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Abstract 22 

The ability to parse a complex auditory scene into perceptual objects is facilitated 23 

by a hierarchical auditory system. Successive stages in the hierarchy transform an 24 

auditory scene of multiple overlapping sources, from peripheral tonotopically-25 

based representations in the auditory nerve, into perceptually distinct auditory-26 

objects based representation in auditory cortex. Here, using magnetoencephalo-27 

graphy (MEG) recordings from human subjects, we investigate how a complex 28 

acoustic scene consisting of multiple speech sources is represented in distinct 29 

hierarchical stages of auditory cortex. Using systems-theoretic methods of 30 

stimulus reconstruction, we show that the primary-like areas in auditory cortex 31 

contain dominantly spectro-temporal based representations of the entire auditory 32 

scene. Here, both attended and ignored speech streams are represented with almost 33 

equal fidelity, and a global representation of the full auditory scene with all its 34 

streams is a better candidate neural representation than that of individual streams 35 

being represented separately. In contrast, we also show that higher order auditory 36 

cortical areas represent the attended stream separately, and with significantly 37 

higher fidelity, than unattended streams. Furthermore, the unattended background 38 

streams are more faithfully represented as a single unsegregated background 39 

object rather than as separated objects. Taken together, these findings demonstrate 40 

the progression of the representations and processing of a complex acoustic scene 41 

up through the hierarchy of human auditory cortex. 42 
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Significance Statement: 43 

Using magnetoencephalography (MEG) recordings from human listeners in a 44 

simulated cocktail party environment, we investigate how a complex acoustic 45 

scene consisting of multiple speech sources is represented in separate hierarchical 46 

stages of auditory cortex. We show that the primary-like areas in auditory cortex 47 

use a dominantly spectro-temporal based representation of the entire auditory 48 

scene, with both attended and ignored speech streams represented with almost 49 

equal fidelity. In contrast, we show that higher order auditory cortical areas 50 

represent an attended speech stream separately from, and with significantly higher 51 

fidelity than, unattended speech streams. Furthermore, the unattended background 52 

streams are represented as a single undivided background object rather than as 53 

distinct background objects. 54 

55 
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Introduction 56 

Individual sounds originating from multiple sources in a complex auditory scene 57 

mix linearly and irreversibly before they enter the ear, yet are perceived as distinct 58 

objects by the listener (Cherry, 1953; Bregman, 1994; McDermott, 2009). The 59 

separation, or rather individual re-creation, of such linearly mixed original sound 60 

sources is a mathematically ill-posed question, yet the brain nevertheless routinely 61 

performs this task with ease. The neural mechanisms by which this perceptual ‘un-62 

mixing’ of sounds occur, the collective cortical representations of the auditory 63 

scene and its constituents, and the role of attention in both, are key problems in 64 

contemporary auditory neuroscience.  65 

It is known that auditory processing in primate cortex is hierarchical (Davis 66 

and Johnsrude, 2003; Hickok and Poeppel, 2007; Rauschecker and Scott, 2009; 67 

Okada et al., 2010; Peelle et al., 2010) with subcortical areas projecting onto the 68 

core areas of auditory cortex, and from there, on to belt, parabelt and additional 69 

auditory areas (Kaas and Hackett, 2000). Sound entering the ear reaches different 70 

anatomical/functional areas of auditory cortex with different latencies (Recanzone 71 

et al., 2000; Nourski et al., 2014). Due to this serial component of auditory 72 

processing, the hierarchy of processing can be described by both anatomy and 73 

latency, of which the latter may be exploited using the high temporal fidelity of 74 

non-invasive magnetoencephalography (MEG) neural recordings.  75 
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In selective listening experiments using natural speech and MEG, the two 76 

major neural responses known to track the speech envelope are the M50TRF and 77 

M100TRF, with respective latencies of 30 – 80 ms and 80 – 150 ms, of which the 78 

dominant neural sources are, respectively, Heschl's gyrus (HG) and Planum 79 

temporale (PT) (Steinschneider et al., 2011; Ding and Simon, 2012a). 80 

Posteromedial HG is the site of core auditory cortex; PT contains both belt and 81 

parabelt auditory areas (here collectively referred to as higher-order areas) 82 

(Griffiths and Warren, 2002; Sweet et al., 2005). Hence the earlier neural 83 

responses are dominated by core auditory cortex, and the later are dominated by 84 

higher-order areas. To better understand the neural mechanisms of auditory scene 85 

analysis, it is essential to understand how the cortical representations of a complex 86 

auditory scene change from the core to the higher order auditory areas.  87 

One topic of interest is whether the brain maintains distinct neural 88 

representations for each unattended source (in addition to the representation of the 89 

attended source), or if all unattended sources are represented collectively as a 90 

single monolithic background object. A common paradigm used to investigate the 91 

neural mechanisms underlying auditory scene analysis employs a pair of speech 92 

streams, of which one is attended, which then leaves the other speech stream 93 

remaining as the background (Ding and Simon, 2012a; Mesgarani and Chang, 94 

2012; Zion Golumbic et al., 2013b). This results in a limitation, which cannot 95 
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address the question of distinct vs. collective neural representations for unattended 96 

sources. This touches on the long-standing debate of whether auditory object 97 

segregation is pre-attentive or it is actively influenced by attention (Carlyon, 2004; 98 

Sussman et al., 2005; Shinn-Cunningham, 2008; Shamma et al., 2011). Evidence 99 

for segregated neural representations of background streams would support the 100 

former, whereas a lack of segregated background objects would support the latter. 101 

 To address these issues, we use MEG to investigate a variety of potential 102 

cortical representations of the elements of a multi-talker auditory scene. We test 103 

two major hypotheses: that the dominant representation in core auditory cortex is 104 

of the physical acoustics, not of separated auditory objects; and that once object-105 

based representations emerge in higher order auditory areas, the unattended 106 

contributions to the auditory scene are represented collectively as a single 107 

background object. The methodological approach employs the linear systems 108 

methods of stimulus prediction and MEG response reconstruction (Ding and 109 

Simon, 2012a; Mesgarani and Chang, 2012; Di Liberto et al., 2015). 110 

 111 

Materials & Methods: 112 

Subjects & Experimental Design Nine normal-hearing, young adults (6 Female) 113 

participated in the experiment. All subjects were paid for their participation. The 114 

experimental procedures were approved by the University of Maryland 115 
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Institutional Review Board. Subjects listened to a mixture of three speech 116 

segments spoken by, respectively, a male adult, female adult and a child speaker. 117 

The three speech segments were mixed into a single audio channel with equal 118 

perceptual loudness. All three speech segments were taken from public domain 119 

narration of Grimms’ Fairy Tales by Jacob & Wilhelm Grimm 120 

(https://librivox.org/fairy-tales-by-the-brothers-grimm/). Periods of silence longer 121 

than 300 ms were replaced by a shorter gap whose duration was chosen randomly 122 

between 200 ms and 300 ms. The audio signal was low-pass filtered below 4 kHz. 123 

In first of three conditions, the subjects were asked to attend to the child speaker, 124 

while ignoring the other two (i.e., child speaker as target, with male and female 125 

adult speakers as background). In condition two, during which the same mixture 126 

was played as in condition one, the subjects were instead asked to attend to the 127 

male adult speaker (with female adult and child speakers as background). 128 

Similarly, in condition three, the target was switched to the female adult speaker. 129 

Each condition was repeated three times successively, producing three trials per 130 

condition. The presentation order of the three conditions was counterbalanced 131 

across subjects. Each trial was of 220 s duration, divided into two 110 s sections, 132 

to reduce listener fatigue. To help participants attend to the correct speaker, the 133 

first 30 s of each section was replaced by the clean recording of the target speaker 134 

alone, followed by a 5 s upward linear ramp of the background speakers. 135 
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Recordings of this first 35 s of each segment were not included in any analysis. To 136 

further encourage the subjects to attend to the correct speaker, a target-word was 137 

set before each trial and the subjects were asked to count the number of 138 

occurrences of the target-word in the speech of the attended speaker. Additionally, 139 

after each condition, the subject was asked to recount a short summary of the 140 

attended narrative. The subjects were required to close their eyes while listening. 141 

Before the main experiment, 100 repetitions of a 500-Hz tone pip were presented 142 

to each subject to elicit the M100 response, a reliable auditory response occurring 143 

~100 ms after the onset of a tone pip. This data was used check whether any 144 

potential subjects gave abnormal auditory responses, but no subjects were 145 

excluded based on this criterion. 146 

 147 

Data recording and pre-processing MEG recordings were conducted using a 160-148 

channel whole-head system (Kanazawa Institute of Technology, Kanazawa, 149 

Japan). Its detection coils are arranged in a uniform array on a helmet-shaped 150 

surface of the bottom of the dewar, with ~25 mm between the centers of two 151 

adjacent 15.5-mm-diameter coils. Sensors are configured as first-order axial 152 

gradiometers with a baseline of 50 mm; their field sensitivities are 5 fT/√Hz or 153 

better in the white noise region. Subjects lay horizontally in a dimly lit 154 

magnetically shielded room (Yokogawa Electric Corporation). Responses were 155 
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recorded with a sampling rate of 1 kHz with an online 200-Hz low-pass filter and 156 

60 Hz notch filter. Three reference magnetic sensors and three vibrational sensors 157 

were used to measure the environmental magnetic field and vibrations. The 158 

reference sensor recordings were utilized to reduce environmental noise from the 159 

MEG recordings using the Time-Shift PCA method (de Cheveigne and Simon, 160 

2007). Additionally, MEG recordings were decomposed into virtual sensors/ 161 

components using denoising source separation (DSS) (Särelä and Valpola, 2005; 162 

de Cheveigne and Simon, 2008; de Cheveigne and Parra, 2014), a blind source 163 

separation method that enhances neural activity consistent over trials. Specifically, 164 

DSS decomposes the multichannel MEG recording into temporally uncorrelated 165 

components, where each component is determined by maximizing its trial-to-trial 166 

reliability, measured by the correlation between the responses to the same stimulus 167 

in different trials. To reduce the computational complexity, for all further analysis 168 

the 157 MEG sensors were reduced, using DSS, to 4 components in each 169 

hemisphere. Also, both stimulus envelope and MEG responses were band pass 170 

filtered between 1 – 8 Hz (delta and theta bands), which correspond to the slow 171 

temporal modulations in speech (Ding and Simon, 2012b, a).  172 

 173 

Terminology and Notation As specified in the stimulus description, in each 174 

condition the subject attends to one among the three speech streams. The envelope 175 
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of attended speech stream is referred to as the ‘foreground’ and the envelope of 176 

each of the two unattended speech streams is referred to as the ‘individual 177 

background’. In contrast, the envelope of the entire unattended part of the 178 

stimulus, comprising both unattended speech streams, is referred to as the 179 

‘combined background’. The envelope of entire acoustic stimulus or auditory 180 

scene, comprising of all the three speech streams is referred to as the ‘acoustic 181 

scene’. Thus, if 𝑆! , 𝑆! , 𝑆! are three speech stimuli, 𝐸𝑛𝑣(𝑆! + 𝑆! + 𝑆!) is the 182 

acoustic scene. In contrast, the sum of envelopes of three speech streams, 183 

𝐸𝑛𝑣 𝑆! + 𝐸𝑛𝑣 𝑆! + 𝐸𝑛𝑣(𝑆!), is referred to as the ‘sum of streams’, and the 184 

two are not mathematically equal: even though both are functions of the same 185 

stimuli, they differ due to the non-linear nature of a signal envelope (the linear 186 

correlation between the acoustic scene and the sum of streams is typically ~0.75).  187 

Neural responses with latencies less than ~85 ms (typically originating 188 

from core auditory areas) are referred to here as ‘early neural responses’ and 189 

responses with latencies more than ~85 ms (typically from higher-order auditory 190 

areas) (Ahveninen et al., 2011; Okamoto et al., 2011; Steinschneider et al., 2011) 191 

are referred to as ‘late neural responses’.  192 

 193 
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Temporal Response Function In an auditory scene with a single talker, the 194 

relation between MEG neural response and the presented speech stimuli can be 195 

modeled using a linear temporal response function (TRF) as  196 

 𝑟 𝑡 = 𝑠 𝑡 − 𝜏 𝑇𝑅𝐹 𝜏 + 𝜀 𝑡
!

 (1) 

where 𝑡 = 0,1,… ,𝑇 is time, 𝑟 𝑡  is the response from any individual sensor or 197 

DSS component, 𝑠 𝑡  is the stimulus envelope in decibels, 𝑇𝑅𝐹 𝑡  is the TRF 198 

itself, and 𝜖 𝑡   is residual response waveform not explained by the TRF model 199 

(Ding and Simon, 2012b). The envelope is extracted by averaging the auditory 200 

spectrogram, (Chi et al., 2005) along the spectral dimension. The TRF is estimated 201 

using boosting with 10-fold cross-validation (David et al., 2007). In case of single 202 

speech stimuli, the TRF is typically characterized by a positive peak between 30 203 

ms and 80 ms and a negative peak between 90 ms and 130 ms, referred to as 204 

M50TRF and M100TRF respectively (Ding and Simon, 2012a) (positivity/negativity 205 

of the magnetic field is by convention defined to agree with the corresponding 206 

electroencephalography[EEG] peaks). Success/accuracy of the linear model is 207 

evaluated by how well it predicts neural responses, as measured by the proportion 208 

of the variance explained: the square of the Pearson correlation coefficient 209 

between the MEG measurement and the TRF model prediction.  210 

In the case of more than one speaker, the MEG neural response, 𝑟 𝑡  can be 211 

modeled as the sum of the responses to the individual acoustic sources (Ding and 212 
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Simon, 2012a; Zion Golumbic et al., 2013b), referred to here as the 'Summation 213 

model'. For example, with two speech streams, the neural response would be 214 

modeled as  215 

 𝑟 𝑡 = 𝑆! 𝑡 − 𝜏 𝑇𝑅𝐹! 𝜏
!

+  𝑆! 𝑡 − 𝜏 𝑇𝑅𝐹! 𝜏 + 𝜀 𝑡
!

 (2) 

 216 

where 𝑆! 𝑡  and 𝑆!(𝑡) are the envelopes of the two speech streams, and 𝑇𝑅𝐹! 𝑡 , 217 

and 𝑇𝑅𝐹! 𝑡  are the TRFs corresponding to each stream. The summation model is 218 

easily extended to the case of more than two speech streams, by adding new terms 219 

with each new individual speech stream envelope and the corresponding TRF.  220 

In addition to the existing summation model, we propose a new encoding-221 

model referred to as the ‘Early-late model’, which allows one to incorporate the 222 

hypothesis that the early neural responses typically represent the entire acoustic 223 

scene, but that the later neural responses differentially represent the separated 224 

foreground and background.  225 

 
𝑟 𝑡 = 𝑆! 𝑡 − 𝜏 𝑇𝑅𝐹! 𝜏

!!!!

!!!

+ 𝑆! 𝑡 − 𝜏 𝑇𝑅𝐹! 𝜏 + 𝑆! 𝑡 − 𝜏 𝑇𝑅𝐹!(𝜏)
!!!!

!!!!

!!!!

!!!!

+ 𝜖(𝑡) 
(3) 

   226 

where 𝑆!(𝑡) is the (entire) acoustic scene, 𝑆!(𝑡) is the envelope of attended 227 

(foreground) speech stream, and 𝑆!(𝑡) is the combined background (i.e., envelope 228 

of everything other than attended speech stream in the auditory scene), and  229 

𝑇𝑅𝐹! 𝑡 ,𝑇𝑅𝐹! 𝑡 ,  and 𝑇𝑅𝐹!(𝑡) are the corresponding 𝑇𝑅𝐹𝑠. 𝜏!, 𝜏! represent the 230 
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boundary values of the integration windows for early and late neural responses 231 

respectively. 232 

 The explanatory power of different models, such as the Summation and 233 

Early-late models, can be ranked by comparing the accuracy of their response 234 

predictions (illustrated in Figure 1, left). 235 

 236 

(Figure 1 about here) 237 

 238 

Decoding speech from neural responses While the TRF/encoding analysis 239 

described in the previous section predicts neural response from the stimulus, 240 

decoding analysis reconstructs the stimulus based on the neural response. Thus, 241 

decoding analysis complements the TRF analysis (Mesgarani et al., 2009). 242 

Mathematically the envelope reconstruction/decoding operation can be formulated 243 

as  244 

 𝐸 𝑡 = 𝑀! 𝑡 + 𝜏 𝐷! 𝜏 + 𝜖(𝑡)
!!

!!!!

!

!!!

 (4) 

 245 

where 𝐸(𝑡) is the reconstructed envelope, 𝑀!(𝑡) is the MEG recording (neural 246 

response) from sensor/component k, and  𝐷! 𝑡  is the linear decoder for 247 

sensor/component k. The times 𝜏! and 𝜏!  denote the beginning and end times of 248 

the integration window. By appropriately choosing the values of 𝜏! and 𝜏!, 249 
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envelope reconstructions using neural responses from any desired time window 250 

can be compared. The decoder is estimated using boosting analogously to the TRF 251 

estimation in the previous section. In the single talker case the envelope is of that 252 

talker’s speech. In a multi-talker case, the envelope to be reconstructed might be 253 

the envelope of the speech of attended talker, or one of the background talkers, or 254 

of a mixture of any two or all three talkers, depending on the model under 255 

consideration. Chance-level reconstruction (i.e., the noise floor) from a particular 256 

neural response is estimated by reconstructing an unrelated stimulus envelope 257 

from that neural response. Figure 2 illustrates the distinction between 258 

reconstruction of stimulus envelope from early and late responses. The stimulus 259 

envelope at time point t can be reconstructed using neural responses from the 260 

dashed (early response) window or dotted (late response) window. (While it is true 261 

that the late responses to the stimulus at time point t –Δt  overlap with early 262 

responses to the stimulus at time point t, the decoder used to reconstruct the 263 

stimulus at time point t from early responses is only minimally affected by late 264 

responses to the stimulus at time point t –Δt  when the decoder is estimated by 265 

averaging over a long enough duration, e.g., tens of seconds). The cut-off time 266 

between early and late responses, 𝜏!"#$%&'(, was chosen to minimize the overlap 267 

between the M50TRF and M100TRF peaks, on a per subject basis, with a typical 268 

value being 85 ms. When decoding from early responses only, the time window of 269 
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integration is from 𝜏! = 0 to 𝜏! = 𝜏!"#$%&'(. When decoding from late neural 270 

responses only, the time window of integration is from 𝜏! =  𝜏!"#$%&'( to 𝜏! = 271 

500 ms.  272 

 273 

(Figure 2 about here) 274 

 275 

 The robustness of different representations, such as of Foreground vs. 276 

Background, can be compared by examining the accuracy of their respective 277 

stimulus envelope reconstructions (illustrated in Figure 1, right). 278 

 279 

Statistics All statistical comparisons reported here are two-tailed permutation tests 280 

with N=1,000,000 random permutations (within subject). Due to the value of N 281 

selected, the smallest accurate p value that can be reported is 2×1/N (= 2×10-6; the 282 

factor of 2 arises from the two-tailed test) and any p value smaller than 2/N is 283 

reported as p < 2×10-6. The statistical comparison between foreground and 284 

individual backgrounds requires special mention, since each listening condition 285 

has one foreground but two individual backgrounds. From the perspective of both 286 

behavior and task, both the individual backgrounds are interchangeable. Hence, 287 

when comparing reconstruction accuracy of foreground vs. individual background 288 

the average reconstruction accuracy of the two individual backgrounds is used. 289 
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Finally, Bayes factor analysis is used, when appropriate, to evaluate evidence in 290 

favor of null hypothesis, since conventional hypothesis testing is not suitable for 291 

such purposes. Briefly, Bayes factor analysis calculates the posterior odds i.e., the 292 

ratio of P(H0|observations) to P(H1|observations), where H0 and H1 are the null 293 

and alternate hypotheses respectively. 294 

 
𝑃 𝐻!|𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
𝑃 𝐻!|𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

=  
𝑃 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠|𝐻!
𝑃(𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠|𝐻!)

 ×  
𝑃 𝐻!
𝑃 𝐻!

 

 
(5) 

          =  𝐵𝐹!" ×  
𝑃 𝐻!
𝑃 𝐻!

 

 
(6) 

The ratio of P(observations|H0) and P(observations|H1) is denoted as the Bayes 295 

factor, BF01. Then, under the assumption of equal priors (P(H0) = P(H1)), the 296 

posterior odds reduces to BF01. A BF01 value of 10 indicates that the data is ten 297 

times more likely to occur under the null hypothesis than the alternate hypothesis; 298 

conversely, a BF01 value of 0.1 indicates that the data is 10 times more likely to 299 

occur under the alternate hypothesis than the null hypothesis. Conventionally, a 300 

BF01 value between 3 and 10 is considered as moderate evidence in favor of the 301 

null hypothesis, and a value between 10 and 30 is considered strong evidence; 302 

conversely, a BF01 value between 1/3 & 1/10  (respectively 1/10 & 1/30) is 303 

considered moderate (respectively strong) evidence for the alternate hypothesis 304 

(for more details we refer the reader to Rouder et al. (2009)). 305 
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 306 

Results 307 

Stimulus reconstruction from early neural responses  308 

To investigate the neural representations of the attended vs. unattended speech 309 

streams associated with early auditory areas, i.e., from core auditory cortex, 310 

(Nourski et al., 2014), the temporal envelope of attended (foreground) and 311 

unattended speech streams (individual backgrounds) were reconstructed using 312 

decoders optimized individually for each speech stream. All reconstructions 313 

performed significantly better than chance level (foreground vs. noise, p < 2×10-6; 314 

individual background vs. noise, p < 2×10-6), indicating that all three speech 315 

streams are represented in early auditory cortex. Figure 3A shows reconstruction 316 

accuracy for foreground vs. individual backgrounds. A permutation test shows no 317 

significant difference between foreground and individual background (p = 0.21), 318 

indicating that there is no evidence of significant neural bias for the attended 319 

speech stream over the ignored speech stream, in early neural responses. In fact, 320 

Bayes Factor analysis (BF01 = 4.2) indicates moderate support in favor of the null 321 

hypothesis (Rouder et al., 2009), that early neural responses do not distinguish 322 

significantly between attended and ignored speech streams.  323 

 324 

(Figure 3 about here) 325 
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 326 

To test the hypothesis that early auditory areas represent the auditory scene 327 

in terms of acoustics, rather than as individual auditory objects, we reconstructed 328 

the acoustic scene (the envelope of the sum of all three speech streams) and 329 

compared it against the reconstruction of the sum of streams (sum of 330 

reconstruction envelopes of each of the three individual speech streams). Separate 331 

decoders optimized individually were used to reconstruct the acoustic scene and 332 

the sum of streams. As can be seen in Figure 3B, the result shows that the acoustic 333 

scene is better reconstructed than the sum of streams (p < 2×10-6). This indicates 334 

that early auditory cortex is better described as processing the entire acoustic scene 335 

rather than processing the separate elements of the scene individually. 336 

 337 

Stimulus reconstruction from late neural responses 338 

While the preceding results were based on early cortical processing, the following 339 

results are based on late auditory cortical processing (responses with latencies 340 

more than ~85 ms). Figure 4A shows the scatter plot of reconstruction accuracy 341 

for the foreground vs. individual background envelopes based on late responses. A 342 

paired permutation test shows that reconstruction accuracy for the foreground is 343 

significantly higher than the background (p < 2×10-6). Even though the individual 344 
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backgrounds are not as reliably reconstructed as foreground, their reconstructions 345 

are nonetheless significantly better than chance level (p < 2×10-6).  346 

In order to distinguish among possible neural representations of the 347 

background streams, we compared the reconstructability of the envelope of the 348 

entire background as a whole, with the reconstructability of the sum of the 349 

envelopes of the (two) backgrounds. If the background is represented as a single 350 

auditory object (i.e., “the background”), the reconstruction of the envelope of the 351 

entire background should be more faithful than the sum of envelopes of individual 352 

backgrounds. In contrast, if the background is represented as distinct auditory 353 

objects, each distinguished by its own envelope, the reconstruction of the sum of 354 

envelopes of the individual backgrounds should be more faithful. Figure 4B shows 355 

the scatter plot of reconstruction accuracy for the envelope of combined 356 

background vs. the sum of the envelopes of the individual background streams. 357 

Analysis shows that the envelope of the combined background is significantly 358 

better represented than the sum of the individual envelopes of the individual 359 

backgrounds (p = 0.012). As noted previously, the envelope of the combined 360 

background is actually strongly correlated with the sum of the envelopes of the 361 

individual backgrounds, meaning that finding a significant difference in their 362 

reconstruction accuracy is a priori unlikely, providing even more credence to the 363 

result. 364 
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 365 

(Figure 4 about here) 366 

 367 

Encoding analysis  368 

Results above from envelope reconstruction suggest that while early neural 369 

responses represent the auditory scene in terms of the acoustics, the later neural 370 

responses represent the auditory scene in terms of a separated foreground and a 371 

single background stream. In order to further test this hypothesis, we use TRF-372 

based encoding analysis to directly compare two different models of auditory 373 

scene representations. The two models compared are the standard Summation 374 

model (based on parallel representations of all speech streams; see Equation 2) and 375 

the new Early-late model (based on an early representation of the entire acoustic 376 

scene and late representations of separated foreground and background; see 377 

Equation 3). Figure 5 shows the response prediction accuracies for the two 378 

models. A permutation test shows that the accuracy of the Early-late model is 379 

considerably higher than that of the Summation model (p < 2×10-6). This indicates 380 

that a model in which early/core auditory cortex processes the entire acoustic 381 

scene but later/higher-order auditory cortex processes the foreground and 382 

background separately has more support than the previously employed model of 383 

parallel processing of separate streams throughout auditory cortex. 384 
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 385 

(Figure 5 about here) 386 

 

Discussion 387 

In this study, we used cortical tracking of continuous speech, in a multi-talker 388 

scenario, to investigate the neural representations of an auditory scene. Differing 389 

latencies of the neural sources processing the same stimuli allow us to separate the 390 

source activity temporally, thus enabling the tracking of differing neural 391 

representations of the auditory scene. From MEG recordings of subjects 392 

selectively attending to one of the three co-located speech streams, we observed 393 

that 1) The early neural responses (with short latencies), which originate primarily 394 

from core auditory cortex, represent the foreground (attended) and background 395 

(ignored) speech streams without any significant difference, whereas the late 396 

neural responses (with longer latencies), which originate primarily from higher-397 

order areas of auditory cortex, represent the foreground with significantly higher 398 

fidelity than the background; 2) Early neural responses are not only balanced in 399 

how they represent the constituent speech streams, but in fact represent the entire 400 

acoustic scene holistically, rather than as separately contributing individual 401 

perceptual objects; 3) Even though there are two physical speech streams in the 402 

background, no neural segregation is observed for the background speech streams. 403 
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It is well established that auditory processing in cortex is performed in a 404 

hierarchical fashion, in which an auditory stimulus is processed by different 405 

anatomical areas at different latencies (Inui et al., 2006; Nourski et al., 2014). 406 

Using this idea to inform the neural decoding/encoding analysis allows the 407 

effective isolation of neural signals from a particular cortical area, and thereby the 408 

ability to track changes in neural representations as the stimulus processing 409 

proceeds along the auditory hierarchy. This time-constrained 410 

reconstruction/prediction approach may prove especially fruitful in high-time-411 

resolution/low-spatial-resolution imaging techniques such as MEG and EEG. Even 412 

though different response components are generated by different neural sources, 413 

standard neural source localization algorithms may perform poorly when different 414 

sources are strongly correlated in their responses (Lutkenhoner and Mosher, 415 

2007). While the proposed method is not to be viewed as an alternative to source 416 

localization methods, it can nonetheless be used to tease apart different 417 

components of MEG/EEG response, without explicit source localization.  418 

The envelope reconstruction using the early, auditory core, neural response 419 

component showed no significant difference between foreground and background, 420 

in contrast to reconstruction using the late, higher-order auditory, neural 421 

responses, where the foreground is substantially better represented than any 422 

individual background. This decoding result is in agreement with the encoding 423 
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result of (Ding and Simon, 2012a) where the authors showed that the early M50TRF 424 

component of the temporal response function is not significantly modulated by 425 

attention, whereas the late M100TRF component is modulated by attention.  426 

Even though there is no significant difference between the ability to 427 

reconstruct the foreground and background from early neural responses, 428 

nonetheless we observe a non-significant tendency towards an enhanced 429 

representation of the foreground (foreground > background, p = 0.21). This could 430 

be due to task-related plasticity of spectro-temporal receptive fields of neurons in 431 

mammalian primary auditory cortex (Fritz et al., 2003), where the receptive fields 432 

of neurons are tuned to match the stimulus characteristics of attended sounds. It 433 

could also be explained by entrainment (Schroeder and Lakatos, 2009; Zion 434 

Golumbic et al., 2012), which postulates that the high excitability periods of 435 

neurons become aligned with temporal structure of foreground, thereby enhancing 436 

its neural representation.  437 

The increase in fidelity of the foreground as the response latency increases, 438 

from early neural responses (from core auditory cortex) to late neural responses 439 

(from higher-order auditory cortex), indicates a temporal as well as functional 440 

hierarchy in cortical processing of auditory scene, from core to higher-order areas 441 

in auditory cortex. Similar preferential representation for the attended speech 442 

stream has been demonstrated, albeit with only two speech streams, using delta 443 
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and theta band neural responses (Ding and Simon, 2012a; Zion Golumbic et al., 444 

2013a; Zion Golumbic et al., 2013b) as well as high-gamma neural responses 445 

(Mesgarani and Chang, 2012; Zion Golumbic et al., 2013a), and using monaural 446 

(Ding and Simon, 2012a; Mesgarani and Chang, 2012) as well as audio-visual 447 

speech (Zion Golumbic et al., 2013a; Zion Golumbic et al., 2013b).  448 

While some researchers suggest a selective entrainment model (Schroeder 449 

and Lakatos, 2009; Zion Golumbic et al., 2013b) as the mechanism underlying the 450 

selective tracking of attended speech, others suggest a temporal coherence model 451 

(Shamma et al., 2011; Ding and Simon, 2012a) as the neuronal mechanism 452 

underlying selective tracking. Natural speech is quasi-rhythmic with different 453 

dominant rates at syllabic, word and prosodic frequencies. The selective 454 

entrainment model suggests that attention causes endogenous low frequency 455 

neural oscillations to align with the temporal structure of the attended speech 456 

stream, thus aligning the high excitability phases of oscillations with events in 457 

attended stream. This effectively forms a mask that favors the attended speech. 458 

The temporal coherence model suggests that selective tracking of attended speech 459 

is achieved through two stages. First is a cortical filtering stage, where feature 460 

selective neurons filter the stimulus producing a multidimensional representation 461 

of auditory scene along different feature axes. This is followed by a second stage, 462 

coherence analysis, which combines different features streams based on their 463 
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temporal similarity, giving rise to separate perceptions of attended and ignored 464 

streams.  465 

The representation of an auditory scene in core auditory cortex is here 466 

shown to be more spectro-temporal- or acoustic-based than object-based, as 467 

demonstrated by the result that the envelope of the auditory scene is better 468 

reconstructed than the sum of envelopes of the individual speech streams (e.g., 469 

Figure 3B). This is further supported by the result that the Early-late model 470 

predicts MEG neural responses significantly better than Summation model (e.g., 471 

Figure 5). This is consistent with previous studies that demonstrated that neural 472 

activity in core auditory cortex was highly sensitive to acoustic characteristics of 473 

speech and primarily reflects spectro-temporal attributes of sound (Nourski et al., 474 

2009; Okada et al., 2010; Steinschneider et al., 2014). All these results suggest that 475 

early neural responses, primarily from core auditory cortex, reflect an acoustic-476 

based representation rather than object-based. In contrast, Nelken and Bar-Yosef 477 

(2008) suggest that neural auditory objects may form as early as primary auditory 478 

cortex, and Fritz et al. (2003) show that representations of dynamic sounds in 479 

primary auditory cortex are influence by task. It is possible that less complex 480 

stimuli are resolved earlier in the hierarchy of auditory pathway (e.g., sounds that 481 

can be separated via tonotopy) whereas speech streams, which overlap both 482 

spectrally and temporally, are resolved only much later in auditory pathway. 483 
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It is widely accepted that an auditory scene is perceived in terms of 484 

auditory objects (Bregman, 1994; Griffiths and Warren, 2004; Shinn-Cunningham, 485 

2008; Shamma et al., 2011). Ding and Simon (2012b) demonstrated evidence for 486 

an object-based cortical representation of an auditory scene, but did not distinguish 487 

between early and late neural responses. This, coupled with the result here that 488 

early neural responses provide an acoustic, not object-based, representation, 489 

strongly suggest that the object-based representation emerges only in the late 490 

neural responses/higher-order (belt and parabelt) auditory areas. This is further 491 

supported by the observation that acoustic invariance, a property of object-based 492 

representation, is observed in higher order areas but not in core auditory cortex 493 

(Chang et al., 2010; Okada et al., 2010).  494 

When the foreground is represented as an auditory object in late neural 495 

responses, the finding that the combined background is better reconstructed than 496 

the sum of envelopes of individual backgrounds (Figure 4B) suggests that in late 497 

neural responses the background is not represented as separated and distinct 498 

auditory objects. This result is consistent with that of Sussman et al. (2005), who 499 

reported an unsegregated background when subjects attended to one of three tone 500 

streams in the auditory scene. This unsegregated background may be a result of an 501 

'analysis-by-synthesis’ (Yuille and Kersten, 2006; Poeppel et al., 2008) 502 

mechanism, wherein the auditory scene is first decomposed into basic acoustic 503 
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elements, followed by top-down processes that guide the synthesis of the relevant 504 

components into a single stream, which then becomes the object of attention. The 505 

remainder of the auditory scene would be the unsegregated background, which 506 

itself might have the properties of an auditory object. When attention shifts, new 507 

auditory objects are correspondingly formed, with the old ones now contributing 508 

to the unstructured background. Shamma et al. (2011) suggest that this top down 509 

influence acts through the principle of temporal coherence. Between the two 510 

opposing views, that streams are formed pre-attentively and that multiple streams 511 

can co-exist simultaneously, or that attention is required to form a stream and only 512 

that single stream is ever present as separated perceptual entity, these findings lend 513 

support to the latter. 514 

 In summary, these results provide evidence that, in a complex auditory 515 

scene with multiple overlapping spectral and temporal sources, the core areas of 516 

auditory cortex maintains an acoustic representation of the auditory scene with no 517 

significant preference to attended over ignored source, and with no separation into 518 

distinct sources. It is only the higher-order auditory areas that provide an object 519 

based representation for the foreground, but even there the background remains 520 

unsegregated.  521 

 522 

 523 
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Legend: 638 

Figure 1: Illustrations of different decoding- and encoding-based neural 639 

representations of the auditory scene and its constituents. (Left) Examples of 640 

predicted MEG neural response using the Early-late model (red) and the 641 

Summation model (magenta) superimposed on actual MEG response (black). The 642 

proposed Early-late model prediction shows higher correlation with the actual 643 

MEG neural response than Summation model. (Right) Example of speech 644 

envelopes reconstructed (grey) from their late neural responses, for both the 645 

foreground and the background, superimposed on actual speech envelopes of 646 

foreground (blue) and background (cyan). The foreground reconstruction shows 647 

higher correlation with the actual foreground envelope, compared to the 648 

background reconstruction with the actual background envelope. All examples are 649 

grand averages across subjects (3 seconds duration). 650 

 651 

Figure 2: Early vs. late MEG neural responses to a continuous speech stimulus. A 652 

sample stimulus envelope and multi-channel MEG recordings are shown in red 653 

and black respectively. The two grey vertical lines indicate two arbitrary time 654 

points at t - Δt and t. The dashed and dotted boxes represent the early and late 655 

MEG neural responses to stimulus at time point t respectively. The reconstruction 656 
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of the stimulus envelope at time t can be based on either early or late neural 657 

responses, and the separate reconstructions can be compared against each other. 658 

 659 

 660 

Figure 3: Stimulus envelope reconstruction accuracy using early neural responses. 661 

A. Scatter plot of reconstruction accuracy of the foreground vs. individual 662 

background envelopes. No significant difference was observed (p = 0.21), and 663 

therefore no preferential representation of the foreground speech over the 664 

individual background streams is revealed in early neural responses. B. Scatter 665 

plot of reconstruction accuracy of the envelope of the entire acoustic scene vs. that 666 

of the sum of the envelopes of all three individual speech streams. The acoustic 667 

scene is reconstructed more accurately (visually, most of data points fall above the 668 

diagonal) as a whole than as the sum of individual components in early neural 669 

responses (p < 2 × 10-6). Reconstruction accuracy is measured by proportion of the 670 

variance explained: the square of the Pearson correlation coefficient between the 671 

actual and predicted envelopes. 672 

 673 

Figure 4: Stimulus envelope reconstruction accuracy using late neural responses. 674 

A. Scatter plot of accuracy between foreground vs. individual background 675 

envelope reconstructions demonstrates that the foreground is represented with 676 
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dramatically better fidelity (visually, most of data points fall above the diagonal) 677 

than the background speech, in late neural responses (p < 2 × 10-6). B. Scatter plot 678 

of the reconstruction accuracy of the envelope of the entire background vs. that of 679 

the sum of the envelopes of the two individual background speech streams. The 680 

background scene is reconstructed more accurately as a monolithic background 681 

than as separated individual background streams in late neural responses (p = 682 

0.012) 683 

 684 

Figure 5: MEG response prediction accuracy. Scatter plot of the accuracy of 685 

predicted MEG neural response for the proposed Early-late model vs. the standard 686 

Summation model. The Early-late model predicts the MEG neural response 687 

dramatically better (visually, most of data points fall above the diagonal) than the 688 

Summation model (p < 2 × 10-6). The accuracy of predicted MEG neural 689 

responses is measured by proportion of the variance explained: the square of the 690 

Pearson correlation coefficient between the actual and predicted responses. 691 

  692 
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Figure 1   695 
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Figure 2  698 
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Figure 3   701 
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 703 

Figure 4   704 

Stimulus Reconstruction Accuracy from Late Neural Responses
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Figure 5  707 
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