none with ∆%D-var greater than 6%. If we used a ∆%D-var of 5% we would still mark 4 of these225

10 significant; while we might hope for better performance from the FIX method, note the severe problems

detected towards the end of the scan (Fig. 5).

The smallest significant ∆%D-var is 2.66%, which is smaller than the least significant scan detected in

the minimally preprocessed data, 3.78%. This indicates the increased sensitivity in our procedure as the

background noise in the data is reduced.230

Temporal diagnostics of before and after clean-up for three other subjects (HCP subject 118730, NYU-

ABIDE subjects 51050 and 51050) also reported in Supplementary Materials. See Figure S2 and S3 for HCP

subject 118730, Figure s5 and s6 for NYU-ABIDE subject 51050 and Figure s8 and s9 for NYU-ABIDE

51055.
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Figure 5: Illustration of DSE and DVARS inference for HCP 115320 minimally pre-processed data. The upper panel shows

four plots, framewise displacement (FD), the DSE plot, the global signal, and an image of all brainordinate elements. FD plots

show the conventional 0.2mm and 0.5mm, strict and lenient thresholds, respectively. The bottom panel summaries the DSE

ANOVA table, showing pie chart of the 4 variance components and a bar chart relative to IID data, for whole (left) and global

(right) components. Many scans are marked as significant, reflecting disturbances in the latter half of the acquisition.17
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Figure 6: Illustration of DSE and DVARS inference for HCP 115320 fully pre-processed. Layout as in Fig. 5. Cleaning has

brought St slow variance into line with Dt fast variance, each explaining about 50% of total variance. While some scans are

still flagged as significant, %D-var (right y axis) never rises above about 55%, indicating ∆%D-vars of 5% or less and possible

lack of practical significance.
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Table 5: List of all statistically significant Dt fast variance components in the fully pre-processed HCP 115320. Spikes which

represent the highest (index 1177) and lowest (index 1035) was bold.

Scan Index DVARS
√

D-var %D-var ∆%D-var RDVARS Z(D-var) FD

256 & 257 256 4.982 2.4910 52.519 3.362 1.038 5.093 0.136

257 & 258 257 5.077 2.538 54.553 5.397 1.058 8.175 0.172

774 & 775 774 5.095 2.547 54.935 5.779 1.062 8.753 0.290

777 & 778 777 4.955 2.477 51.950 2.794 1.033 4.232 0.247

873 & 874 873 5.089 2.544 54.805 5.649 1.061 8.556 0.255

1035 & 1036 1035 4.948 2.474 51.815 2.659 1.031 4.027 0.280

1175 & 1176 1175 4.960 2.480 52.062 2.905 1.034 4.401 0.109

1176 & 1177 1176 4.953 2.476 51.926 2.769 1.032 4.195 0.104

1177 & 1178 1177 5.096 2.548 54.964 5.807 1.062 8.796 0.301

1178 & 1179 1178 5.049 2.524 53.952 4.795 1.052 7.263 0.132

The DSE ANOVA tables for minimally and fully preprocessed (Table 6) gives concise summaries of the235

data quality. The RMS values provide concrete values that can be used to build intuition for data from a

given scanner or protocol. The total noise standard deviation falls from 5.015 to 3.437 with clean-up, but

it is notable that the fast variance D-var falls only slightly from 2.598 to 2.406 (in RMS units), while slow

variance falls dramatically from about 4.287 to 2.454. This indicates that much of the variance reduction

in “cleaning” comes from removal of low frequency drifts and other slowly-varying effects. The magnitude240

of temporally structured noise is reflected by S-var explaining 73% of total variance, and after clean-up

S-var and D-var fall into line around 50%. A measure of the spatially structured noise is the global AG-var

that, while small as a percentage, is seen to be about 1,500 that expected with IID before preprocessing,

and falling to about 275 relative to IID after preprocessing. That the majority of AG-var is due to SG-var

indicates that the global signal is generally low frequency in nature.245

We also show the DSE ANOVA tables for three other subjects; HCP subject 118730 in Table S4, NYU-

ABIDE subject 51050 and 51055 in Tables S5 and S6, respectively.
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Table 6: DSE ANOVA Tables for HCP 115320. Minimally preprocessed data (top), fully preprocessed (bottom) are readily

compared: Overall standard deviation drops from 5.015 to 3.437, while fast noise only reduces modestly from 2.598 to 2.406,

indicating preprocessing mostly affects the slow variance. The IID-relative values for D, S and E for the fully preprocessed

data are close to 1.0, suggesting successful clean-up in the temporal domain; the global signal, however, still explains about

275× more than would be expected under IID settings, indicating (likely inevitable) spatial structure in the cleaned data.

Minimally Preprocessed Data

Source RMS % of A-var Relative to IID

A - All 5.015 100.000 1.000

D - Fast 2.598 26.837 0.537

S - Slow 4.287 73.039 1.462

E - Edge 0.176 0.124 1.486

AG - All Global 0.415 0.684 1539.383

DG - Fast Global 0.063 0.016 71.126

SG - Slow Global 0.408 0.662 2,980.787

EG - Edge Global 0.040 0.006 17,636.960

Fully Preprocessed Data

RMS % of A-var Relative to IID

A - All 3.437 100.000 1.000

D - Fast 2.406 48.980 0.980

S - Slow 2.454 50.948 1.020

E - Edge 0.092 0.072 0.860

AG - All Global 0.120 0.122 274.058

DG - Fast Global 0.037 0.012 52.830

SG - Slow Global 0.114 0.109 493.227

EG - Edge Global 0.008 <0.001 1,508.473

Figure 7 illustrates the use of the DSE decomposition to summarize a group of subjects. The top shows

the 20 HCP subjects, the bottom the 25 ABIDE subjects, with left showing total variance decomposition,

right the decomposition for the global signal. For the HCP raw data, the D-var component ranges from just250

over 5% to 40%, successively converging to 50% with preprocessing. For the ABIDE data, failing to remove

initial T1-saturated scans is immediately evident with edge variance E taking a large portion of variance

from S, and the global signal unusually explaining well over 5% of variance. With the initial 3 scans removed,

the usual pattern of D and S explaining most of the variance is seen.
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Figure 7: Illustration of group level contribution of each variance component for 20 HCP subjects (top) and 25 ABIDE subjects

(bottom). The left panels show the total DSE %A-var values for whole variance, the right panels show the same for global

variance. Successive preprocessing moves fast and slow variance components to equal proportions. For ABIDE, when the first

3 T1-saturated scans are not removed (“Raw (1 to 180)”), a large excess is seen on E-var (at the expense of S-var) and the

global, both slow and fast components, explaining an unusually large portion of variance.
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Figure 8 shows the image-wise D-var and S-var components, visualized as RMS. Like when observed255

in time-series form, the D-var images reflects a generally homogeneous ‘noise floor’, with CSF and major

vasculature visible above this floor. The S-var image shows more structure, around the edges, and throughout

the brain.

ABIDE-NYU			51050 Raw			(4	to	180)

D-var
S-var

Figure 8: Fast D-var and slow S-var variance components computed voxelwise. The D-var image (top) shows a homogeneous

appearance with vascular noise sources apparent, while S-var has appreciable edge components and is much more heterogeneous.

Finally, Table 7 explores the use of the estimated χ2 degrees of freedom ν as an index of spatial effective

degrees of freedom. Raw data, exhibiting substantial spatial structure, has ν = 287, which increases to260

ν = 11, 086 for fully preprocessed data, still only about 5% of the actual number of voxels.

Table 7: Spatial effective degrees of freedom (EDF) for HCP subject 115320. As more spatial structure is removed with

preprocessing, spatial EDF rises, but never to more than 5% of the actual number of voxels.

Voxels Spatial EDF Spatial EDF / Voxels

Raw 162,768 287 0.176%

Minimally processed 224,998 1,660 0.738%

Full processed 224,998 11,086 4.928%
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5. Discussion

We have provided a formal context for the diagnostic measure DVARS, showing DVARS2
t to be part of

a decomposition of variance at each successive scan pair and over the whole 4D data. We have proposed

DSE plots and DSE ANOVA tables that concisely summarize the interplay of the fast, slow, total and global265

variance, finding null expected values for each table entry. Our analysis shows that D-var (and DVARS)

scales with overall noise variance, and is deflated by temporal autocorrelation. The DSE plots allow D-var

to be judged relative S-var, checking for convergence to 50% of A-var as data approaches independence.

We have found the null distribution and a practical null hypothesis testing procedure for DVARS. We

complement the statistical significance of DVARS p-values with the practical significance of ∆%D-var. We270

illustrated these tools on exemplar HCP subjects, and used the ABIDE cohort to show how D and S converge

with successive clean-up, and how E var can usefully detect T1 saturation effect when initial scans are not

discarded.

5.1. Limitations

Our DVARS p-values depend critically on accurate estimates of µ0 and σ2
0 . Despite finding exact ex-275

pressions for the null mean and variance, we found the most practical and reliable estimates to be based on

the sample DVARS2
t time series itself, using median for µ0 and hIQR to find σ0 (essentially identical results

were found with d = 1). Of course this indicates that our inference procedure can only infer relative to the

background noise level of the data, picking out extreme values that are inconsistent with our approximating

χ2 approximation.280

We observe that as data becomes cleaner, and the background noise falls, we have greater power to

identify extreme DVARS2
t values. This is a limitation that simply highlights the need for measures of

practical significance, which provide with ∆%D-var.

The effective spatial degrees of freedom may prove to be a useful index of spatial structure in the data,

but we stress this particular χ2 degrees-of-freedom ν is specific to this setting and is unlikely to be useful in285

other contexts (e.g. as a Bonferroni correction over space).

Finally we do not suggest that our results here solve the fMRI diagnostic problem, nor are we enthusiastic

advocates of scrubbing, removing and interpolating problem scans. Rather we have sought and we believe

found greater insight into the behavior of this widely used fMRI diagnostic measure.

Software and Reproducibility290

In this work majority of the analysis have been done on MATLAB 2015b and MATLAB 2016b, supported

by FSL 5.0.9 for neuroimaging analysis.
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Inference on DVARS as well as DSE variance decomposition techniques proposed in this paper is available

via MATLAB scripts, found at http://www.github.com/asoroosh/DVARS. Elements of these methods have

also been implemented in Python and is accessible via Nipype toolbox (Gorgolewski et al., 2011).295

Results and figure scripts presented in this work is publicly available on http://www.github.com/

asoroosh/DVARS_Paper17.
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Appendix A. DVARS History

As far as we are aware, DVARS was first used to compute frame censoring by Smyser et al. (2011).

Power et al. 2012 reported the first systematic analysis of DVARS in relation to FD in resting state fMRI.

However, at least as early as 2006, a web page at the Cambridge Cognitive Brain Unit maintained by Matthew

Brett’s titled “Data Diagnostics” offered tsdiffana.m, a Matlab script that produces the same measure (see310

http://imaging.mrc-cbu.cam.ac.uk/imaging/DataDiagnostics; when viewed on 28 October, 2012, the

page listed the “last edited” data as 31 July 2006) and there are likely earlier uses in fMRI.

The idea of working with differences dates to at least 1941 in the statistics literature in work John

van Neumann and colleagues (von Neumann et al., 1941). That work focused on estimation of “standard

deviation from differences” when the mean slowly varied from observation to observation. They point out315

that the idea can traced back further, as early as 1870. In signal processing this estimator can be known as

the Allan variance, developed as a robust variance estimator in the presence of 1/f noise (Allan, 1966). And

in cardiology the “root mean square successive difference” is a standard measure of heart period variability

(Berntson et al., 2005). For yet more background see Kotz et al. (1988).

Despite successive work on finding the exact distribution of this variance estimate (Harper, 1967), or320

using it in a test for the presence of autocorrelation (Cochrane and Orcutt, 1949), we are unaware of any

study of the distribution of the individual differences averaged over a multivariate observation, as is the case

in this fMRI application.
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Appendix B. Derivation of DSE variance decomposition

The decomposition of the average variance at time t and t + 1, Eqn. (5), is based a simple algebraic

identity; for variables a and b,

a2 + b2 =
1

2
(a− b)2 +

1

2
(a+ b)2. (B.1)

This justifies a decomposition of the average variance at each voxel i, for each time t = 1, . . . , T − 1,

Y 2
it + Y 2

i,t+1

2
=

(
Yi,t+1 − Yit

2

)2

+

(
Yit + Yi,t+1

2

)2

. (B.2)

Averaging this expression over voxels i = 1, . . . , I gives the decomposition for scan pair variance At,t+1 in

Eqn. (5). Summing image variance At,t+1 over t, however,

T−1∑

t=1

At,t+1 =
T−1∑

t=1

(At +At+1)/2

=
1

2
A2

1 +
N−1∑

t=2

At +
1

2
A2
T

(B.3)

misses 1/2 of edge terms, which are added to produce the fundamental DSE decomposition in Eqn. (9).325

Appendix C. Derivation of DSE ANOVA Mean Squares

Here we set out the least restrictive model possible to justify our expected values for the DSE ANOVA

table (Table 2). While the DSE ANOVA table and decompositions A = D+S+E and AG = DG+SG+EG

are in mean-square (MS) units, below we develop the results in terms of sum-of-squares (SS) that, in each

case, can be divided by I × T to obtain the MS.330

All of the results follow from application of rules for expectations and variances of quadratic forms of

mean zero vectors. For reference, if w is a mean zero random vector with covariance Σ, and B is a square

matrix, then E(w>Bw) = tr(BΣ) and V(w>Bw) = 2 tr(BΣBΣ).

Appendix C.1. Model

In defining the the joint distribution of all I × T elements of the 4D data {Yit}, we will always assume

is that Yit is mean zero and has constant variance over time, V(Yit) = V(Yit′) for t 6= t′, but allow variance

to vary over space. For data organized as time series, length-T vectors Yi, let

V(Yi) =(ΣS)iiΣ
T
ii,

C(Yi, Yi′) =(ΣS)ii′Σ
T
ii′ ,

(C.1)

where ΣS is the I × I spatial covariance matrix, common to all time points, and (ΣS)ii is the variance at

the ith voxel, ΣTii is the T ×T temporal autocorrelation matrix for voxel i, C(·) denotes covariance, and ΣTii′
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is the T × T temporal cross correlation matrix for voxels i and i′. This implies that, for data organized as

images, length-I vectors Yt,

V(Yt) = ΣS . (C.2)

When a time-space separable covariance structure is assumed then ΣTii′ = ΣT for all i, i′.335

Appendix C.2. A-var Expected SS

Total SS
∑
it Y

2
it has expected value

E

(
I∑

i=1

Y >i Yi

)
=
∑

i

(ΣS)ii tr(ΣTii)

= tr(ΣS)T.

(C.3)

Appendix C.3. D-var and E-var Expected SS.

The total D-var SS is
∑I
i=1

∑T−1
t=1 (Yi,t+1 − Yit)2/4 =

∑I
i=1(DYi)

>DYi/4 where

D =




−1 1

−1 1

. . .
. . .

−1 1




(C.4)

is the (T − 1)× T finite difference matrix. We have

E(Y >i D
>DYi) = tr(D>D(ΣS)iiΣ

T
ii)

=2(T − 1)− (ΣTii)t,t+1 − 2
T−1∑

t=2

(ΣTii)t,t+1 − (ΣTii)T,T−1,
(C.5)

where notably the last expression only depends on the first off-diagonal of the temporal autocorrelation. To

obtain more interpretable results we further assume that there is a constant lag-1 autocorrelation at each

voxel, ρi =
(
ΣTii
)
t,t+1

, for t = 1, . . . , T − 1, which reduces (C.5) to 2(T − 1)(1− ρi). This gives the expected

total D-var SS as

E

(∑

i

Y >i D
>DYi/4

)
=
∑

i

(ΣS)ii(T − 1)(1− ρi)/2. (C.6)

If we yet further assume constant temporal autocorrelation ρ, corresponding to our separable model, this SS

simplifies to tr(ΣS)(T − 1)(1− ρ)/2.

The expected SS for S-var is follows the same arguments with differencing matrix replaced with a running340

sum matrix abs(D), negating the three negative terms in Eqn. C.5, and reducing to tr(ΣS)(T − 1)(1 + ρ)/2

under spatially and temporally homogeneous lag-1 temporal autocorrelation.
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Appendix C.4. E-var Expected SS.

The total SS E-var is
∑I
i=1

∑
t=1,T Y

2
it/2 =

∑
t=1,T Y

′
t Yt/2, with expected value

E


∑

t=1,T

Y ′t Yt/2


 = tr(ΣS). (C.7)

Appendix C.5. AG-var Expected SS.

The global time series is Ȳt and total SS due to global is

I∑

i=1

T∑

t=1

Ȳ 2
t =I

∑

t

(1> Yt/I)2

=
∑

t

(1> Yt)
2/I,

(C.8)

where 1 is a vector of ones. The expectation of the squared term is V(1> Yt) = 1>ΣS 1, and thus the

expected SS is
T

I
1> ΣS 1 . (C.9)

Appendix C.6. DG-var and SG-var Expected SS.345

Write the global differenced time series as Ȳ Dt = 1Y Dt /I where Y Dt = (Yt+1 − Yt) for t = 1, . . . , T − 1.

The total SS due to half differenced global DGt is then

I∑

i=1

T−1∑

t=1

(Ȳ Dt )2/4 =
T−1∑

t=1

(1> Y Dt )2/(4I). (C.10)

To find the expectation of the squared term, note that

V(Y Dt ) =2(ΣS − ΣS ◦ ΣSTt,t+1), (C.11)

where ◦ is the Hadamard product and ΣSTt,t+1 is the spatiotemporal covariance matrix, elements extracted

from the temporal cross correlation matrix as per (ΣSTtt′ )ii′ = (ΣTii′)t,t′ , and that

V(1> Y Dt ) =2

(
1′ ΣS 1+

∑

ii′

ΣSii′(Σ
T
ii′)t,t+1

)
. (C.12)

The final expression for the expected SS is then, with successive assumptions

T−1∑

t=1

V(1> Y Dt )/(4I) =
T−1∑

t=1

1′ ΣS 1(1− ΣTt,t+1)/(2I)

=(T − 1)1′ ΣS 1(1− ρ)/(2I),

(C.13)

where first equality comes from assuming a separable covariance structure and the second from a common

lag-1 autocorrelation.

The result for SG-var follows similarly.
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Appendix C.7. EG-var Expected SS.

The total SS EG-var is
∑I
i=1

∑
t=1,T Ȳ

2
t /2, and following same arguments as for AG-var has expected

value
1

I
1>ΣS 1 . (C.14)

Results for the non-global terms in the decomposition AN = DN + SN + EN follow as difference of350

respective total and global terms.

Appendix D. Derivation of DVARS Null Distribution

As results are more naturally defined for squared quantities, we seek a null distribution for

DVARS2
t = Y Dt

>
Y Dt /I, (D.1)

where Y Dt = Yt+1 − Yt as above. While an expression of the mean of DVARS can be obtained from Eqn.

(C.11), note also

E(DVARS2
t ) = tr(V(Y Dt ))/I. (D.2)

That is, the expected value of DVARS2
t is simply the variance of each voxel in the differenced data, averaged

over voxels. The natural estimator of this is the sample mean (or robust equivalent) of the sample variance

image (or robust equivalent) of the differenced 4D data.355

The variance is more involved

V
(
DVARS2

t

)
= 2 tr

(
V(Y Dt )V(Y Dt )

)
/I2, (D.3)

in particular depending on the entirety of the I×I difference image variance matrix. For the most restrictive

assumptions considered above V(Y Dt ) = 2(1− ρ)ΣS and thus

V
(
DVARS2

t

)
= 8(1− ρ)2

tr(ΣSΣS)

I2
. (D.4)

This dependence on the full spatial covariance demands the empirical approaches to variance estimations

taken in the body of the paper.

Only at this point do we invoke a normality assumption, and make use of the classic chi-square approx-

imation for sums-of-squared normal variates (Satterthwaite, 1946). In this approach we equate the mean

and variance of c × DVARS2
t (cµ0 & c2σ2

0) and χ2
ν (ν & 2ν) and solve for c and ν, giving the multiplier360

c = 2µ0/σ
2
0 and degrees-of-freedom ν = 2µ2

0/σ
2
0 as found in Section 2.4.
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Appendix E. Power Transformations to Improve DVARS Variance Estimation

The robust IQR-based variance estimate reflects a normality assumption, equating the sample IQR with

that of a standard normal. DVARS2
t , as a sum-of-squares and as reflected by its χ2 approximation, may ex-

hibit positive skew. Hence we consider power transformations of DVARS2
t that may improve symmetry and365

the accuracy of the IQR variance estimate. While the asymptotically optimal power transformation to nor-

mality for χ2 is known to be the d = 1/3 cube-root transformation (Hernandez and Johnson, 1980), our test

statistic is only approximately χ2 and, in particular, variance heterogeneity can worsen the approximation.

To obtain a quantity that should be more symmetric consider the power transformation

Wt =
(
DVARS2

t

)d
. (E.1)

IQR-based estimates of the variance of W , σ2
W , will hopefully be more accurate than such estimates on

DVARS2. However, ultimately we seek estimates of the variance of DVARS2, and so for a given d we

compute

V(DVARS2
t ) =V(W

1/d
t )

=
1

d
µ
2(1/d−1)
W σ2

W ,
(E.2)

where the last expression is the delta method variance of W
1/d
t , and µW is the mean of Wt (which we robustly

estimate with the median of Wt).370
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