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Abstract

Reticulate species evolution, such as hybridization or introgression, is rela-
tively common in nature. In the presence of reticulation, species relation-
ships can be captured by a rooted phylogenetic network, and orthologous
gene evolution can be modeled as bifurcating gene trees embedded in the
species network. We present a Bayesian approach to jointly infer species
networks and gene trees from multilocus sequence data. A mnovel birth-
hybridization process is used as the prior for the species network. We as-
sume a multispecies network coalescent (MSNC) prior for the embedded gene
trees. We verify the ability of our method to correctly sample from the pos-
terior distribution, and thus to infer a species network, through simulations.
We reanalyze a large dataset of genes from closely related spruces, and verify
the previously suggested homoploid hybridization event in this clade. Our
method is available within the BEAST 2 add-on SpeciesNetwork, and thus
provides a general framework for Bayesian inference of reticulate evolution.

Keywords: reticulate evolution, hybridization, multispecies coalescent, in-
complete lineage sorting

1 Introduction

Hybridization during speciation is relatively common in animals and plants
(Mallet, 2005, 2007). However, when reconstructing the evolutionary his-
tory of species, typically non-reticulating species trees are inferred (Guindon
et al., 2010; Stamatakis, 2014; Drummond and Bouckaert, 2015; Ronquist
et al., 2012), and the potential for hybridization events is ignored.

To account for the distribution of evolutionary histories of genes inherited
from multiple ancestral species, the multispecies coalescent model (Rannala
and Yang, 2003) was extended to allow reticulations among species, named
multispecies network coalescent (MSNC) model (Yu et al., 2014). Ortholo-
gous genes are modeled as gene trees embedded in the species network. The
MSNC model accounts for gene tree discordance due to incomplete lineage
sorting and reticulate species evolution events, such as hybridization or in-
trogression. There have been computational methods developed based on
the MSNC to infer species networks using maximum likelihood (Yu et al.,
2014; Yu and Nakhleh, 2015; Solis-Lemus and Ané, 2016) and Bayesian in-
ference (Wen et al., 2016). These methods use gene trees inferred from
other resources as input. Due to the model complexity, applying the MSNC
model in a full Bayesian framework, i.e., to infer the posterior distribution of
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species network and gene trees directly from the multilocus sequence data, is
challenging. Recently Wen and Nakhleh (2016) have developed a Bayesian
method that can co-estimate species networks and gene trees from multilo-
cus sequence data, but a process-based prior for the species network is still
lacking. Their method also integrates over all possible gene tree embeddings
at each MCMC step, which means that the estimated histories of individual
gene trees within the species network are not available for subsequent anal-
ysis, and is limited to the JC69 (Jukes and Cantor, 1969) and GTR (Tavaré,
1986) substitution models.

In this paper, we present a Bayesian method to infer ultrametric species
networks jointly with gene trees and their embeddings from multilocus se-
quence data. Our method assumes a birth-hybridization model for the
species network, the MSNC model for the embedded gene trees with ana-
lytical integration of population sizes, and employs novel MCMC operators
to sample the species network and gene trees along with associated param-
eters. It is able to use the full range of substitution models implemented in
BEAST?2, including models with gamma rate variation across sites (Yang,
1994).

2 New Approaches

In this section, we specify our approach to sample from the posterior dis-
tribution of species networks and gene trees, given a multilocus sequence
alignment. First we derive the unnormalized posterior distribution. Then
we introduce operators to move through the space of species networks, the
space of gene trees, and finally to update the gene tree embeddings within
species networks.

2.1 The posterior distribution of species networks and gene
trees

2.1.1 The probability density of a species network

The birth-hybridization process provides a prior probability for a given
species network W (Fig. 1). The process starts from ¢y (time of origin)
in the past with a single species. A species gives birth to a new species with
a constant rate A\ (speciation rate), and two species merge into one with a
constant rate v (hybridization rate). That is, at the moment of k species,
the speciation rate is kA, the hybridization rate is (g)y, and the waiting time
to the next event is an exponential distribution. The process ends at time
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0 (the present). For the network shown in Figure 1, the probability density
of the species network ¥ given A, v, and tg is

F(T | A\ v, to) =\e Mo—t)
Ne— (@A) (t1—t2)
\e— (BMH3V) (t2—t3)
e (AN+61)(ts —t4)
o~ B3Vt

In general, the probability density of a species network with n species
descending from n — 1 + m speciation events and m hybridization events,
and these events happening at time t; > to > ... > tp1om—1, iS,

n+2m—1
F(T | A\ v, tg) = NvTmtym H e_(’\kﬁ”(kzi))(ti—twl), (1)
i=0

where k; is the number of lineages within time interval (;,¢;+1) and t,,19m =
0 is the present time. In our Bayesian analysis, the parameters A, v, and ¢
can be assigned hyperpriors.

Figure 1: A species network with 3 tips, 3 bifurcations, and 1 reticulation.
The inheritance probability at branch Sy H; is v, and that at So Hy is 1—v. In
the simulations, ¢t; = 7 (@ = 1.0), 71 = 0.05, 72 = 0.03, 73 = 0.02, 74 = 0.01,
and v = 0.3. The population sizes are all § = 0.01.
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2.1.2 The probability of the sequence data given the gene trees

Assuming complete linkage within each locus and free recombination among
loci, the probability of the data D = {Dj, Ds,...,D,} given gene trees
G = {G1,Ga,...,G.} is the product of phylogenetic likelihoods (Felsenstein,
1981) at individual loci:

L
Pr(D | G,p,p) = HPT(Di | Gi, i, i), (2)
i=1

where G; is the gene tree with coalescent times, p; is the substitution rate
per site per time unit, and ¢; represents the parameters in the substitution
model (e.g., the transition-transversion rate ratio x in the HKY85 model
(Hasegawa et al., 1985)), at locus i (i = 1,...,L).

There are two sources of evolutionary rate variation: across gene tree lin-
eages at the same locus and across different gene loci. In the strict molecular
clock model (Zuckerkandl and Pauling, 1965), u is the global clock rate, i.e.,
no rate variation across gene lineages at each locus. To extend to a relaxed
molecular clock model (e.g., Thorne and Kishino, 2002; Drummond et al.,
2006; Lepage et al., 2007; Rannala and Yang, 2007), the molecular clock
rate is variable across gene lineages following certain distributions with p as
the mean. To account for rate variation across genes, gene-rate multipliers
{m1,ma,...,my} are constrained to average to 1.0 (Ele mix; = 1, where
x; is the proportion of sites in locus i to the total number of sites). Then
the substitution rate at locus ¢ is p; = pm;. Thus, when multiplying the
gene tree lineages in G; by p;, all the branch lengths are then measured by
genetic distance (substitutions per site).

The gene-rate multipliers are assigned a flat Dirichlet prior. The average
substitution rate (clock rate) p can be either fixed to 1.0 such that branch
lengths are measured by genetic distance, or assigned an informative prior
to infer branch lengths measured in absolute time.

2.1.3 The probability density of the gene trees given a species
network

The gene trees G = {G1,Ga,...,GL} are embedded in the species network
U under the multispecies network coalescent (MSNC) model (Yu et al.,
2014) (Fig. 2). Hybridizations or horizontal gene transfers are modelled
by reticulations in the species network. The effective population sizes N =
{Nj, Na, ..., N} are assumed to be identically and independently distributed
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(i.i.d.) for each of the B branches in ¥, while each locus has the same ef-
fective population size N; at branch ¢ (i = 1,...,B). For each locus j, the
number of coalescences of gene tree G; within branch b of ¥ is denoted by
kjp, and the number of lineages at the tipward end of b is denoted by njy,
thus the number of lineages at the rootward end of b is nj, —kj,. The kj 41
coalescent time intervals between the tipward and rootward of branch b are
denoted by cjp; (0 < i < kjp). pj is the gene ploidy of locus j (e.g., 2 for
autosomal nuclear genes and 0.5 for mitochondrial genes in diploid species).
v = {m,...,7u} are the inheritance probabilities, one per hybridization
node in W. For each lineage of G, traversing the hybridization node Hj,
backward in time, with probability v, it goes to the parent branch associ-
ated with that inheritance probability, and to the alternate parent branch
with probability 1 — ~. The corresponding number of traversing lineages
are denoted by w;, and vjj, respectively.

Cc

Figure 2: Two gene trees embedded in the species network. There are 2
samples from species A, 3 samples from B, and 1 sample from C. But note
that we do not restrict the number of samples to be the same for each gene
in each species. For each gene tree lineage traversing the hybridization node
H, backward in time, it goes to the left population with probability -, and
to the right with probability 1 —~. a) and b) show two possibilities of gene-
tree embeddings. The three lineages that can traverse either side through
root node R are labeled as 1, 2, and 3.

The coalescent probability of the gene trees G in species network ¥ with
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time being measured in calendar units is thus:

f(G¥,7,N)
L B n —3 H
=11 [T]iNe) "% exp | —(piNo) Z%bz( 7 ) H " (1= yn)""
j=1 |b=1 h=1
B
=T ][ reNo™® exp(—ouN, '), (3)
b=1

where g, = > kjp, 1p = ij;k’b, op = 2;Dj Zl oCbi (M%), and T =
[T 11, 7% "(1 —~,)v*. When there is no reticulation in the species network
(i.e., species tree), then I' = 1 and Equation 3 is equivalent to Equation 2
in Jones (2017).

Note here, when time is measured by genetic distance, we use 0, = Npu
as the population size parameter of branch b, and 7; = t;u as the height of
node i. The prior for 4 can be any distribution on [0, 1], we use throughout
f(yn) ~ beta(1, 1). In the next section, we discuss how to integrate out the
population sizes, which will improve computational speed.

2.1.4 Integrating out the population sizes analytically

Equation 3 has the form of unnormalized inverse gamma densities. The
population sizes N can be integrated out through the use of i.i.d. inverse-
gamma(a, ) conjugate prior distributions (Jones, 2017; Hey and Nielsen,
2007), that is,

f(G | W,y) = / (G| Wy, N)F(N | . B)AN

= FH/ rp Ny~ exp(—abNb_l)rﬁiNl;a_l exp(—BN, )Ny
11 (@)

B Fla+ q)

= F;}E[l (B+op)ete  T(a) (4)

The symbolic notations follow Equation 3.
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2.1.5 The joint posterior distribution

The joint posterior distribution of the parameters is

f(\Ilva(-) ‘ D) X PI‘(D ’ G#‘w‘P)f(G ‘ \Ij77)f(qj ‘ A7”7750>
Fw) f(@)f () f (A v)f(to). (5)

Here © represents (g, 9,7, A, v, to).

2.2 MCMC operators for the species network
2.2.1 Node slider

The node-slider operator only changes the node heights of the species net-
work, not the topology. It selects an internal node or the origin randomly,
then proposes a new height centered at the current height according to a
normal distribution: ¢’ | ¢ ~ N(t,o?), where o is a tuning parameter control-
ling the step size. The lower bound is the oldest child-node height, the upper
bound is the youngest parent-node height (except for the origin, Fig. 3). If
the proposed value is outside this range, the excess is reflected back into the
interval. Note that for the origin, if the proposed height is outside the range
of its prior, this move is aborted. A variation of this operator can use a uni-
form proposal instead of the normal proposal: ¢’ |t ~ U(t — w/2,t + w/2),
where w is the window size. The proposal ratio is 1.0 in both cases.

2.2.2 Node uniform

The node-uniform operator also changes the internal-node heights of the
species network while keeping the topology. It selects an internal node ran-
domly, then proposes a new height uniformly between the lower and upper
bounds (Fig. 3ab). The lower bound is the oldest child-node height, the
upper bound is the youngest parent-node height. The proposal ratio is 1.0.
Unlike node slider, this operator does not change the time of origin. A sep-
arate operator for the origin, such as multiplier or scaler, can be coupled to
update all the node heights.

2.2.3 Branch relocator

The branch-relocator operator can change the topology, but keeps the num-
ber of reticulations in the species network constant. It first selects an internal
node at random. If the selected node is a bifurcation node, the rootward end
of either its child branches is relocated (Fig. 4a); if the selected node is a
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Figure 3: Three cases when the node-slider operator is applied: a) a bifurca-
tion node Ss is selected; b) the reticulation node Hj is selected; ¢) the origin
is selected. The dashed lines are the lower and upper bounds for changing
its height (only the lower bound is applicable in c)). For the node-uniform
operator, a) and b) apply but ¢) does not.

reticulation node, the tipward end of either its parent branches is relocated
(Fig. 4b). Then the selected branch is detached at the side of the selected
node, and a destination branch chosen randomly from all possible branches
to attach to is proposed (excluding the original position).

There are two variants of this operator. The narrow move doesn’t change
any node heights (Fig. 4). Since there are equal numbers of possible attach-
ment points for the forward and backward moves, the proposal ratio is 1.0.
The wide move proposes a new height of the selected node uniformly between
a lower (v') and an upper (u') bound. If the selected node is a bifurcation
node, the lower bound v’ is the maximum of the tipward ends of the selected
branch and the destination branch, and the upper bound «’ is the height of
the rootward end of the destination branch (Fig. 4a). If the selected node
is a reticulation node, the lower bound v’ is the height of the tipward end
of the destination branch, and the upper bound «’ is the minimum of the
rootward ends of the selected branch and the destination branch (Fig. 4b).
We denote with v and u the lower and upper bounds of the backward move.
The proposal ratio is (v’ — v')/(u — v).
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Figure 4: Two cases when the branch-relocator operator is applied: a) a
bifurcation node Sj is selected; b) a reticulation node H; is selected. Branch
S1H; is relocated (the selected node and branch are in red, the candidate
destination branches are in blue). In the narrow move, the height of S; or
H; is kept unchanged. In the wide move, the height of S; or H; is proposed
uniformly between v’ and u’. The lower and upper bounds of the backward
move are v and u.

2.2.4 Add- and delete-reticulation

The add-reticulation and delete-reticulation operators are reversible-jump
MCMC (rjMCMC) proposals that can add and delete a reticulation event
respectively.

In the add-reticulation operator, a new branch is added by connecting
two randomly selected branches with length [; and lp (Fig. 5). The same
branch can be selected twice so that I; = la (Fig. 5b). Then three values
w1, wy and wy are drawn from U(0,1). One attaching point cuts the branch
length I3 to l31 = lijw; (and thus 19 = [1(1 — w1)); the other attaching
point cuts the branch length lo to lo; = lows (and thus lee = lo(1 — wy)).
Analogously, if we select the same branch twice, the attachment times of
the new branch are liw; and ljws. An inheritance probability v = ws is
associated to the new branch. We will operate on the inheritance proba-
bility ~ of this added branch, while the inheritance probability of the sec-
ond reticulation branch (i.e., 1 — ) changes accordingly. We denote k as

10
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the number of branches in the current network, and m as the number of
reticulation branches in the proposed network. The Hastings ratio is then
(1/m)/[(1/k)(1/k) x 1 x 1 x 1] = k2/m. The Jacobian is | 21200 — 1,7,

O(w1,w2,ws)
Thus the proposal ratio of add-reticulation is I1lok?/m.

In the delete-reticulation operator, a random reticulation branch to-
gether with the inheritance probability v is deleted (Fig. 5). Joining the sin-
gleton branches at each end of the deleted branch, resulting in two branches
with length /3 and [y completes the operator (I; = Iy when forming a single
branch, Fig. 5b). If there is no reticulation, or the selected branch is con-
necting two reticulation nodes, the move is aborted. For example in Figure
5a, deleting reticulation branch H; Hy will result in an invalid network. We
denote k as the number of branches in the proposed network, and m as the
number of reticulation branches in the current network. The proposal ratio
of delete-reticulation is m/(kl112).

Figure 5: Three cases when the add-reticulation operator is applied. The
number of branches in the current network (i.e., the network without the
red branch) is k = 8. The probability of selecting the illustrated branches
(in blue) is 1/k?. The number of reticulation branches in the proposed
network is m = 4. In the reverse move, delete-reticulation, the probability
of selecting the added branch (in red) is 1/m. a) Branches S1H; and RS,
are selected and a new branch S3Hs is added together with ~2. The length
of S1H; is Iy = lg, H,, and that of RS is lo = lrs,. In the delete-reticulation
move, if Hy Hj is selected, the operator is aborted. b) The same branch SoC
is selected twice. 1 = la = lg,c, l11 = ls,84,l21 = ls,m,. ¢) The root branch
and SyC' are selected. S3 becomes the new root.

11
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2.2.5 Gamma uniform

The gamma-uniform operator selects a reticulation node randomly, and pro-
pose a new value of the inheritance probability 7 ~ U(0,1). The proposal
ratio is 1.0.

2.2.6 Gamma random-walk

The gamma random-walk operator selects a reticulation node randomly, and
applies a uniform sliding window to the logit of the inheritance probability -,
thatisy' |y ~ U(y—w/2,y+w/2), where y = logit(y) = log(y) —log(1—~).
Since the proposal ratio for the transformed variable y is 1.0, and fTZ =
d% [e¥/(1+e¥)] = e¥/(1+¢e¥)?, the proposal ratio for the original variable y

is 9/ = W=V (14 ev)2/(1+ e¥')2,

2.3 MCMC operators for gene trees

The standard tree operators in BEAST 2 (Bouckaert et al., 2014) are applied
to update the gene trees, including the scale, uniform, subtree-slide, narrow-
and wide-exchange, and Wilson-Balding (Wilson and Balding, 1998). The
scale and uniform operators only update the node heights without chang-
ing the tree topology, while the other operators can change the topology
(Drummond and Bouckaert, 2015). The species network is kept unchanged
when operating on the gene trees, and vice versa.

2.4 MCMUC operator for the gene tree embedding

The gene trees must be compatibly embedded in the species network (Fig.
2). When a new gene tree is proposed using one of the tree operators, the
rebuild-embedding operator proposes a new embedding for that gene tree.
When a new species network is proposed, the rebuild-embedding operator
proposes a new embedding for each gene tree in the species network. If there
is no valid embedding for any gene tree, the gene-tree or species-network
operator is aborted.

The rebuild-embedding operator goes through all the gene tree lineages
from the root to the tips recursively. For each lineage,

1. if it can traverse either side through a network node forward in time,
increase the counter n’ by one, then embed the lineage in either side
of the descendent species with equal probability 0.5;

12
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2. if it can traverse through a network node in only one way, or stays
within the same species, embed it that way;

3. otherwise, abort the move, as there is no valid embedding.

The proposal ratio is 2" /2" = 2"'="_where n is the traversing counter of
the backward move.

For example, if the current embedding is Figure 2a and the proposed
embedding is Figure 2b, n’ = n = 3 so that the proposal ratio is 1.0,
because lineages 1, 2 and 3 can traverse either side through root node R,
and the other lineages either traverse in only one way or stay within the
same species. Note though that in contrast to Figure 2, typically the gene
trees or the species networks are different for the forward and backward
moves, such that n’ can be different from n.

3 Results

The components from the last section, i.e., the unnormalized posterior den-
sity and the operators, allow us to implement a Markov chain Monte Carlo
(MCMC) procedure to sample species networks and gene trees from the
posterior distribution, given a multilocus sequence alignment. The imple-
mentation is available within BEAST 2 as an add-on SpeciesNetwork. A
convenient format for the species networks, and a link to our source code, is
presented in Materials and Methods. We investigate the performance of the
implementation in this section, first based on simulations and then based on
empirical data.

3.1 Simulations

We performed several simulation studies to verify the implementation of our
Bayesian MCMC method.

We first compared networks simulated forward-in-time under the birth-
hybridization process with those sampled under MCMC using the network
operators (see Material and Methods for details of simulations and MCMC
sampling). Theoretically, we expect both forward-in-time simulated net-
works and the MCMC sampled networks to be identical. Indeed, the net-
works obtained from the simulator and the MCMC match when comparing
the network length, root height, number of reticulations, and time of the
youngest reticulation (Fig. 6).

We then tested the rebuild-embedding operator by traversing a bipartite
gene tree in the species network with 1 tip and 4 reticulations (Fig. 7a,

13
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details in Materials and Methods). The result shown in Figure 7b confirms
equal probability of the 36 embeddings.

Network length Root height
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Figure 6: Beanplot of network summary statistics comparing 3-tips networks
simulated under the birth-hybridization process (left, light gray) with those
sampled using the network operators (right, dark gray). The horizontal bar
is the mean.
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Figure 7: a) The embeddings of gene tree (a1, az) within the species network
with 1 tip and 4 reticulations are sampled using MCMC. For each lineage,
there are 6 ways traversing the network from root R to tip A, resulting in
6x 6 = 36 possible embeddings in total. b) The percentage of 36 embeddings
sampled using the rebuild-embedding operator. The dashed line is the true
value 1/36.

We also compared gene trees simulated under MSNC backward-in-time
with those sampled under MCMC using the gene-tree operators, given the
species network in Figure 8. When the population sizes were fixed to the
truth (0.01), the tree sets from MSNC and MCMC give rise to the same
distribution of tree length, gamma-statistic (Pybus and Harvey, 2000), and
Colless’ index (Blum et al., 2006) as expected (Fig. 9). When the population
sizes were integrated out analytically using inverse-gamma(10, 0.1) in the
MCMC (Eq. 4), there is a slight mismatch between the two tree sets (Fig.
10), as the integration averages over all the possible values of population
sizes under MCMC, while the population sizes were fixed as 0.01 in the
simulation. But the inverse-gamma prior used is very informative, centered
around the true value (0.01), thus the difference is minor.

The analyses up to here show that we can correctly sample species net-
works, gene tree embeddings for a given network, and gene trees for a given
network. Next, we simulated sequence alignments of multiple loci to reveal
the ability of our method to recover the true species network from multilocus
sequence data. When the species network topology was fixed to Figure 1 in
the inference, the results are shown in Figure 11. With small sample size (2,
4, 2) (meaning species A has 2, B has 4, and C has 2 sampled sequences)
and only 5 loci, the posterior estimates are sensitive to the priors. When
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A B C

Figure 8: The species network under which to simulate gene trees with-
out data. The inheritance probabilities are 7v; = 0.3 and v = 0.7. The
population sizes are all 8 = 0.01.

sample size increases, the posterior estimates become increasingly accurate.
When we also inferred species network topology, with all network operators
enabled, the results are shown in Figure 12.

From Figure 12 (and also Fig. 11), we observe that adding more loci
increases the accuracy of inference much more than adding more individuals.
For example, by comparing (5, 10, 5) 5 loci with (2, 4, 2) 10 loci, the latter
has much higher posterior probability recovering the true species network
(Fig. 12a). Conditional on the true species network topology (i.e., Fig. 1),
the estimate of inheritance probability v becomes increasingly accurate as
the number of loci increases (Fig. 12b).
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Figure 9: Beanplot of three tree summary statistics comparing gene trees
simulated under MSNC (left, light gray) with those sampled using the gene-
tree operators (right, dark gray), given the species network in Figure 8. The
sample configuration were (2, 4, 2) (2 samples from A, 4 from B, and 2
from C) or (5, 10, 5) (5 samples from A, 10 from B, and 5 from C). The
population sizes were fixed to the truth (0.01) in the MCMC.
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population sizes integrated out analytically
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Figure 10: Beanplot of three tree summary statistics comparing gene trees
simulated under MSNC (left, light gray) with those sampled using the gene-
tree operators (right, dark gray), given the species network in Figure 8. The
sample configuration were (2, 4, 2) or (5, 10, 5). The population sizes were
integrated out analytically using inverse-gamma(10, 0.1) in the MCMC.
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Figure 11: Posterior estimates of v, H; height, network height and network
length, when the data were simulated under the network in Figure 1 with
sample configuration (2, 4, 2) (species A has 2, B has 4, and C has 2 sampled
sequences) or (5, 10, 5), and 2, 5, 10 or 20 loci, respectively. The species
network topology was fixed to the truth when performing inference. For
each setting, the black dot with error bars are the median and the 15 and
3'd quantiles of the posterior medians of 100 replicates, the gray circle with
error bars are the same for the 15" and 3" quantiles of the posterior samples.
The dashed lines indicate the true values.
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Figure 12: Simulation settings are the same as the ones described in Fig-
ure 11. Now, the species network topology was additionally inferred using
MCMC. a) Posterior probabilities of the true network (black) and of species
tree (gray). For each setting, the dot/circle with error bars are the me-
dian and the 1% and 3™ quantiles of the percentages of 100 replicates. b)
Posterior estimates of v when the species network is true. The dot/circle
with error bars have the same meaning as in Figure 11a. The dashed line
indicates the true value of v (0.3).
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3.2 Analysis of biological data

We analyzed a dataset of three spruce species (Picea purpurea, P. likiangen-
sis and P. wilsonii) in the Qinghai-Tibet Plateau. P. purpurea was inferred
to be a homoploid hybrid of P. likiangensis and P. wilsonii (Sun et al., 2014).
The data consists of 11 loci per individual, and > 50 individuals per species.
To achieve proper mixing and convergence in a reasonable time, the data
was truncated (w.r.t. the number of individuals) into two non-overlapping
datasets, each having 10 individuals per species. Each individual has two
phased haplotype sequences per locus.

Analyses were performed as described in the Materials and Methods
section. The species network shown in Figure 13 has the highest posterior
probability for both datasets, which are 0.65 and 0.62 respectively. The
parameter estimates are similar for both datasets, so that we combined
the MCMC samples to summarize the posteriors. The 95% credible set
contains networks of 1, 2, and 3 reticulations, with probability 0.64, 0.28,
0.07, respectively. The species networks with one reticulation all have the
same topology as Figure 13. However, the estimate of v is 0.49 (95% CI =
[0.23, 0.79]) for the networks with one reticulation, meaning the prior mean
and posterior mean are not very different. It appears that these datasets do
not have enough information to infer + precisely.

To improve the inference of the parameters, we added back more individ-
uals to the previously truncated data while fixing the network topology to
the one shown in Figure 13. Each of the two non-overlapping datasets now
has 20 individuals from P. purpurea, 15 from P. likiangensis, and 15 from
P. wilsonii (100 sequences per locus). We were not able to obtain good mix-
ing if co-estimating the network topology for this size of data. The MCMC
samples from the two datasets were combined. The posterior estimates of
node heights, 7, population sizes, and gene-rate multipliers (means and 95%
HPD intervals) are shown in Table 1. The parameters estimates are similar,
regardless of whether the population sizes are inferred or integrated out.

The results above confirm that P. purpurea is a hybrid species of P.
likiangensis and P. wilsonii. About 35% of the nuclear genome of P. pur-
purea was derived from P. wilsonii (and 65% from P. likiangensis). This
estimate is close to the original estimate of 31% made using approximate
Bayesian computation (ABC) (Sun et al., 2014). Assuming an average sub-
stitution rate u = 2 x 10~ per site per million years (Sun et al., 2014), and
dividing the node heights (7’s in Table 1) by u, we get the times measured
by million years, as shown in Figure 13. The time of hybridization is inferred
to be around 1 Ma. The estimate was 1.3 (95% CI = [0.73, 2.2]) Ma in the
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original analysis assuming the same height for nodes D, E, and H. More-
over, we get an older and narrower estimate for the root age of 6.0 (95% CI
= [5.1, 7.5]) Ma, compared to 2.7 (95% CI= [1.4, 6.5]) Ma in the original
analysis. Similarly, dividing estimates of # (Table 1) by u = 1 x 1078 per
site per generation, we get the mean effective population sizes of P. pur-
purea, P. wilsonii, and P. likiangensis as 2.1 x 10°, 0.5 x 10°, and 1.4 x 105,
respectively, which are smaller than estimated using ABC (cf. Table 4 in
Sun et al., 2014).

W P L

Figure 13: The species network with highest posterior probability (0.64)
inferred from the spruce data. The node heights (means and 95% HPD
intervals) are in unit of million years. The inheritance probability 7 is about
0.35. See also Table 1.
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Table 1: Posterior estimates

posterior (mean & 95%HPD)

parameters population sizes integrated population sizes inferred

TR 0.00119 (0.00103, 0.00149) 0.00121 (0.00101, 0.00152)
™D 0.000139 (0.000057, 0.000318)  0.000126 (0.000054, 0.000287)
TE 0.000338 (0.000119, 0.000425) 0.000349 (0.000128, 0.000545)
TH 0.000092 (0.000000, 0.000268)  0.000086 (0.000000, 0.000251)
vy 0.352 (0.127, 0.568) 0.346 (0.121, 0.542)

Ow - 0.000495 (0.000187, 0.000879)
Op - 0.00212 (0.00145, 0.00429)

0r, - 0.00135 (0.000778, 0.00195)
O, - 0.00346 (0.00181, 0.00527)
Om, - 0.00151 (0.000254, 0.00309)
0p - 0.00128 (0.000774, 0.00182)
Or - 0.00328 (0.00149, 0.00523)

Or - 0.00264 (0.000923, 0.00439)
Miel 1.513 (1.110, 1.923) 1.516 (1.122, 1.938)

Mebs 0.380 (0.152, 0.626) 0.381 (0.160, 0.636)

Mg 0.443 (0.221, 0.689) 0.445 (0.223, 0.688)

Mimoo2 1.603 (0.986, 2.240) 1.592 (0.995, 2.209)

Mm007d1 1.069 (0.682, 1.467) 1.063 (0.685, 1.457)

Msh16 1.393 (1.018, 1.789) 1.393 (1.022, 1.785)

Msp29 0.929 (0.543, 1.357) 0.929 (0.544, 1.351)

Mgb62 0.994 (0.405, 1.655) 1.002 (0.416, 1.641)

Msel364 0.431 (0.130, 0.783) 0.436 (0.133, 0.787)

M se1390 1.379 (0.955, 1.817) 1.379 (0.953, 1.824)

Migy1420 0.353 (0.075, 0.703) 0.351 (0.077, 0.700)

Posterior estimates (means and 95% HPD intervals) of node heights (7’s),
inheritance probability (), population sizes (0’s), and gene-rate multipli-
ers (m’s for each of the 11 loci in the spruce data). The population sizes
were either integrated out analytically using inverse-gamma(3, 0.003), or
inferred under gamma(2, 2000) priors. Dividing 7 by u = 2 x 1074 per
site per million years results in the time being measured in million years

(Fig. 13).
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4 Discussion

Methods to build a species network (e.g., Wu, 2010; Park et al., 2010; Al-
brecht et al., 2012) traditionally use inferred gene trees from each locus
without accounting for their uncertainties, and employ nonparametric crite-
rions such as parsimony. For population level data, the sequences are similar
and the signal for gene tree topologies is typically low, using fixed gene trees
is assigning too much certainty to the data. These methods typically assume
that gene tree discordance is solely due to reticulation, thus may suffer in
the presence of incomplete lineage sorting (Yu et al., 2011). The MSNC
model (Yu et al., 2014) provides a statistical framework to account for both
incomplete lineage sorting and reticulate evolution. But properly analyzing
genetic data to infer species networks under the MSNC model is a chal-
lenging task. There have been methods using only the gene tree topologies
from multiple loci under MSNC (Yu et al., 2012, 2014; Wen et al., 2016).
However, gene trees with branch lengths are more informative for inferring
species tree or network topology than gene tree topologies alone. Account-
ing for branch lengths can improve distinguishability of species networks
(Pardi and Scornavacca, 2015; Zhu and Degnan, 2016). Although methods
using estimated gene trees (with branch lengths) from bootstrapping or pos-
terior sample as input take account gene tree uncertainty (Yu et al., 2014;
Wen et al., 2016), directly using sequence data to co-estimate species net-
works and gene trees in a Bayesian framework showed improved accuracy
(Wen and Nakhleh, 2016), where such uncertainties are averaged over using
MCMC. Pseudo-likelihood approaches (Yu and Nakhleh, 2015; Solis-Lemus
and Ané, 2016) compute faster than full likelihood or Bayesian approaches,
but have severe distinguishability issues and require more data to achieve
good accuracy.

At the time of writing, another Bayesian method inferring species net-
works and gene trees simultaneously from multilocus sequence data has been
published (Wen and Nakhleh, 2016). The general framework here is simi-
lar, but we highlight four major differences. We use a birth-hybridization
prior for species network which naturally models the process of speciation
and hybridization. The prior is extendable to account for extinction and
incomplete sampling, and rates variation over time, as we outline below.
Wen and Nakhleh (2016) used a descriptive prior combining Poisson dis-
tribution for the number of reticulations and exponential distributions for
branch lengths. Secondly, we allow parallel branches (e.g., SsHs in Fig.
5b) in the network. This is biologically possible. Even if the true species
history has no parallel branches, the observed species network can still have
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such features due to incomplete sampling. Note though that a very large
number of individuals and loci are required to detect such parallel branches.
To prevent the species network from growing arbitrarily big, such that it
becomes indistinguishable by the gene trees (Pardi and Scornavacca, 2015;
Zhu and Degnan, 2016), we typically assign informative prior on the birth
rate to be larger than the hybridization rate. A similar strategy was used
in Wen et al. (2016); Wen and Nakhleh (2016) by restricting the rate of
the Poisson distribution. Third, we account for the uncertainty in the em-
bedding of a gene tree within a species network by estimating the MSNC
probability conditional on a proposed embedding at each MCMC step. This
provides a posterior distribution of gene trees and their embeddings within
a species network, enabling analysis of which alleles are derived from which
ancestral species. Last but not least, we applied analytically integration for
population sizes in the species network (Eq. 4). This reduces the number
of parameters for the rfjMCMC operators to deal with, and should improve
convergence and mixing. Besides, our implementation in SpeciesNetwork
is an extension to BEAST 2 (Bouckaert et al., 2014), to take advantage of
many standard phylogenetic models, such as different substitution models,
relaxed molecular clock models, and the BEAUT!I graphical interface.

In our approach, we employ a simple prior for the species network based
on a birth-hybridization model. Analogous to priors for species trees (e.g.,
Stadler, 2010; Heath et al., 2014), the prior for species network could be ex-
tended to account for speciation, extinction, hybridization, and incomplete
sampling, each with a different rate, leading networks with present-day sam-
ples and potential past samples corresponding to fossils. The rates could also
be allowed to vary over time, to model the diversification patterns during
speciation (the skyline model for trees, Stadler et al., 2013). When consid-
ering networks instead of trees, techniques to derive the probability density
of trees cannot be directly applied as the hybridization rate depends on
pairs of lineages rather than individual lineages. This non-linearity necessi-
tates solving differential equations to derive the species network probability
densities, a task which we defer to a later study.

Our approach is limited in computational speed. The empirical analysis
was done, e.g., on only 3 species with 10 individuals (20 sequences) each,
and 11 loci. The main bottleneck is the MCMC operators. Due to hard
constraints between the species network and embedded gene trees (Fig. 2),
MCMC operators changing them separately limit the ability to analyze ge-
nomic scale data from many individuals. More specifically, updating the
species network will likely violate a gene tree embedding, resulting in very
low acceptance rate of the operator. Thus it will be essential to design more
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efficient MCMC operators. There have been coordinated operators that can
change species tree and gene trees simultaneously (Rannala and Yang, 2003,
2017; Jones, 2017). Such operators are possible to be extended to species
networks, and will potentially improve efficiency of the MCMC algorithm.
Moreover, under the assumption of independence among loci, parallelizing
the calculation of phylogenetic likelihoods (Eq. 2) will further improve the
speed.

Another important step for the Bayesian method is summarizing the
posterior sample of species networks. For phylogenetic trees, the most com-
mon summaries include majority rule consensus tree and maximum clade
credibility tree (Drummond and Bouckaert, 2015). But there is still a lack
of good summaries for phylogenetic networks.

In summary, we developed a Bayesian method and computational tool
for inferring species networks together with gene trees and evolutionary pa-
rameters from multilocus sequence data. The method provides a general
Bayesian framework, with potential extensions in both theoretical and com-
putational aspects.

5 Materials and Methods

5.1 Simulations

Time is measured by genetic distance (substitutions per site) throughout
the simulations, so that § = Ny is used for all population sizes and 7; = t;
for the time of node i. The substitution rate p is fixed to 1.0 across all gene
lineages (strict molecular clock) and all loci (no rate variation).

5.1.1 Forward-in-time simulation and MCMC sampling of species
networks

We first generated networks under the birth-hybridization process. The sim-
ulator starts from the time of origin (¢g) with one species. A species split
into two (speciation) with rate A, and two species merge into one (hybridiza-
tion) with rate v. At the moment of k branches, the total rate of change
is reor = kX + (g)y We generate a waiting time ~ exp(ry¢) and a random
variable u ~ U(0,1). If u < kX/ro, we randomly select a branch to split;
otherwise, we randomly select two branches to join. The simulator stops at
time 0 (cf. Fig. 1). In this simulation, 79 = 0.06, A = 30, and v = 20, and
we kept 20,000 networks with exactly 3 tips.
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To compare with networks simulated above, we used our five network
operators (the operators for  are irrelevant in this case) to operate on
networks with 3 tips. The gene trees were not considered (i.e., no effect
from MSNC). 19, A, and v were fixed to the true values in the simulation.
The MCMC chain was run for 30 million steps and sampled every 1000 steps.
The last 20,000 sampled networks were kept (i.e., the burn-in was 33%).

5.1.2 Sampling the gene tree embeddings in a given species net-
work

We sampled the embeddings of gene tree (a1, a2); in the species network
shown in Figure 7a, using the rebuild-embedding operator alone. The gene
tree and species network were both fixed. The priors, MSNC, and likelihood
were set to be constant functions. The MCMC chain was run 2 million steps
and sampled every 100 steps.

5.1.3 Sampling gene trees without data in a given species net-
work

We compared gene trees simulated under the backward-in-time MSNC with
those sampled using the gene-tree operators. 10,000 random gene trees were
generated with the backward-in-time simulation given the network shown in
Figure 8, with population sizes § = 0.01. The sample configurations were
(2, 4, 2) (2 samples from A, 4 from B, and 2 from C) and (5, 10, 5) (5
samples from A, 10 from B, and 5 from C).

In the MCMC, the gene-tree operators include scale, uniform, subtree-
slide, narrow- and wide-exchange, and Wilson-Balding (Drummond and
Bouckaert, 2015). The species network topology, node heights and inher-
itance probabilities were fixed to the true values in the simulation (Fig. 8).
The population sizes were either fixed to the truth (0.01), or integrated out
analytically using inverse-gamma(10, 0.1) (Eq. 4). The probability of the
sequence data was set to be constant (no data). The chain was run 15 mil-
lion steps and sampled every 1000 steps. The last 10,000 sampled gene trees
were kept (i.e., the burn-in was 33%).

5.1.4 Inference of species networks from sequences

We simulated sequence alignments of multiple loci under the true network
shown in Figure 1. A random gene tree was generated for each locus under
the MSNC. Then DNA sequences of length 200 bp were simulated under
JC69 model (Jukes and Cantor, 1969) along each tree, with 7, = 0.05, 5 =
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0.03,75 = 0.02,4 = 0.01,7v = 0.3, and population sizes § = 0.01. The
sample configurations were (2, 4, 2) and (5, 10, 5), and the number of
loci was 2, 5, 10, 20, respectively. Under each setting, the simulation was
repeated 100 times.

We first fixed the network topology, to infer the node heights and inheri-
tance probability from each simulated dataset. The priors were 15 ~ exp(10),
d=X—v~exp(0.1), r =v/\ ~ beta(l, 2), and v ~ beta(1l, 1). The pop-
ulation sizes were integrated out analytically using inverse-gamma(10, 0.1)
(Eq. 4). The substitution model was set to JC69 (the truth). We fixed
p = 1.0 for all genes as in the simulation (strict molecular clock and no rate
variation). The MCMC chain was run 20 million steps and sampled every
2000 steps. The first 25% samples were discarded as burn-in.

We then also inferred the species network topology from each simu-
lated dataset, with all network operators enabled. The priors were kept
unchanged. The chain was run 40 million steps (doubled chain length) and
sampled every 2000 steps. The first 25% samples were discarded as burn-in.

5.2 Analysis of biological data

We analyzed a dataset of three spruce species (Picea purpurea, P. likian-
gensis and P. wilsonii) in the Qinghai-Tibet Plateau (Sun et al., 2014).
The original data has 166 diploid individuals and 11 nuclear loci (50 from
P. wilsonii, 56 from P. purpurea, 60 from P. likiangensis, and two phased
haplotype sequences per individual per locus).

The original data is too large for this Bayesian method to achieve proper
mixing and convergence in a reasonable time. Thus we truncated the data
into two datasets by randomly selecting individuals, each having 10 indi-
viduals per species. Each diploid individual has 2 sequences, thus there
are 60 sequences (from 30 individuals) and 11 loci for each dataset. The
two truncated datasets have no overlapping sequences, to confirm that they
can produce similar posterior estimates. The priors for the species network
were 79 ~ exp(500), d = A — v ~ exp(0.02), r = v/A ~ beta(l, 4), and
~v ~ beta(1l, 1). The population sizes were integrated out analytically us-
ing inverse-gamma(3, 0.003) (Eq. 4). The substitution model was HKY85
(Hasegawa et al., 1985), with independent x (transition-transversion rate
ratio) and state frequencies at each locus. The clock rate was fixed to 1.0
(strict molecular clock across branches) and gene-rate multipliers were used
to account for rate variation across loci. The MCMC chain was run 1 billion
steps and sampled every 20,000 steps. The first 30% samples were discarded
as burn-in. For each dataset we obtained two independent runs, and the
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two runs were checked for the effective sample sizes (ESS) and trace plots
of parameters, to ensure consistency. The MCMC samples from the two
truncated datasets were combined.

We noticed that the estimate of v was close to 0.5 (prior mean) using
the datasets above, with a large HPD interval. Thus we added back more
individuals, and fixed the network topology to which having the highest
posterior probability (Fig. 13), to infer the node heights and v more accu-
rately. Each of the two non-overlapping datasets had 20 individuals from P.
purpurea, 15 from P. likiangensis, and 15 from P. wilsonii (100 sequences
per locus). The population sizes were either inferred using MCMC under
gamma(2, 2000) priors (prior mean is 0.001), or integrated out analytically
using inverse-gamma(3, 0.003). The other priors and MCMC settings were
unchanged. The MCMC samples from the two truncated datasets were
combined.

5.3 Representation of phylogenetic networks

The species network can be represented using extended Newick format (Car-
dona et al., 2008), which was also used in the software PhyloNet (Than et al.,
2008).

For example, the species network in Figure 1 is written as

((A:0.02,(B:0.01)#H1 [&gamma=0.3]:0.01)S1:0.03,
(#H1:0.02,C:0.03)S2:0.02)R:0.03;

where the hash sign indicates a reticulation node, and the inheritance prob-
ability is in the brackets as metadata. Such extended Newick string can be
read into IcyTree (icytree.org) and be displayed nicely.

5.4 Software availability

The method is implemented in the add-on SpeciesNetwork for BEAST2
(Bouckaert et al., 2014), and is hosted publicly on GitHub (https://github.
com/zhangchicool/speciesnetwork).
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