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Abstract 

The ability to parse a complex auditory scene into perceptual objects is facilitated 

by a hierarchical auditory system. Successive stages in the hierarchy transform an 

auditory scene of multiple overlapping sources, from peripheral tonotopically-

based representations in the auditory nerve, into perceptually distinct auditory-

objects based representation in auditory cortex. Here, using magnetoencephalo-

graphy (MEG) recordings from human subjects, both men and women, we 

investigate how a complex acoustic scene consisting of multiple speech sources is 

represented in distinct hierarchical stages of auditory cortex. Using systems-

theoretic methods of stimulus reconstruction, we show that the primary-like areas 

in auditory cortex contain dominantly spectro-temporal based representations of 

the entire auditory scene. Here, both attended and ignored speech streams are 

represented with almost equal fidelity, and a global representation of the full 

auditory scene with all its streams is a better candidate neural representation than 

that of individual streams being represented separately. In contrast, we also show 

that higher order auditory cortical areas represent the attended stream separately, 

and with significantly higher fidelity, than unattended streams. Furthermore, the 

unattended background streams are more faithfully represented as a single 

unsegregated background object rather than as separated objects. Taken together, 

these findings demonstrate the progression of the representations and processing 

of a complex acoustic scene up through the hierarchy of human auditory cortex. 
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Significance Statement: 

Using magnetoencephalography (MEG) recordings from human listeners in a 

simulated cocktail party environment, we investigate how a complex acoustic 

scene consisting of multiple speech sources is represented in separate hierarchical 

stages of auditory cortex. We show that the primary-like areas in auditory cortex 

use a dominantly spectro-temporal based representation of the entire auditory 

scene, with both attended and ignored speech streams represented with almost 

equal fidelity. In contrast, we show that higher order auditory cortical areas 

represent an attended speech stream separately from, and with significantly higher 

fidelity than, unattended speech streams. Furthermore, the unattended background 

streams are represented as a single undivided background object rather than as 

distinct background objects. 
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Introduction 

Individual sounds originating from multiple sources in a complex auditory scene 

mix linearly and irreversibly before they enter the ear, yet are perceived as distinct 

objects by the listener (Cherry, 1953; Bregman, 1994; McDermott, 2009). The 

separation, or rather individual re-creation, of such linearly mixed original sound 

sources is a mathematically ill-posed question, yet the brain nevertheless routinely 

performs this task with ease. The neural mechanisms by which this perceptual ‘un-

mixing’ of sounds occur, the collective cortical representations of the auditory 

scene and its constituents, and the role of attention in both, are key problems in 

contemporary auditory neuroscience.  

It is known that auditory processing in primate cortex is hierarchical (Davis 

and Johnsrude, 2003; Hickok and Poeppel, 2007; Rauschecker and Scott, 2009; 

Okada et al., 2010; Peelle et al., 2010; Overath et al., 2015) with subcortical areas 

projecting onto the core areas of auditory cortex, and from there, on to belt, 

parabelt and additional auditory areas (Kaas and Hackett, 2000). Sound entering 

the ear reaches different anatomical/functional areas of auditory cortex with 

different latencies (Recanzone et al., 2000; Nourski et al., 2014). Due to this serial 

component of auditory processing, the hierarchy of processing can be described by 

both anatomy and latency, of which the latter may be exploited using the high 
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temporal fidelity of non-invasive magnetoencephalography (MEG) neural 

recordings.  

In selective listening experiments using natural speech and MEG, the two 

major neural responses known to track the speech envelope are the M50TRF and 

M100TRF, with respective latencies of 30 – 80 ms and 80 – 150 ms, of which the 

dominant neural sources are, respectively, Heschl's gyrus (HG) and Planum 

temporale (PT) (Steinschneider et al., 2011; Ding and Simon, 2012b). 

Posteromedial HG is the site of core auditory cortex; PT contains both belt and 

parabelt auditory areas (here collectively referred to as higher-order areas) 

(Griffiths and Warren, 2002; Sweet et al., 2005). Hence the earlier neural 

responses are dominated by core auditory cortex, and the later are dominated by 

higher-order areas. To better understand the neural mechanisms of auditory scene 

analysis, it is essential to understand how the cortical representations of a complex 

auditory scene change from the core to the higher order auditory areas.  

One topic of interest is whether the brain maintains distinct neural 

representations for each unattended source (in addition to the representation of the 

attended source), or if all unattended sources are represented collectively as a 

single monolithic background object. A common paradigm used to investigate the 

neural mechanisms underlying auditory scene analysis employs a pair of speech 

streams, of which one is attended, which then leaves the other speech stream 
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remaining as the background (Kerlin et al., 2010; Ding and Simon, 2012b; 

Mesgarani and Chang, 2012; Power et al., 2012; Zion Golumbic et al., 2013b; 

O'Sullivan et al., 2015). This results in a limitation, which cannot address the 

question of distinct vs. collective neural representations for unattended sources. 

This touches on the long-standing debate of whether auditory object segregation is 

pre-attentive or it is actively influenced by attention (Carlyon, 2004; Sussman et 

al., 2005; Shinn-Cunningham, 2008; Shamma et al., 2011). Evidence for 

segregated neural representations of background streams would support the 

former, whereas a lack of segregated background objects would support the latter. 

 To address these issues, we use MEG to investigate a variety of potential 

cortical representations of the elements of a multi-talker auditory scene. We test 

two major hypotheses: that the dominant representation in core auditory cortex is 

of the physical acoustics, not of separated auditory objects; and that once object-

based representations emerge in higher order auditory areas, the unattended 

contributions to the auditory scene are represented collectively as a single 

background object. The methodological approach employs the linear systems 

methods of stimulus prediction and MEG response reconstruction (Lalor et al., 

2009; Mesgarani et al., 2009; Ding and Simon, 2012b; Mesgarani and Chang, 

2012; Pasley et al., 2012; Di Liberto et al., 2015). 
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Materials & Methods: 

Subjects & Experimental Design Nine normal-hearing, young adults (6 Female) 

participated in the experiment. All subjects were paid for their participation. The 

experimental procedures were approved by the University of Maryland 

Institutional Review Board. Subjects listened to a mixture of three speech 

segments spoken by, respectively, a male adult, female adult and a child speaker. 

The three speech segments were mixed into a single audio channel with equal 

perceptual loudness. All three speech segments were taken from public domain 

narration of Grimms’ Fairy Tales by Jacob & Wilhelm Grimm 

(https://librivox.org/fairy-tales-by-the-brothers-grimm/). Periods of silence longer 

than 300 ms were replaced by a shorter gap whose duration was chosen randomly 

between 200 ms and 300 ms. The audio signal was low-pass filtered with cut-off 

at 4 kHz. In first of three conditions, the subjects were asked to attend to the child 

speaker, while ignoring the other two (i.e., child speaker as target, with male and 

female adult speakers as background). In condition two, during which the same 

mixture was played as in condition one, the subjects were instead asked to attend 

to the male adult speaker (with female adult and child speakers as background). 

Similarly, in condition three, the target was switched to the female adult speaker. 

Each condition was repeated three times successively, producing three trials per 

condition. The presentation order of the three conditions was counterbalanced 
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across subjects. Each trial was of 220 s duration, divided into two 110 s partitions, 

to reduce listener fatigue. To help participants attend to the correct speaker, the 

first 30 s of each partition was replaced by the clean recording of the target 

speaker alone, followed by a 5 s upward linear ramp of the background speakers. 

Recordings of this first 35 s of each segment were not included in any analysis. To 

further encourage the subjects to attend to the correct speaker, a target-word was 

set before each trial and the subjects were asked to count the number of 

occurrences of the target-word in the speech of the attended speaker. Additionally, 

after each condition, the subject was asked to recount a short summary of the 

attended narrative. The subjects were required to close their eyes while listening. 

Before the main experiment, 100 repetitions of a 500-Hz tone pip were presented 

to each subject to elicit the M100 response, a reliable auditory response occurring 

~100 ms after the onset of a tone pip. This data was used check whether any 

potential subjects gave abnormal auditory responses, but no subjects were 

excluded based on this criterion. 

 

Data recording and pre-processing MEG recordings were conducted using a 160-

channel whole-head system (Kanazawa Institute of Technology, Kanazawa, 

Japan). Its detection coils are arranged in a uniform array on a helmet-shaped 

surface of the bottom of the dewar, with ~25 mm between the centers of two 
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adjacent 15.5-mm-diameter coils. Sensors are configured as first-order axial 

gradiometers with a baseline of 50 mm; their field sensitivities are 5 fT/√Hz or 

better in the white noise region. Subjects lay horizontally in a dimly lit 

magnetically shielded room (Yokogawa Electric Corporation). Responses were 

recorded with a sampling rate of 1 kHz with an online 200-Hz low-pass filter and 

60 Hz notch filter. Three reference magnetic sensors and three vibrational sensors 

were used to measure the environmental magnetic field and vibrations. The 

reference sensor recordings were utilized to reduce environmental noise from the 

MEG recordings using the Time-Shift PCA method (de Cheveigne and Simon, 

2007). Additionally, MEG recordings were decomposed into virtual sensors/ 

components using denoising source separation (DSS) (Särelä and Valpola, 2005; 

de Cheveigne and Simon, 2008; de Cheveigne and Parra, 2014), a blind source 

separation method that enhances neural activity consistent over trials. Specifically, 

DSS decomposes the multichannel MEG recording into temporally uncorrelated 

components, where each component is determined by maximizing its trial-to-trial 

reliability, measured by the correlation between the responses to the same stimulus 

in different trials. To reduce the computational complexity, for all further analysis 

the 157 MEG sensors were reduced, using DSS, to 4 components in each 

hemisphere. Also, both stimulus envelope and MEG responses were band pass 
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filtered between 1 – 8 Hz (delta and theta bands), which correspond to the slow 

temporal modulations in speech (Ding and Simon, 2012a, b).  

 

Neural Model Terminology and Notation As specified in the stimulus 

description, in each condition the subject attends to one among the three speech 

streams. Neural models of speech stream processing can be compared by 

contrasting the predicted envelope reconstructions of the different models. The 

envelope of attended speech stream is referred to as the ‘foreground’ and the 

envelope of each of the two unattended speech streams is referred to as the 

‘individual background’. In contrast, the envelope of the entire unattended part of 

the stimulus, comprising both unattended speech streams, is referred to as the 

‘combined background’. The envelope of entire acoustic stimulus or auditory 

scene, comprising of all the three speech streams is referred to as the ‘acoustic 

scene’. Thus, if 𝑆", 𝑆$, 𝑆% are three speech stimuli, 𝐸𝑛𝑣(𝑆" + 𝑆$ + 𝑆%) is the 

acoustic scene. In contrast, the sum of envelopes of three speech streams, 

𝐸𝑛𝑣 𝑆" + 𝐸𝑛𝑣 𝑆$ + 𝐸𝑛𝑣(𝑆%), is referred to as the ‘sum of streams’, and the 

two are not mathematically equal: even though both are functions of the same 

stimuli, they differ due to the non-linear nature of a signal envelope (the linear 

correlation between the acoustic scene and the sum of streams is typically ~0.75). 

Combination (unsegregated) envelopes, whether of the entire acoustic scene or the 
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background only, can be used to test neural models that do not perform stream 

segregation. Sums of individual stream envelopes, whether of all streams or just 

the background streams, can be used to test neural models that process the 

(segregated) streams in parallel, given that neurally generated magnetic fields add 

in linear superposition. 

Neural responses with latencies less than ~85 ms (typically originating 

from core auditory areas) are referred to here as ‘early neural responses’ and 

responses with latencies more than ~85 ms (typically from higher-order auditory 

areas) (Ahveninen et al., 2011; Okamoto et al., 2011; Steinschneider et al., 2011) 

are referred to as ‘late neural responses’.  

The next two sections describe models of the neural encoding of stimuli 

into responses, followed by models of the decoding of stimuli from neural 

responses. Encoding models are presented here first because of their ease of 

description over decoding models, but in Results the decoding analysis is 

presented first, since it is the decoding results that inform the new model of 

encoding. 

 

Temporal Response Function In an auditory scene with a single talker, the 

relation between MEG neural response and the presented speech stimuli can be 

modeled using a linear temporal response function (TRF) as  
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 𝑟 𝑡 = 𝑠 𝑡 − 𝜏 𝑇𝑅𝐹 𝜏 + 𝜀 𝑡
6

 (1) 

where	𝑡 = 0,1, … , 𝑇 is time, 𝑟 𝑡 	is the response from any individual sensor or 

DSS component, 𝑠 𝑡 	is the stimulus envelope in decibels, 𝑇𝑅𝐹 𝑡 	is the TRF 

itself, and 𝜖 𝑡   is residual response waveform not explained by the TRF model 

(Ding and Simon, 2012a). The envelope is extracted by averaging the auditory 

spectrogram, (Chi et al., 2005) along the spectral dimension. The TRF is estimated 

using boosting with 10-fold cross-validation (David et al., 2007). In case of single 

speech stimuli, the TRF is typically characterized by a positive peak between 30 

ms and 80 ms and a negative peak between 90 ms and 130 ms, referred to as 

M50TRF and M100TRF respectively (Ding and Simon, 2012b) (positivity/negativity 

of the magnetic field is by convention defined to agree with the corresponding 

electroencephalography[EEG] peaks). Success/accuracy of the linear model is 

evaluated by how well it predicts neural responses, as measured by the proportion 

of the variance explained: the square of the Pearson correlation coefficient 

between the MEG measurement and the TRF model prediction.  

In the case of more than one speaker, the MEG neural response, 𝑟 𝑡 	can be 

modeled as the sum of the responses to the individual acoustic sources (Ding and 

Simon, 2012b; Zion Golumbic et al., 2013b), referred to here as the 'Summation 

model'. For example, with three speech streams, the neural response would be 

modeled as  
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 𝑟 𝑡 = 𝑆" 𝑡 − 𝜏 𝑇𝑅𝐹" 𝜏
6<6=

6<>

+ 	 𝑆$ 𝑡 − 𝜏 𝑇𝑅𝐹$ 𝜏
6<6=

6<>

+ 𝑆% 𝑡 − 𝜏 𝑇𝑅𝐹% 𝜏
6<6=

6<>
+ 𝜖 𝑡  

(2) 

 

where 𝑆" 𝑡 , 𝑆$(𝑡) and 𝑆%(𝑡) are the envelopes of the three speech streams, and 

𝑇𝑅𝐹" 𝑡 , 𝑇𝑅𝐹$ 𝑡 	and 𝑇𝑅𝐹% 𝑡  are the TRFs corresponding to each stream. 𝜏? 

represents the length of TRF. All TRFs in the Summation model are estimated 

simultaneously. 

In addition to the existing summation model, we propose a new encoding-

model referred to as the ‘Early-late model’, which allows one to incorporate the 

hypothesis that the early neural responses typically represent the entire acoustic 

scene, but that the later neural responses differentially represent the separated 

foreground and background.  

 𝑟 𝑡 = 𝑆@ 𝑡 − 𝜏 𝑇𝑅𝐹@ 𝜏
6<6A

6<>

+ 𝑆B 𝑡 − 𝜏 𝑇𝑅𝐹B 𝜏 + 𝑆C 𝑡 − 𝜏 𝑇𝑅𝐹C(𝜏)
6<6=

6<6A

6<6=

6<6A
+ 𝜖(𝑡) 

(3) 

   

where 𝑆@(𝑡) is the (entire) acoustic scene, 𝑆B(𝑡) is the envelope of attended 

(foreground) speech stream, and 𝑆C(𝑡) is the combined background (i.e., envelope 

of everything other than attended speech stream in the auditory scene), and  

𝑇𝑅𝐹@ 𝑡 , 𝑇𝑅𝐹B 𝑡 ,  and 𝑇𝑅𝐹C(𝑡) are the corresponding TRFs.	𝜏D, 𝜏?	represent the 

boundary values of the integration windows for early and late neural responses 

respectively, with	0 < 	 𝜏D < 𝜏?. 
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 The explanatory power of different models, such as the Summation and 

Early-late models, can be ranked by comparing the accuracy of their response 

predictions (illustrated in Figure 1A). The models differ in terms of number of free 

parameters, with the Early-late model having fewer parameters than the 

Summation model. Hence, any improved performance observed in the proposed 

Early-late model over the Summation model is correspondingly more likely due to 

a better model fit, since it has less freedom to fit the data (though the converse 

would not hold). 

 

(Figure 1 about here) 

 

Decoding speech from neural responses While the TRF/encoding analysis 

described in the previous section predicts neural response from the stimulus, 

decoding analysis reconstructs the stimulus based on the neural response. Thus, 

decoding analysis complements the TRF analysis (Mesgarani et al., 2009). 

Mathematically the envelope reconstruction/decoding operation can be formulated 

as  

 𝐸 𝑡 = 𝑀G 𝑡 + 𝜏 𝐷G 𝜏 + 𝜖(𝑡)
6I

6<6J

K

G<D

 (4) 
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where 𝐸(𝑡) is the reconstructed envelope, 𝑀G(𝑡) is the MEG recording (neural 

response) from sensor/component k, and  𝐷G 𝑡  is the linear decoder for 

sensor/component k. The times 𝜏$	and 𝜏L	denote the beginning and end times of 

the integration window. By appropriately choosing the values of 𝜏$ and 𝜏L, 

envelope reconstructions using neural responses from any desired time window 

can be compared. The decoder is estimated using boosting analogously to the TRF 

estimation in the previous section. In the single talker case the envelope is of that 

talker’s speech. In a multi-talker case, the envelope to be reconstructed might be 

the envelope of the speech of attended talker, or one of the background talkers, or 

of a mixture of any two or all three talkers, depending on the model under 

consideration. Chance-level reconstruction (i.e., the noise floor) from a particular 

neural response is estimated by reconstructing an unrelated stimulus envelope 

from that neural response. Figure 2 illustrates the distinction between 

reconstruction of stimulus envelope from early and late responses. The stimulus 

envelope at time point t can be reconstructed using neural responses from the 

dashed (early response) window or dotted (late response) window. (While it is true 

that the late responses to the stimulus at time point t –Δt  overlap with early 

responses to the stimulus at time point t, the decoder used to reconstruct the 

stimulus at time point t from early responses is only minimally affected by late 

responses to the stimulus at time point t –Δt  when the decoder is estimated by 
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averaging over a long enough duration, e.g., tens of seconds). The cut-off time 

between early and late responses, 𝜏$MNOP"QR, was chosen to minimize the overlap 

between the M50TRF and M100TRF peaks, on a per subject basis, with a median 

value of 85 ms (range 70-100 ms in 5 ms increments); repeating the analysis using 

the single value of 85 ms for all subjects did not qualitatively change any 

conclusions. When decoding from early responses only, the time window of 

integration is from 𝜏$ = 0 to 𝜏L = 𝜏$MNOP"QR. When decoding from late neural 

responses only, the time window of integration is from 𝜏$	 = 	 𝜏$MNOP"QR to 𝜏L = 

500 ms.  

 

(Figure 2 about here) 

 

 The robustness of different representations, such as of Foreground vs. 

Background, can be compared by examining the accuracy of their respective 

stimulus envelope reconstructions (illustrated in Figure 1, right). 

 

Statistics All statistical comparisons reported here are two-tailed permutation tests 

with N=1,000,000 random permutations (within subject). Due to the value of N 

selected, the smallest accurate p value that can be reported is 2×1/N (= 2×10-6; the 

factor of 2 arises from the two-tailed test) and any p value smaller than 2/N is 
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reported as p < 2×10-6. The statistical comparison between foreground and 

individual backgrounds requires special mention, since each listening condition 

has one foreground but two individual backgrounds. From the perspective of both 

behavior and task, both the individual backgrounds are interchangeable. Hence, 

when comparing reconstruction accuracy of foreground vs. individual background 

the average reconstruction accuracy of the two individual backgrounds is used. 

Finally, Bayes factor analysis is used, when appropriate, to evaluate evidence in 

favor of null hypothesis, since conventional hypothesis testing is not suitable for 

such purposes. Briefly, Bayes factor analysis calculates the posterior odds i.e., the 

ratio of P(H0|observations) to P(H1|observations), where H0 and H1 are the null 

and alternate hypotheses respectively. 

 
𝑃 𝐻>|𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
𝑃 𝐻D|𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

= 	
𝑃 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠|𝐻>
𝑃(𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠|𝐻D)

	×	
𝑃 𝐻>
𝑃 𝐻D

 

 
(5) 

 									= 	𝐵𝐹>D	×	
𝑃 𝐻>
𝑃 𝐻D

 

 
(6) 

The ratio of P(observations|H0) and P(observations|H1) is denoted as the Bayes 

factor, BF01. Then, under the assumption of equal priors (P(H0) = P(H1)), the 

posterior odds reduces to BF01. A BF01 value of 10 indicates that the data is ten 

times more likely to occur under the null hypothesis than the alternate hypothesis; 

conversely, a BF01 value of 0.1 indicates that the data is 10 times more likely to 
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occur under the alternate hypothesis than the null hypothesis. Conventionally, a 

BF01 value between 3 and 10 is considered as moderate evidence in favor of the 

null hypothesis, and a value between 10 and 30 is considered strong evidence; 

conversely, a BF01 value between 1/3 & 1/10  (respectively 1/10 & 1/30) is 

considered moderate (respectively strong) evidence for the alternate hypothesis 

(for more details we refer the reader to Rouder et al. (2009)). 

 

Results 

Stimulus reconstruction from early neural responses  

To investigate the neural representations of the attended vs. unattended speech 

streams associated with early auditory areas, i.e., from core auditory cortex, 

(Nourski et al., 2014), the temporal envelope of attended (foreground) and 

unattended speech streams (individual backgrounds) were reconstructed using 

decoders optimized individually for each speech stream. All reconstructions 

performed significantly better than chance level (foreground vs. noise, p < 2×10-6; 

individual background vs. noise, p < 2×10-6), indicating that all three speech 

streams are represented in early auditory cortex. Figure 3A shows reconstruction 

accuracy for foreground vs. individual backgrounds. A permutation test shows no 

significant difference between foreground and individual background (p = 0.21), 

indicating that there is no evidence of significant neural bias for the attended 
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speech stream over the ignored speech stream, in early neural responses. In fact, 

Bayes Factor analysis (BF01 = 4.2) indicates moderate support in favor of the null 

hypothesis (Rouder et al., 2009), that early neural responses do not distinguish 

significantly between attended and ignored speech streams.  

 

(Figure 3 about here) 

 

To test the hypothesis that early auditory areas represent the auditory scene 

in terms of acoustics, rather than as individual auditory objects, we reconstructed 

the acoustic scene (the envelope of the sum of all three speech streams) and 

compared it against the reconstruction of the sum of streams (sum of 

reconstruction envelopes of each of the three individual speech streams). Separate 

decoders optimized individually were used to reconstruct the acoustic scene and 

the sum of streams. As can be seen in Figure 3B, the result shows that the acoustic 

scene is better reconstructed than the sum of streams (p < 2×10-6). This indicates 

that early auditory cortex is better described as processing the entire acoustic scene 

rather than processing the separate elements of the scene individually. 

 

Stimulus reconstruction from late neural responses 
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While the preceding results were based on early cortical processing, the following 

results are based on late auditory cortical processing (responses with latencies 

more than ~85 ms). Figure 4A shows the scatter plot of reconstruction accuracy 

for the foreground vs. individual background envelopes based on late responses. A 

paired permutation test shows that reconstruction accuracy for the foreground is 

significantly higher than the background (p < 2×10-6). Even though the individual 

backgrounds are not as reliably reconstructed as foreground, their reconstructions 

are nonetheless significantly better than chance level (p < 2×10-6).  

In order to distinguish among possible neural representations of the 

background streams, we compared the reconstructability of the envelope of the 

entire background as a whole, with the reconstructability of the sum of the 

envelopes of the (two) backgrounds. If the background is represented as a single 

auditory object (i.e., “the background”), the reconstruction of the envelope of the 

entire background should be more faithful than the sum of envelopes of individual 

backgrounds. In contrast, if the background is represented as distinct auditory 

objects, each distinguished by its own envelope, the reconstruction of the sum of 

envelopes of the individual backgrounds should be more faithful. Figure 4B shows 

the scatter plot of reconstruction accuracy for the envelope of combined 

background vs. the sum of the envelopes of the individual background streams. 

Analysis shows that the envelope of the combined background is significantly 
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better represented than the sum of the individual envelopes of the individual 

backgrounds (p = 0.012). As noted previously, the envelope of the combined 

background is actually strongly correlated with the sum of the envelopes of the 

individual backgrounds, meaning that finding a significant difference in their 

reconstruction accuracy is a priori unlikely, providing even more credence to the 

result. 

 

(Figure 4 about here) 

 

Encoding analysis  

Results above from envelope reconstruction suggest that while early neural 

responses represent the auditory scene in terms of the acoustics, the later neural 

responses represent the auditory scene in terms of a separated foreground and a 

single background stream. In order to further test this hypothesis, we use TRF-

based encoding analysis to directly compare two different models of auditory 

scene representations. The two models compared are the standard Summation 

model (based on parallel representations of all speech streams; see Equation 2) and 

the new Early-late model (based on an early representation of the entire acoustic 

scene and late representations of separated foreground and background; see 

Equation 3). Figure 5 shows the response prediction accuracies for the two 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 21, 2017. ; https://doi.org/10.1101/124750doi: bioRxiv preprint 

https://doi.org/10.1101/124750
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 

 
22 

models. A permutation test shows that the accuracy of the Early-late model is 

considerably higher than that of the Summation model (p < 2×10-6). This indicates 

that a model in which early/core auditory cortex processes the entire acoustic 

scene but later/higher-order auditory cortex processes the foreground and 

background separately has more support than the previously employed model of 

parallel processing of separate streams throughout auditory cortex. 

 

(Figure 5 about here) 

 

Discussion 

In this study, we used cortical tracking of continuous speech, in a multi-talker 

scenario, to investigate the neural representations of an auditory scene. From MEG 

recordings of subjects selectively attending to one of the three co-located speech 

streams, we observed that 1) The early neural responses (from sources with short 

latencies), which originate primarily from core auditory cortex, represent the 

foreground (attended) and background (ignored) speech streams without any 

significant difference, whereas the late neural responses (from sources with longer 

latencies), which originate primarily from higher-order areas of auditory cortex, 

represent the foreground with significantly higher fidelity than the background; 2) 

Early neural responses are not only balanced in how they represent the constituent 
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speech streams, but in fact represent the entire acoustic scene holistically, rather 

than as separately contributing individual perceptual objects; 3) Even though there 

are two physical speech streams in the background, no neural segregation is 

observed for the background speech streams. 

It is well established that auditory processing in cortex is performed in a 

hierarchical fashion, in which an auditory stimulus is processed by different 

anatomical areas at different latencies (Inui et al., 2006; Nourski et al., 2014). 

Using this idea to inform the neural decoding/encoding analysis allows the 

effective isolation of neural signals from a particular cortical area, and thereby the 

ability to track changes in neural representations as the stimulus processing 

proceeds along the auditory hierarchy. This time-constrained 

reconstruction/prediction approach may prove especially fruitful in high-time-

resolution/low-spatial-resolution imaging techniques such as MEG and EEG. Even 

though different response components are generated by different neural sources, 

standard neural source localization algorithms may perform poorly when different 

sources are strongly correlated in their responses (Lutkenhoner and Mosher, 

2007). While the proposed method is not to be viewed as an alternative to source 

localization methods, it can nonetheless be used to tease apart different 

components of MEG/EEG response, without explicit source localization.  
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Even though there is no significant difference between the ability to 

reconstruct the foreground and background from early neural responses, 

nonetheless we observe a non-significant tendency towards an enhanced 

representation of the foreground (foreground > background, p = 0.21). This could 

be due to task-related plasticity of spectro-temporal receptive fields of neurons in 

mammalian primary auditory cortex (Fritz et al., 2003), where the receptive fields 

of neurons are tuned to match the stimulus characteristics of attended sounds. The 

selective amplification of foreground in late neural responses (from higher-order 

auditory cortices) but not in early responses (from core auditory cortex) observed 

here using decoding is in agreement with the encoding result of Ding and Simon 

(2012b) where the authors showed that the late M100TRF component, but not the 

early M50TRF component, of TRF is significantly modulated by attention. The 

increase in fidelity of the foreground as the response latency increases indicates a 

temporal as well as functional hierarchy in cortical processing of auditory scene, 

from core to higher-order areas in auditory cortex. Similar preferential 

representation for the attended speech stream has been demonstrated, albeit with 

only two speech streams and not differentiating between early and late responses, 

using delta and theta band neural responses (Ding and Simon, 2012b; Zion 

Golumbic et al., 2013a; Zion Golumbic et al., 2013b) as well as high-gamma 

neural responses (Mesgarani and Chang, 2012; Zion Golumbic et al., 2013a), and 
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using monaural (Ding and Simon, 2012b; Mesgarani and Chang, 2012) as well as 

audio-visual speech (Zion Golumbic et al., 2013a; Zion Golumbic et al., 2013b).  

While some researchers suggest selective entrainment (Schroeder and 

Lakatos, 2009; Ng et al., 2012; Zion Golumbic et al., 2013b; Kayser et al., 2015) 

as the mechanism for selective tracking of attended speech, others suggest a 

temporal coherence model (Shamma et al., 2011; Ding and Simon, 2012b). 

Natural speech is quasi-rhythmic with dominant rates at syllabic, word and 

prosodic frequencies. The selective entrainment model suggests that attention 

causes endogenous low frequency neural oscillations to align with the temporal 

structure of the attended speech stream, thus aligning the high excitability phases 

of oscillations with events in attended stream. This effectively forms a mask that 

favors the attended speech. The temporal coherence model suggests that selective 

tracking of attended speech is achieved in two stages. First, a cortical filtering 

stage, where feature-selective neurons filter the stimulus, producing a 

multidimensional representation of auditory scene along different feature axes. 

This is followed by a second stage, coherence analysis, which combines relevant 

features streams based on their temporal similarity, giving rise to separate 

perceptions of attended and ignored streams. In this model, it is hypothesized that 

attention, acting through in the coherence analysis stage, plays an important role in 
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stream formation. This type of coherence model predicts an unsegregated 

representation of any (non-attended) background streams. 

The representation of an auditory scene in core auditory cortex, based on 

the early responses, is here shown to be more spectro-temporal- or acoustic-based 

than object-based (e.g., Figure 3B). This is further supported by the result that the 

Early-late model predicts MEG neural responses significantly better than 

Summation model (e.g., Figure 5). This is consistent with previous demonstrations 

that neural activity in core auditory cortex was highly sensitive to acoustic 

characteristics of speech and primarily reflects spectro-temporal attributes of 

sound (Nourski et al., 2009; Okada et al., 2010; Ding and Simon, 2013; 

Steinschneider et al., 2014). In contrast, Nelken and Bar-Yosef (2008) suggest that 

neural auditory objects may form as early as primary auditory cortex, and Fritz et 

al. (2003) show that representations of dynamic sounds in primary auditory cortex 

are influenced by task. As a working principle, it is possible that less complex 

stimuli are resolved earlier in the hierarchy of auditory pathway (e.g., sounds that 

can be separated via tonotopy) whereas more complex stimuli (e.g., concurrent 

speech streams), which need further processing, are resolved only much later in 

auditory pathway. In addition, it is worth noting that the current study uses co-

located speech streams, whereas mechanisms of stream segregation will also be 

influenced by other auditory cues, including spatial cues, differences in acoustic 
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source statistics (e.g., only speech streams vs. mixed speech and music; strong 

statistical differences might drive stream segregation in a more bottom-up manner 

than the top-down attentional effects studied here), perceptual load effects (e.g., 

tone streams vs. speech streams), as well as visual cues. Any of these additional 

cues has the potential to alter the timing and neural mechanisms by which auditory 

scene analysis occurs. 

It is widely accepted that an auditory scene is perceived in terms of auditory 

objects (Bregman, 1994; Griffiths and Warren, 2004; Shinn-Cunningham, 2008; 

Shamma et al., 2011). Ding and Simon (2012a) demonstrated evidence for an 

object-based cortical representation of an auditory scene, but did not distinguish 

between early and late neural responses. This, coupled with the result here that 

early neural responses provide an acoustic, not object-based, representation, 

strongly suggest that the object-based representation emerges only in the late 

neural responses/higher-order (belt and parabelt) auditory areas. This is further 

supported by the observation that acoustic invariance, a property of object-based 

representation, is observed in higher order areas but not in core auditory cortex 

(Chang et al., 2010; Okada et al., 2010). When the foreground is represented as an 

auditory object in late neural responses, the finding that the combined background 

is better reconstructed than the sum of envelopes of individual backgrounds 

(Figure 4B) suggests that in late neural responses the background is not 
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represented as separated and distinct auditory objects. This result is consistent with 

that of Sussman et al. (2005), who reported an unsegregated background when 

subjects attended to one of three tone streams in the auditory scene. This 

unsegregated background may be a result of an 'analysis-by-synthesis’ (Yuille and 

Kersten, 2006; Poeppel et al., 2008) mechanism, wherein the auditory scene is first 

decomposed into basic acoustic elements, followed by top-down processes that 

guide the synthesis of the relevant components into a single stream, which then 

becomes the object of attention. The remainder of the auditory scene would be the 

unsegregated background, which itself might have the properties of an auditory 

object. When attention shifts, new auditory objects are correspondingly formed, 

with the old ones now contributing to the unstructured background. Shamma et al. 

(2011) suggest that this top down influence acts through the principle of temporal 

coherence. Between the two opposing views, that streams are formed pre-

attentively and that multiple streams can co-exist simultaneously, or that attention 

is required to form a stream and only that single stream is ever present as 

separated perceptual entity, these findings lend support to the latter. 

 In summary, these results provide evidence that, in a complex auditory 

scene with multiple overlapping spectral and temporal sources, the core areas of 

auditory cortex maintains an acoustic representation of the auditory scene with no 

significant preference to attended over ignored source, and with no separation into 
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distinct sources. It is only the higher-order auditory areas that provide an object 

based representation for the foreground, but even there the background remains 

unsegregated.  
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Figure Legends: 

Figure 1: Illustrations of outcomes comparing competing encoding- and decoding-

based neural representations of the auditory scene and its constituents. All 

examples are grand averages across subjects (3 seconds duration). A. Comparing 

competing models of encoding to neural responses. In both the top and bottom 

examples, an experimentally measured MEG response (black) is compared to the 

neural response predictions made by competing proposed models. In the top 

example, the neural response prediction (red) is from the Early-late model; in the 

bottom example, the neural response prediction (magenta) is from the Summation 

model. The proposed Early-late model prediction shows higher correlation with 

the actual MEG neural response than Summation model. B. Comparing competing 

models of decoding to stimulus speech envelopes. In both the top and bottom 

examples, an acoustic speech stimulus envelope (blue/cyan) is compared to the 

model reconstruction of the respective envelope (gray). In the top example, the 

envelope reconstruction (blue) is of the foreground stimulus, based on late time 

responses; in the bottom example, the envelope reconstruction (cyan) is of the 

background stimulus, also based on late time responses. The foreground 

reconstruction shows higher correlation with the actual foreground envelope, 

compared to the background reconstruction with the actual background envelope.  
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Figure 2: Early vs. late MEG neural responses to a continuous speech stimulus. A 

sample stimulus envelope and time-locked multi-channel MEG recordings are 

shown in red and black respectively. The two grey vertical lines indicate two 

arbitrary time points at t - Dt and t. The dashed and dotted boxes represent the 

early and late MEG neural responses to stimulus at time point t respectively. The 

reconstruction of the stimulus envelope at time t can be based on either early or 

late neural responses, and the separate reconstructions can be compared against 

each other. 

 

 

Figure 3: Stimulus envelope reconstruction accuracy using early neural responses. 

A. Scatter plot of reconstruction accuracy of the foreground vs. individual 

background envelopes. No significant difference was observed (p = 0.21), and 

therefore no preferential representation of the foreground speech over the 

individual background streams is revealed in early neural responses. Each data 

point corresponds to a distinct background and condition partition per subject 

(with two backgrounds sharing a common foreground). B. Scatter plot of 

reconstruction accuracy of the envelope of the entire acoustic scene vs. that of the 

sum of the envelopes of all three individual speech streams. The acoustic scene is 

reconstructed more accurately (visually, most of data points fall above the 
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diagonal) as a whole than as the sum of individual components in early neural 

responses (p < 2 × 10-6). Each data point corresponds to a distinct condition 

partition per subject. In both plots, reconstruction accuracy is measured by 

proportion of the variance explained: the square of the Pearson correlation 

coefficient between the actual and predicted envelopes.  

 

Figure 4: Stimulus envelope reconstruction accuracy using late neural responses. 

A. Scatter plot of accuracy between foreground vs. individual background 

envelope reconstructions demonstrates that the foreground is represented with 

dramatically better fidelity (visually, most of data points fall above the diagonal) 

than the background speech, in late neural responses (p < 2 × 10-6). Each data 

point corresponds to a distinct background and condition partition per subject 

(with two backgrounds sharing a common foreground). B. Scatter plot of the 

reconstruction accuracy of the envelope of the entire background vs. that of the 

sum of the envelopes of the two individual background speech streams. The 

background scene is reconstructed more accurately as a monolithic background 

than as separated individual background streams in late neural responses (p = 

0.012). Each data point corresponds to a distinct condition partition per subject. 
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Figure 5: MEG response prediction accuracy. Scatter plot of the accuracy of 

predicted MEG neural response for the proposed Early-late model vs. the standard 

Summation model. The Early-late model predicts the MEG neural response 

dramatically better (visually, most of data points fall above the diagonal) than the 

Summation model (p < 2 × 10-6). The accuracy of predicted MEG neural 

responses is measured by proportion of the variance explained: the square of the 

Pearson correlation coefficient between the actual and predicted responses. Each 

data point corresponds to a distinct condition partition per subject. 
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