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	10	

Abstract	11	

In	embryonic	development,	cells	must	differentiate	through	stereotypical	sequences	of	intermediate	12	
states	to	generate	mature	states	of	a	particular	fate.	By	contrast,	direct	programming	can	generate	13	
similar	fates	through	alternative	routes,	by	directly	expressing	terminal	transcription	factors.	Yet	the	cell	14	
state	transitions	defining	these	new	routes	are	unclear.	We	applied	single-cell	RNA	sequencing	to	15	
compare	two	mouse	motor	neuron	differentiation	protocols:	a	standard	protocol	approximating	the	16	
embryonic	lineage,	and	a	direct	programming	method.	Both	undergo	similar	early	neural	commitment.	17	
Then,	rather	than	transitioning	through	spinal	intermediates	like	the	standard	protocol,	the	direct	18	
programming	path	diverges	into	a	novel	transitional	state.	This	state	has	specific	and	abnormal	gene	19	
expression.	It	opens	a	‘loop’	or	‘worm	hole’	in	gene	expression	that	converges	separately	onto	the	final	20	
motor	neuron	state	of	the	standard	path.	Despite	their	different	developmental	histories,	motor	21	
neurons	from	both	protocols	structurally,	functionally,	and	transcriptionally	resemble	motor	neurons	22	
from	embryos.	23	

	24	

Introduction	25	

Embryonic	development	proceeds	through	defined	intermediate	states,	such	as	germ	layer	26	
intermediates,	and	lineage-specific	progenitors.	Intermediates	bifurcate	into	multiple	states	over	time,	27	
and	specialize	their	behaviors,	ultimately	producing	a	lineage	tree	that	defines	each	mature	cell	type	by	28	
a	particular	sequence	of	intermediates.	This	was	first	appreciated	through	classical	lineage	tracing	and	29	
cell	ablation	studies.	These	studies	showed	that	specifically	labeled	intermediate	states	generate	30	
stereotyped	sets	of	downstream	cell	types,	and	that	these	downstream	cell	types	fail	to	form	if	an	31	
intermediate	that	is	upstream	in	their	lineage	is	ablated1,2.	Furthermore,	embryos	in	general	do	not	32	
produce	a	mature	cell	type	through	multiple	differentiation	paths.	33	

In	contrast	to	this	rigid	and	hierarchical	process,	recent	protocols	that	experimentally	directly	34	
program	cell	fate	suggest	that	the	exact	sequence	of	intermediates	defining	a	lineage	may	be	more	35	
flexible3-11.	These	studies	reveal	that	mature	cell	states	can	be	reached	through	paths	that	do	not	involve	36	
activation	of	the	intermediate	progenitor	genes	that	are	essential	in	embryos.	Mouse	embryonic	stem	37	
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cells	(mESCs),	for	example,	can	be	converted	into	motor	neurons	(MNs)	by	a	process	that	involves	1	
overexpression	of	three	transcription	factors,	Ngn2+Isl1+Lhx33,12,	and	that	never	expresses	the	neural	2	
progenitor	transcription	factors	Sox1	and	Olig23.	mESCs	can	also	be	driven	rapidly	into	a	terminal	muscle	3	
phenotype	without	normal	upregulation	of	intermediate	genes	such	as	Pax7	and	Myf5,	through	a	4	
combination	of	cell-cycle	inhibition	and	MyoD	overexpression4.	This	plasticity	of	differentiation	extends	5	
further,	to	the	interconversion	of	mature	cell	states.	Fibroblasts	can	be	converted	into	mature	neuron	6	
phenotypes6,11,	including	MNs5,	seemingly	without	completely	dedifferentiating	and	retracing	the	7	
embryonic	lineage,	as	indicated	by	lack	of	expression	of	specific	core	pluripotency	(Oct4,	Sox2	and	8	
Nanog)	and	neural	progenitor	genes	(Nestin)5.		9	

Although	these	direct	programming	(DP)	experiments	imply	the	existence	of	differentiation	10	
paths	that	differ	from	those	in	embryos,	much	of	what	actually	occurs	in	these	new	programs	remains	11	
mysterious.	Does	DP	bypass	normal	intermediates	by	short-circuiting	the	natural	lineage,	or	does	it	12	
transition	through	alternative	intermediates	(Fig.	1a)?	Does	it	diverge	only	briefly	to	bypass	specific	early	13	
or	late	states,	or	does	it	utilize	an	entirely	distinct	path	(Fig.	1b)?	And	can	DP	converge	fully	to	the	same	14	
final	state	that	is	produced	in	embryos	despite	taking	an	alternative	path	(Fig.	1c)?	These	questions	have	15	
been	challenging	to	answer	in	part	due	to	the	high	degree	of	heterogeneity	in	direct	programming	16	
experiments,	where	unbiased	bulk	measurements	of	global	gene	expression	obscure	changes,	and	also	17	
because	marker	genes	allowing	the	isolation	of	new	but	potentially	important	DP-specific	intermediates	18	
are	not	known	in	advance.	Here	we	aimed	to	overcome	these	issues	by	applying	single	cell	RNA	19	
sequencing	to	compare	the	gene	expression	trajectories	of	DP	and	growth	factor	guided	differentiation	20	
of	mESCs	over	time	into	MNs.	Our	core	research	questions	are	summarized	in	Figure	1.	21	

	22	

Results	23	

Dissection	of	two	MN	differentiation	protocols	using	InDrops	single	cell	RNA	sequencing	24	

We	compared	two	in	vitro	differentiation	protocols	that	convert	mESCs	into	MNs.		Spinal	MNs	were	25	
chosen	for	study	because	these	protocols	have	been	highly	optimized.	The	first,	standard	protocol	(SP)	is	26	
a	widely	used	method	that	attempts	to	recapitulate	the	known	embryonic	intermediates	through	27	
sequential	exposure	of	developmental	signals	(Fgfs,	Retinoic	Acid,	and	Sonic	hedgehog)(Fig.	1A)13,14.	It	28	
provides	an	approximation	of	the	lineage	through	which	motor	neurons	develop	in	the	embryo.	The	29	
second,	direct	programming	(DP)	protocol	involves	driving	the	expression	of	transcription	factors	30	
(Ngn2+Isl1+Lhx3)3,12	that	characterize	the	mature	motor	neuron	state	and	at	the	same	time	favoring	and	31	
stabilizing	the	G1	state	by	incubating	in	a	growth	factor	free	medium4.		32	

We	used	single-cell	RNA	sequencing	(InDrops)15	to	track	the	differentiation	trajectories	of	both	33	
protocols	over	time	(Figs.	1B	and	1C).		Single-cell	data	has	emerged	as	a	powerful	way	to	trace	34	
differentiation	processes,	particularly	in	populations	that	are	not	pure	and	that	contain	rare	35	
intermediates11,16-20.	We	profiled	a	total	of	4,590	cells	sampled	from	early	(day	4/5)	and	late	(day	11/12)	36	
timepoints	for	each	protocol,	and	also	used	our	previously	published	data	from	975	mES	cells15.		To	37	
visualize	the	single	cell	data	and	identify	cell	states	we	applied	t-distributed	stochastic	neighbor	38	
embedding	(tSNE)	to	reduce	dimensionality21,22,	defined	cell	states	using	an	unsupervised	density	39	
gradient	clustering	approach,	and	then	found	specific	marker	genes	with	known	annotations	to	reveal	40	
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the	identity	of	each	state	(Fig.	2B	-	2E;	Supp.	Figs.	S1	and	S2;	Supplementary	methods).	For	each	1	
protocol,	the	dominant	feature	was	a	continuous	gene	expression	trajectory	sweeping	across	the	2D	2	
plot.	These	trajectories	correlate	with	chronology:	they	begin	with	mESCs,	pass	through	neural	3	
progenitor	states	and	terminate	in	mature	MN	states.	In	both	protocols	we	also	observed	a	mixture	of	4	
off-target	differentiation	byproducts	from	all	three	germ	layers.	5	

Our	single	cell	data	allowed	us	to	define	the	efficiency	of	MN	production	for	each	method.	For	6	
DP,	MN	production	was	observed	as	early	as	day	4	(19%),	and	increased	over	time	to	66%	by	day	11	(Fig.	7	
2F).	A	minority	of	off-target	neuron	subtypes,	glia,	and	miscellaneous	cells	were	also	identified.	In	the	SP	8	
23%	and	9%	of	the	population	resembled	MNs	at	days	5	and	12	respectively	(Fig.	2G).	This	lower	9	
efficiency	was	accompanied	by	a	far	larger	fraction	of	off-target	products	including	oligodendrocytes	10	
(7.2%),	astrocytes	(8.6%),	muscle	(30.6%),	and	stroma	(8.9%)	that	together	accounted	for	55.3%	of	the	11	
population	by	day	12.			12	

The	DP	differentiation	trajectory	lacks	intermediates	expressing	Olig2	and	Nkx6-1	13	

What	are	the	differentiation	paths	taken	by	each	protocol?	In	the	SP	differentiation	path,	cells	transit	14	
through	seven	states	(Fig.	2C	and	2E).	These	state	transitions	parallel	patterning	events	in	the	15	
embryo13,23,24:	cells	first	commit	to	the	neural	lineage	(Sox1+/Sox3+),	then	are	posteriorized	16	
(Hoxb8+/Hoxd4+),	ventralized	(Nkx6-1+/Olig2+),	enter	the	committed	MN	progenitor	state	(Mnx1+),	and	17	
then	mature	into	a	neuronal	phenotype	(Tubb3+/Map2+).	This	is	not	a	surprise	as	the	growth	factor	18	
cocktail	defining	this	method	was	designed	to	reflect	the	signaling	events	taking	place	in	the	embryo.	By	19	
contrast,	we	found	that	the	path	produced	by	DP	was	condensed	relative	to	the	SP	path	(Fig.	2B	and	2D),	20	
consisting	of	only	four	states	as	opposed	to	seven.	After	neural	commitment	(Sox1+),	cells	immediately	21	
began	expressing	committed	MN	markers	(Mnx1+/Tubb3+),	seemingly	without	the	typical	spinal	22	
embryonic	intermediates	(Olig2-/Nkx6-1-).	A	lack	of	Olig2	expression	during	DP	has	been	observed	23	
previously3,	and	our	results	confirm	at	the	single	cell	level	that	intermediates	expressing	Olig2	and	Nkx6-24	
1	appear	entirely	absent.	Olig2	is	necessary	for	MN	development	in	embryos1,	indicating	the	DP	drives	25	
differentiation	from	ESC	into	MNs	through	a	new	route.	26	

We	confirmed	that	our	inferred	dynamics	from	snapshot	single-cell	data	correspond	to	the	27	
actual	underlying	differentiation	dynamics	by	performing	a	dense	qPCR	time	course	for	a	panel	of	MN	28	
genes	(Supp.	Fig.	S3).	These	bulk	measurements	confirmed	that,	for	DP,	committed	MN	markers	are	29	
upregulated	immediately	following	early	neural	progenitor	genes	in	real	time.		30	

The	DP	and	SP	trajectories	bifurcate	after	early	neural	commitment	and	converge	separately	to	the	31	
MN	state		32	

Since	the	DP	omits	spinal	embryonic	intermediates	characteristic	of	the	SP	path,	there	must	be	one	of	33	
two	possible	trajectories.	Either	DP	must	discontinuously	transition	from	an	early	neural	progenitor	into	34	
a	MN,	or	it	must	transit	through	alternate	intermediate	state(s).	To	determine	which	of	these	35	
possibilities	was	the	case,	we	employed	a	data	visualization	technique	called	SPRING25	to	directly	36	
compare	the	topology	of	both	paths.	While	tSNE	is	a	powerful	method	for	identifying	discrete	cell	states,	37	
SPRING	provides	a	complementary	description	emphasizing	continuum	gene	expression	topologies.	38	
SPRING	builds	a	k-nearest-neighbor	graph	over	cells	in	high-dimensional	gene	expression	space,	and	39	
then	renders	an	interactive	2D	visualization	of	the	cell	graph	using	a	force	directed	layout.	This	40	
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representation	revealed	that	the	DP	and	SP	trajectories	overlap	during	early	neural	commitment,	but	1	
that	they	then	bifurcate	and	transit	distinct	paths	that	converge	independently	to	the	same	MN	state	2	
(Fig.	3A).	The	dynamics	of	gene	expression	over	these	trajectories	resembled	the	behavior	inferred	using	3	
tSNE,	with	DP	omitting	intermediate	progenitor	genes	following	its	bifurcation	from	the	SP	path	(Fig.	3B).	4	

The	bifurcation	and	subsequent	convergence	of	the	two	differentiation	paths	can	also	be	5	
appreciated	by	two	other	complementary	analyses.	Pairwise	cosine	similarities	between	the	cell	states	6	
from	both	trajectories	(Fig.	3C;	Supplementary	methods)	indicate	similarities	between	the	early	states	7	
(ESC	and	NP;	cosine	similarity	>	0.64)	and	late	states	(LMN;	cosine	similarity	=	0.55),	but	not	the	8	
intermediate	states	(PNP,	PVNP,	and	MNP;	cosine	similarity	<	-0.28,	-0.09,	and	0.06	respectively).	We	9	
also	assigned	every	individual	cell	along	the	DP	path	to	its	most	similar	cluster	in	the	SP	path	using	a	10	
maximum	likelihood	method	(Fig.	3D;	Supplementary	methods).	This	showed	that	it	was	virtually	11	
impossible	to	find	a	single	cell	resembling	the	SP	intermediate	progenitors	in	the	DP	approach.	Similarity	12	
was	again	seen	only	at	the	early	and	late	states.		13	

DP	transitions	through	an	abnormal	intermediate	state	with	forebrain	gene	expression	14	

The	bifurcation	of	the	SP	and	DP	trajectories	leads	to	different	intermediate	cell	states	in	each	case.	A	15	
total	of	26	transcription	factors	(TFs)	are	differentially	expressed	between	the	DP	and	SP	intermediate	16	
states	(Fig.	4A).	A	majority	of	these	(61%)	were	involved	in	an	anterior-posterior	positional	gene	17	
expression	axis.	The	SP	intermediates	were	enriched	more	than	6-fold	for	nine	posterior	and	spinal	TFs	18	
including	Olig2,	Nkx6-1,	Lhx3,	and	six	Hox	genes	with	a	corrected	p-value	<	0.001.	Each	of	these	TFs	is	19	
expressed	in	embryonic	MNs.	By	contrast,	the	DP	intermediates	were	enriched	for	seven	forebrain	TFs	20	
including	Otx2,	Otx1,	Crx,	Six1,	Dmrta2,	Zic1,	and	Zic3	at	the	same	stringency,	despite	the	absence	of	21	
MNs	in	the	forebrain	of	embryos.	Anterior	gene	expression	was	previously	observed	through	bulk	22	
measurements	of	DP3,	and	our	results	reveal	that	it	occurs	within	a	specific	subpopulation	of	cells	in	the	23	
process	of	differentiating	into	MNs.	We	validated	these	expression	differences	by	isolating	intermediate	24	
populations	of	each	differentiation	path	using	a	Mnx1::GFP	reporter	cell	line,	since	Mnx1	expression	is	25	
localized	precisely	to	the	distinct	intermediate	populations	of	each	path	(Fig.	3B).	Bulk	comparisons	of	26	
these	two	populations	confirmed	the	enrichment	of	forebrain	TFs,	and	depletion	of	spinal	progenitor	27	
and	positional	genes	in	the	DP	intermediates	with	just	one	exception	–	Zic1	was	enriched	in	DP	by	our	28	
single	cell	comparison	but	in	SP	by	microarray	(Fig.	4A).		29	

The	abnormal	positional	gene	expression	signature	that	characterizes	the	DP	intermediate	state	30	
appears	transient.	Forebrain	gene	expression	is	upregulated	along	the	DP	differentiation	path	as	cells	31	
exit	the	early	NP	state	into	the	EMN	intermediate	state	(Fig.	4B).	This	transition	is	also	accompanied	by	32	
the	downregulation	of	proliferation-associated	genes	(Fig.	4B;	Supp.	Fig.	S4).	By	the	time	cells	exit	the	33	
EMN	state	and	transition	into	the	more	differentiated	LMN	state,	they	downregulate	forebrain	genes	34	
and	replace	this	abnormal	positional	signature	with	a	spinal	Hox	expression	signature	characteristic	of	35	
normal	MNs	(Fig.	4B).	Thus	cells	converge	to	the	MN	state	in	positional	as	well	as	neuronal	identity	gene	36	
expression	in	the	final	stages	of	DP.	37	

Both	DP	and	SP	approach	a	transcriptional	state	similar	to	bona-fide	MNs	in	embryos	38	

Given	that	the	two	protocols	induce	distinct	–	and	in	the	case	of	DP,	unnatural	–	differentiation	paths,	39	
we	were	curious	how	their	final	products	compared	with	primary	MNs.	We	harvested	MNs	from	the	40	
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embryo	of	a	Mnx1::GFP	reporter	mouse	and	performed	inDrops	measurements	on	874	E13.5	MNs	after	1	
FACS	purification.	Though	the	majority	of	Hb9+	sorted	cells	were	MNs	(73.8%),	this	population	also	2	
contained	glia	(20.1%),	fibroblast-like	cells	(1.8%),	and	immune-type	cells	(1.2%;	Fig.	5A;	Supp.	Fig.	S5).		3	
Using	only	the	cells	identified	as	bona-fide	MNs,	we	probed	the	similarity	of	the	in	vitro	derived	cells	to	4	
the	primary	MNs,	using	three	measures:	global	similarity	of	the	transcriptomes	(cosine	similarity);	co-5	
clustering	frequency;	and	differential	gene	expression	analysis.	In	both	paths,	neurons	become	more	6	
similar	to	primary	MNs	over	time	(Fig.	5B).		The	clusters	most	highly	correlated	with	primary	MNs	were	7	
the	LMN	state	from	the	DP	protocol	(cosine	similarity	=	0.62),	and	the	LMN	state	from	the	SP	(cosine	8	
similarity	=	0.37).	Notably,	only	2.7%	of	output	cells	from	the	SP	were	in	the	LMN	state,	compared	to	9	
62.7%	for	DP.	Thus,	the	ratio	of	the	efficiency	of	forming	LMNs	by	the	DP	protocol	to	the	SP	protocol	is	10	
23	fold,	seven-fold	higher	than	what	we	calculated	based	on	a	comparison	of	marker	genes	alone.	At	the	11	
level	of	single	cells,	co-clustering	of	the	different	experiments	showed	that	95%	of	DP	MNs	robustly	co-12	
cluster	with	primary	MNs	compared	with	26%	for	SP	derived	MNs	(Supp.	Fig.	S6).	However,	differential	13	
gene	expression	analysis	revealed	that	neither	protocol	perfectly	recapitulates	the	gene	expression	14	
profile	of	MNs	isolated	from	the	mouse.	Both	protocols	showed	a	depletion	of	the	most	posterior	Hox	15	
genes,	perhaps	indicating	an	anterior	spinal	cord	identity	of	in	vitro	MNs,	and	a	small	enrichment	of	16	
several	genes	related	to	microtubule	function	and	cell	cycle	exit	that	may	indicate	subtle	differences	in	17	
neuronal	maturation	(Supp.	Fig.	S7).		18	

DP	MNs	have	structural	and	functional	properties	of	true	MNs	19	

Having	established	that	MNs	derived	via	both	gene	expression	trajectories	reach	roughly	the	same	MN	20	
transcriptional	state,	we	wished	to	validate	that	their	function	and	structural	organization	was	also	21	
independent	of	their	distinct	developmental	histories.	The	SP	has	been	characterized	extensively	as	22	
giving	rise	to	functional	MNs13,	so	here	we	examined	structural	and	functional	characteristics	following	23	
DP.	We	confirmed	that	selected	protein	content	matches	the	mRNA	markers	by	immunostaining	for	24	
Tubb3,	Map2,	VACht,	Isl1,	and	Hb9	(Fig.	5C).	Tubb3	and	Map2	were	present,	and	VACht	was	seen	at	25	
discrete	puncta	on	the	axons	(suggesting	localization	to	acetylcholine	secretory	vesicles).	TFs	Isl1	and	26	
Hb9	were	localized	in	the	nucleus.	Finally,	the	GFP	from	the	Mnx1::GFP	reporter	was	activated	and	27	
expressed	in	the	cytoplasm.	To	test	the	functional	properties	of	the	DP	MNs,	we	performed	whole-cell	28	
patch	clamp	recordings.	Depolarization	induced	single	or	multiple	action	potentials	in	current-clamp	29	
experiments	(Fig.	5D).	Depolarizing	voltage	steps	induced	fast	inward	currents	and	slow	outward	30	
currents	characteristic	of	sodium	and	potassium	channels,	respectively	(Fig.	5E).	Exposure	to	500	nM	31	
Tetrodotoxin	(TTX)	blocked	the	inward	current,	indicating	sodium	channel	involvement.	We	then	tested	32	
whether	our	DP	neurons	would	respond	to	neurotransmitters	that	act	on	MN	(Fig.	4F).	Exposure	of	the	33	
neurons	to	AMPA,	kainate,	GABA,	and	glycine	(100	µM	each)	induced	in	each	case	inward	currents	34	
similar	to	that	seen	in	primary	embryonic	MNs.	To	see	if	the	DP	neurons	could	also	form	neuromuscular	35	
junctions,	we	co-cultured	the	neurons	with	differentiated	C2C12	skeletal	muscle	myotubes	and	36	
incubated	them	for	7	days.	We	observed	clustering	of	acetylcholine	receptors	on	the	C2C12	myotubes	37	
near	contact	points	with	the	DP	neurons,	which	can	be	seen	with	alpha-bungarotoxin	(α-BGT),	which	38	
binds	to	acetylcholine	receptors	(Fig.	4G).	We	then	observed	regular	contractions	of	some	C2C12	39	
myotubes	that	began	after	several	days	in	co-culture	(Fig.	4G,	Supp.	Video	1).	These	contractions	could	40	
be	stopped	by	the	addition	of	300	µM	Tubocurarine	(curare),	an	antagonist	of	acetylcholine	receptors,	41	
indicating	that	the	contractions	were	induced	by	the	acetylcholine	release		from	the	MNs.	Similarly,	we	42	
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noticed	that	the	DP	MNs	could	induce	contractions	in	DP	muscle	myotubes	that	we	previously	1	
generated	with	MyoD	(Supp.	Video	2)4.	These	results	confirm	that	DP	MNs	have	the	expected	functional	2	
properties	of	bona-fide	MNs.	3	

	4	

Discussion	 	5	

The	results	we	have	described	provide	evidence	at	the	single	cell	level	that	differentiation	can	proceed	6	
by	multiple	routes	yet	converge	onto	similar	transcriptional	states.	We	show	that	while	using	the	SP	cells	7	
are	driven	to	retrace	the	embryonic	lineage,	DP	induces	cells	to	differentiate	through	a	dramatically	8	
different	path.	The	DP	path	bypasses	multiple	intermediate	progenitor-states	that	evolved	in	the	9	
embryo,	and	yet	still	converges	to	the	same	discrete	and	recognizable	MN	phenotype.	This	convergence	10	
occurs	from	an	abnormal	intermediate	state,	and	does	not	appear	to	involve	a	shared	set	of	terminal	11	
cell	state	transitions;	it	is	highly	orthogonal.	Moreover,	as	cells	converge	they	manage	to	not	only	12	
establish	gene	expression	related	to	MN	functions,	but	they	also	correct	positional	gene	expression	13	
defects	(exchanging	forebrain	for	spinal	gene	expression)	in	the	absence	of	external	signals.	Relative	to	14	
our	initial	research	questions	(Fig.	1),	we	conclude	that	DP	of	mESCs	into	MNs	occurs	via	a	late	bypass	15	
that	involves	alternative	intermediate	states	not	seen	in	the	embryo,	and	that	this	new	route	converges	16	
near	perfectly	to	the	same	final	state.	Convergence	into	a	MN	therefore	does	not	appear	to	depend	17	
rigidly	on	the	precise	history	of	intermediate	states	through	which	cells	differentiate.	18	

This	‘history	independence’	of	the	final	state	is	consistent	with	a	dynamical	view	of	gene	19	
regulation	in	which	cell	states	correspond	to	‘attractor	basins’,	i.e.	stable	states	of	gene	expression	that	20	
are	robust	to	modest	perturbations.	If	attractor	basins	do	not	exist,	the	precision	of	the	observed	21	
overlap	between	DP	and	SP	MNs	would	require	a	special	coincidence,	like	finding	a	needle	in	a	high	22	
dimensional	haystack.	The	concept	of	cell	states	behaving	as	attractors	has	been	proposed	previously	to	23	
explain	several	properties	of	blood	cell	types26-28.	There	are	at	least	two	important	corollaries	of	this	24	
behavior	applying	in	development.	From	a	practical	perspective,	it	is	a	common	concern	that	DP	25	
methods	may	generate	cell	types	with	subtle	defects	due	to	their	unusual	developmental	histories9.	26	
Attractors	would	be	robust	to	this	vulnerability	and	indeed	our	results	show	that	it	is	not	necessary	to	27	
recreate	the	precise	sequences	of	steps	taken	in	embryos	to	generate	bona-fide	MNs.	It	could	also	hint	28	
at	a	mechanism	that	might	help	animal	body	plans	evolve	flexibly.	Specifically,	by	decoupling	the	29	
identity	of	mature	cell	state	attractors	from	their	developmental	histories	evolution	would	be	able	to	act	30	
on	each	independently.	In	principle	this	could	contribute	to	evolvability	by	allowing	mature	cell	states	to	31	
be	transposed	onto	new	lineages	in	new	body	locations.	32	

The	mechanisms	that	define	the	MN	attractor	basin	and	allow	the	artificial	DP	trajectory	to	33	
converge	onto	the	correct	final	state	are	largely	unclear.	The	MN	state	is	thought	to	be	stabilized	by	a	34	
network	of	self-reinforcing	TFs24,	involving	Mnr2,	Mnx1,	Lim3,	Isl1,	Isl2,	and	Lhx3,	Ngn2,	Myt1l,	Nefl,	and	35	
Nefm.	DP	aims	to	kick-start	this	network	by	activating	a	subset	of	important	components.	Yet,	far	from	36	
immediately	activating	this	network,	our	data	show	that	DP	initially	drives	cells	to	differentiate	into	an	37	
early	NP	state	through	the	same	pathway	as	the	SP	trajectory,	seemingly	oblivious	to	the	DP	TFs,	and	38	
then	even	activates	non-MN	genes	in	the	transitional	state.	Understanding	why	the	activation	of	the	MN	39	
program	lags	behind	TF	induction	may	provide	important	clues	into	how	the	DP	factors	act.	One	possible	40	
source	for	a	lag	is	that	activating	a	complete	neuronal	program	requires	first	activating	additional	core	41	
TFs	(so-called	‘feed-forward’	circuitry).	Indeed,	recent	studies	have	shown	that	Ebf	and	Onecut	are	42	
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activated	by	Ngn2	(one	of	the	DP	TFs),	and	that	both	are	required	to	subsequently	direct	binding	of	Isl1	1	
and	Lhx3	(the	other	two	DP	TFs)	to	MN	target	genes	across	the	genome	during	DP12,29.	A	second	possible	2	
source	of	lag	is	that	extracellular	signaling	provides	inputs	that	immediately	affect	cell	state,	but	take	3	
time	to	sensitize	cells	to	the	DP	factors.	For	example,	signaling	changes	might	activate	DP	TFs	through	4	
post-translational	modifications,	by	activating	co-factors,	or	by	inducing	chromatin	state	changes.	We	5	
have	indeed	observed	that	MNs	are	not	generated	if	DP	TFs	are	induced	in	cells	cultured	in	pluripotency	6	
media,	indicating	a	requirement	for	changes	in	signaling	(not	shown).	Conversely,	when	mES	cells	are	7	
transferred	to	minimal	media	without	inducing	DP	factors,	they	acquire	a	forebrain	neural	progenitor	8	
identity	by	default30-32.	This	suggests	that	the	early	dynamics	and	abnormal	forebrain	/	MN	expression	of	9	
the	DP	transitional	state	might	in	fact	be	driven	by	the	signaling	environment	and	not	the	DP	TFs.	These	10	
alternatives	suggest	future	experiments	to	better	resolve	the	mechanisms	driving	the	DP,	by	re-mapping	11	
the	trajectory	induced	during	DP	after	changing	signaling	conditions,	or	the	choice	of	DP	TFs.	12	

As	a	methodology,	DP	is	significantly	more	efficient	than	the	SP	without	loss	of	quality	in	the	MN	13	
populations	produced	(Fig.	2F-G;	Fig.	5).	The	high-efficiency	of	DP	likely	derives	from	both	its	more	14	
uniform	experimental	conditions	as	well	as	its	more	direct	differentiation	path.	Experimentally,	DP:	15	
relies	on	2D	rather	than	3D	tissue	culture	(as	in	the	SP),	minimizing	uncontrolled	cell-cell	communication;	16	
forces	every	individual	cell	to	express	MN	TFs	from	a	genetically	integrated	construct,	increasing	17	
uniformity;	and	employs	a	defined-media	without	growth	factors	that	may	minimize	proliferation	of	18	
progenitor	states.	The	more	direct	differentiation	path	induced	by	DP	should	also	itself	increase	MN	19	
conversion	efficiency	by	minimizing	error	propagation	through	chained	opportunities	for	off-target	fate	20	
choices.	During	sequences	of	intermediate	cell	state	transitions,	each	transition	can	have	competing	off-21	
target	fates.	Thus,	differentiation	processes	that	involve	many	sequential	intermediate	transitions	suffer	22	
from	multiplicative	efficiency	losses.	Indeed,	the	longer	sequence	of	intermediate	states	the	in	SP	23	
generates	a	far	larger	fraction	of	off-target	populations	that	increases	with	time,	suggesting	a	24	
progressive	loss	of	efficiency.	Targeting	terminal	attractor	basins	through	the	shortest	possible	25	
differentiation	paths	may	prove	to	be	a	generally	effective	strategy	to	generate	desired	cell	states.	26	
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Supplementary	Methods	1	

ESC	culture		2	

The	mouse	ES	cell	line	containing	doxycycline-inducible	Ngn2+Isl1+Lhx3	(NIL)	and	the	Hb9::GFP	reporter	3	
was	graciously	provided	by	Esteban	Mazzoni.	ESCs	were	cultured	in	standard	media	(DMEM	with	LIF	+	4	
15%	fetal	bovine	serum)	on	0.2%	gelatin-coated	dishes.			5	

	6	

Differentiation	into	motor	neurons:	direct	and	standard	programming	7	

Twenty-four	hours	before	starting	differentiation,	ESCs	were	trypsinized	and	seeded	onto	plates	pre-8	
coated	with	a	mix	of	poly-d-lysine	(100	μg/ml)	and	laminin	(50	μg/ml)	instead	of	gelatin	for	adherence.	9	
ESCs	were	counted	by	a	Beckman	Coulter	Counter	and	seeded	at	a	density	of	approximately	200,000	10	
cells	per	well	of	a	6-well	dish.	At	day	0	(ESCs),	the	media	was	switched	from	standard	ES	media	to	N2B27	11	
media	(Invitrogen).	Doxycycline	was	also	added	at	3	μg/ml	starting	to	induce	expression	of	the	NIL	12	
transcription	factors.	Media	was	changed	daily.	For	the	standard	programming	protocol,	the	steps	13	
described	in	Wu	et	al.	were	followed	strictly.		14	

		15	

Mouse	embryonic	motor	neuron	cultures	16	

The	B6.Cg-Tg(Hlxb9-GFP)1Tmj/J	mice	(JAX#	005029)	were	bred	with	C57BL/6J	(JAX#	000664)	for	17	
embryonic	motor	neurons	dissection.	All	animal	protocols	were	approved	the	Institutional	Animal	Care	18	
and	Use	Committee	at	Boston	Children’s	Hospital.	On	gestational	day	13	(E13),	the	female	mice	were	19	
anesthetized	and	all	embryos	were	collected	by	caesarian	section.	Only	GFP	embryos	were	used	for	20	
further	dissection.	The	spinal	cords	were	isolated	and	their	meninges	were	removed.	Each	isolated	21	
spinal	cord	was	dissociated	by	trypsin	and	mechanical	trituration.	After	filtering	the	cells	with	100	μm	22	
strainers,	the	cells	were	spun	down	and	re-suspended	in	PBS,	and	subjected	to	flow	cytometry.	Cells	23	
were	run	through	a	100	μm	nozzle	at	low	pressure	(20	p.s.i.)	on	a	BD	FACSaria	II	machine	(Becton	24	
Dickinson,	USA).	A	neural	density	filter	(2.0	setting)	was	used	to	allow	visualization	of	large	cells.	25	

	26	

Single	cell	transcriptomics	using	InDrops	27	

We	dissociated	differentiating	mESC	cultures	using	a	0.25%	Trypsin	2mM	EDTA	solution	(Gibco).	Primary	28	
HB9+	sorted	motor	neurons	were	dissociated	as	above.	Dissociated	cell	suspensions	were	verified	to	be	29	
monodisperse	and	of	viability	>95%	using	a	coulter	counter	with	trypan	blue	staining	(BioRad).	We	then	30	
performed	droplet-based	barcoding	reverse	transcription	(RT)	reactions	and	prepared	massively	31	
multiplexed	sequencing	libraries	using	InDrops	as	described	in	Klein	et	al.	Briefly:	cells,	lysis	and	RT	32	
reagents,	and	barcoding	primers	attached	to	hydrogel	beads	are	combined	in	nanoliter	sized	droplets	33	
suspended	in	an	oil	emulsion	using	the	InDrops	microfluidic	device.	A	barcoding	RT	reaction	is	then	34	
carried	out	in	the	droplet	emulsion,	uniquely	labeling	the	RNA	contents	of	every	cell	using	a	cell	barcode	35	
and	unique	molecular	identifier	(UMI).	Following	RT,	barcoded	emulsions	are	split	into	batches,	and	the	36	
emulsion	is	broken.	Combined	material	is	amplified	into	a	nanomolar	Illumina	sequencing	library	37	
through	a	series	of	bulk	reactions:	second	strand	synthesis,	in	vitro	transcription	(IVT),	fragmentation,	38	
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RT2,	and	a	final	low	cycle	number	PCR.	The	majority	of	the	amplification	takes	place	during	IVT	ensuring	1	
uniform	library	coverage.	Single	cell	libraries	were	then	sequenced	on	either	the	Illumina	HiSeq	or	2	
NextSeq	platforms.	Reads	were	demultiplexed	using	an	updated	version	of	the	custom	bioinformatics	3	
pipeline	described	in	Klein	et	al..	A	python	implementation	of	this	pipeline	is	now	publically	available	on	4	
GitHub.	Briefly,	it	filters	for	reads	with	the	expected	barcode	structure,	splits	reads	according	to	their	5	
cell	barcode,	aligns	them	to	a	reference	transcriptome	(we	used	GRCm38	with	some	added	6	
mitochondrial	genome	transcripts),	and	then	counts	the	number	of	different	UMIs	appearing	for	each	7	
gene	in	each	cell.	The	final	output	is	a	counts	matrix	of	cells	vs.	genes	that	we	loaded	into	MATLAB	for	8	
further	analysis.	9	

	10	

Single-cell	data	clean	up:	minimum	expression	threshold,	total	count	normalization,	stressed	cell	11	
removal	12	

Before	performing	the	analyses	described	below,	three	steps	were	taken	to	ensure	that	the	data	was	of	13	
high	quality.	First,	we	required	all	cells	to	have	at	least	1000	UMIs	detected.	This	removed	any	signal	14	
potentially	coming	from	empty	droplets.	Second,	data	were	total	count	normalized	to	ensure	15	
differences	between	cells	were	not	due	to	technical	variation	in	mRNA	capture	efficiency	or	cell	size.	16	
Finally,	cells	that	had	a	high	stress	gene	signature	were	excluded	from	analysis.	Stressed	cells	were	17	
initially	recognized	as	a	small	percentage	of	cells	(<10%)	that	clustered	apart	from	everything	else	and	18	
specifically	expressed	very	high	levels	of	a	mitochondrial	gene	set	that	is	associated	with	cellular	stress.	19	
Masks	that	convert	raw	counts	into	our	filtered	set	are	provided	online.	20	

	21	

Visualization	of	single-cell	data	using	tSNE	22	

To	visualize	high-dimensional	single	cell	data,	dimensionality	reduction	is	essential.	We	chose	to	23	
implement	tSNE	as	described	in	Klein	et	al.	The	core	steps	are	summarized	as	follows.	Steps	1-2	preceed	24	
tSNE,	and	focus	the	algorithm	on	genes	that	best	describe	differences	between	cell	populations.	25	

1. Extract	the	top	1000	highly	variable	genes.	We	do	this	using	a	statistical	test	derived	specifically	26	
for	InDrops	data	(Klein	et	al.).	27	

2. Extract	principal	variable	genes.	Principal	variable	genes	are	a	subset	of	the	highly	variable	genes	28	
from	step	2	that	we	find	best	describes	the	cell	population	structure.	The	steps	to	find	principal	29	
variable	genes	are:	30	

a. Perform	PCA	using	the	top	1000	biologically	variable	genes.	31	
b. Identify	the	number	of	non-trivial	principal	components.	This	is	done	by	comparing	the	32	

eigenvalue	of	each	principal	component	from	a.	to	the	eigenvalue	distribution	for	the	33	
same	data	after	being	randomized.	Only	principal	components	with	eigenvalues	higher	34	
than	those	observed	on	random	data	are	retained.		35	

c. Extract	genes	that	contribute	most	highly	to	these	principal	components	by	imposing	a	36	
threshold	on	the	gene	loadings	for	each	non-trivial	PC.	37	

3. Perform	tSNE.	We	used	the	MATLAB	implementation	of	tSNE	from	Van	de	Marteen	et	al.	As	38	
input,	we	supplied	z-score	normalized	principal	variable	genes,	and	asked	tSNE	to	perform	an	39	
initial	PCA	to	a	number	of	dimensions	equal	to	the	number	of	non-trivial	principal	components	40	
in	step	4.	tSNE	then	takes	cells	embedded	in	this	PCA	space	and	nonlinearly	projects	them	onto	41	
two	dimensions	for	visualization.	42	
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	1	

Subpopulation	analysis		2	

The	first	goal	of	our	single	cell	analysis	was	to	describe	the	identity	and	proportions	of	cell	states	3	
generated	by	each	of	two	motor	neuron	differentiation	strategies.	For	this	purpose	we	found	that	good	4	
results	were	achieved	using	local-density	gradient	clustering	on	the	2D	tSNE	representation	of	the	data.	5	
This	approach	provided	a	clear	and	natural	cell	state	classification	that	was	well	aligned	with	prior	6	
knowledge	about	marker	gene	expression	domains.	The	steps	we	took	are	summarized	as	follows:	7	

1. Perform	tSNE	(as	above)	on	cells	pooled	from	all	timepoints	for	each	protocol	(e.g.	Fig.	2B).	8	
2. Apply	local	density	gradient	clustering	to	define	cell	states.	9	
3. Identify	genes	specifically	expressed	by	each	cell	state,	and	use	prior	knowledge	on	their	10	

expression	domains	to	generate	a	cell	type	annotation	(e.g.	Fig.	2D).	11	
4. Quantify	the	fraction	of	cells	in	each	state	at	each	timepoint	(e.g.	Fig.	2F).	12	

We	identified	genes	that	were	specifically	expressed	by	each	subpopulation	through	pairwise	t-tests	and	13	
visually	inspected	their	expression	over	the	tSNE	embedding.	In	Figure	2D-E	of	the	main	text,	we	show	14	
the	z-score	normalized	expression	of	a	selection	of	marker	genes	that	we	used	as	a	heatmap.	Z-score	15	
normalization	preserves	differences	between	populations	while	putting	the	expression	level	of	every	16	
gene	on	the	same	scale.	In	Supplementary	Figs.	S1	and	S2,	we	show	the	un-normalized	expression	of	17	
each	of	these	genes	individually	so	that	the	reader	may	compare.		18	

	19	

Initial	identification	of	differentiation	trajectories	20	

During	our	subpopulation	analysis	we	observed,	for	both	protocols,	a	continuous	progression	of	cells	21	
that	spanned	the	initial	ES	cell	state	through	the	early	and	late	differentiation	timepoints.	This	22	
progression	was	punctuated	by	familiar	progenitor	states	that	were	ordered	in	a	way	that	was	23	
consistent	with	known	events	in	motor	neuron	differentiation	(Figure	2D-E),	and	was	correlated	with	24	
chronology	(Figure	2B-C	inset).	We	interpreted	these	progressions	as	differentiation	trajectories.	Each	is	25	
reconstructed	from	three	population	snapshots	(day	0,	day	4/5,	and	day	11/12).	Because	differentiation	26	
in	vitro	is	asynchronous,	the	single	cell	data	overlapped	from	one	timepoint	to	the	next.	We	deduce	27	
from	this	that	intermediate	states	were	not	missed	due	to	the	spacing	of	our	timepoints.	We	also	28	
validated	that	important	intermediate	genes	were	not	detected	over	a	densely	sampled	timecourse	29	
using	qPCR	(see	below).	30	

	31	

Differential	gene	expression	analysis	between	cell	states	from	single-cell	data	32	

We	identified	differentially	expressed	genes	between	cell	states	by	using	two-tailed	t-tests	with	a	33	
multiple	hypothesis	testing	correction.	We	defined	differentially	expressed	genes	conservatively	at	a	34	
FDR	of	5%	and	a	significance	level	of	p<0.0001.	We	only	considered	genes	where	at	least	one	of	the	35	
states	being	compared	had	>=10	cells	with	non-zero	expression.	To	find	marker	genes	of	a	population	36	
we	asked	for	genes	that	were	enriched	in	that	population	versus	everything	else.	For	several	37	
comparisons	we	restricted	our	analysis	to	Riken	transcription	factors.	This	list	contains	~1,500	genes	38	
with	manually	annotated	transcription	factor	activity.	We	represented	differential	expression	data	using	39	
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volcano	plots,	and	colored	the	expression	intensity	of	each	gene	using	a	colorbar;	the	mean	of	the	1	
higher	expressing	state	was	used.	2	

	3	

Comparison	of	differentiation	paths	I:	Visualization	of	alternate	differentiation	trajectories	using	4	
SPRING	5	

After	our	initial	identification	of	the	differentiation	paths	for	the	standard	protocol	and	for	direct	6	
programming	we	wished	compare	their	routes.	One	of	the	most	powerful	ways	to	begin	addressing	such	7	
a	problem	is	to	simply	visualize	the	data.	Yet,	we	found	tSNE	gave	unclear	results	for	a	direct	comparison	8	
of	the	paths;	visualizing	both	protocols	together	resulted	in	some	mixed	clusters,	and	some	distinct	9	
clusters,	but	no	overall	coherence	to	the	representation	as	we	had	found	looking	at	one	or	the	other	10	
trajectory	separately.	The	limitations	of	tSNE	for	analyzing	continuous	processes	are	well	known.	11	

	 We	therefore	turned	to	a	new	method	developed	in	parallel	to	this	work	in	our	lab	called	12	
SPRING,	that	in	our	experience	does	better	in	analyzing	continuous	processes	in	single	cell	data.	SPRING	13	
has	three	core	steps:	first,	it	reduces	dimensionality	to	a	50	dim	PCA	space;	second,	it	constructs	a	k-14	
nearest-neighbor	(kNN)	graph	in	this	space;	finally,	it	renders	an	interactive	2D	visualization	of	this	kNN	15	
graph	using	a	force	directed	layout.	In	this	visualization	edges	of	the	kNN	graph	are	literally	springs	that	16	
pull	together	similar	cells,	while	every	cell	has	a	magnetic	repulsion	force	that	pushes	it	away	from	other	17	
cells	and	an	intrinsic	gravity.	The	balance	of	these	forces	illuminates	the	topology	of	how	cells	are	18	
positioned	in	high-dimension	with	respect	to	one	another.	In	this	visualization	nodes	can	be	moved	19	
around	to	rotate	the	projection	and	find	the	clearest	representation;	in	each	new	position	the	graph	re-20	
relaxes	according	to	the	underlying	physics	of	the	force	directed	layout.	The	specific	steps	we	took	to	21	
generate	Fig.	3A	are	as	follows.	Note	that	a	small	manual	correction	was	made	to	the	position	of	the	ESC	22	
and	LMN	populations	to	reduce	white	space,	but	did	not	distort	relationships	between	populations.	23	

1. Load	the	cells	along	each	differentiation	path	into	SPRING	separately.	24	
2. Remove	doublets.	Doublets	were	identified	by	three	criteria.	1)	they	are	rare,	in	line	with	our	25	

experimental	expectation	for	cell	doublets,	2)	they	formed	long	range	connections	between	26	
large	cell	groups	in	the	same	timepoint	and	sample,	3)	they	do	not	possess	any	unique	marker	27	
genes;	all	genes	they	express	are	a	linear	combination	of	two	other	cell	states.	We	identified	28	
approximately	80	doublets	in	the	standard	protocol	(<3%	of	all	cells),	and	approximately	40	in	29	
the	direct	programming	approach	(<2%	of	all	cells).	30	

3. Load	the	filtered	cells	from	both	protocols	into	SPRING	together.	To	make	plots	the	coordinates	31	
from	the	SPRING	representation	were	exported	into	MATLAB;	cells	were	either	colored	by	cell	32	
state	(Fig.	3A),	or	gene	expression	(Fig.	3B).	33	

	34	

Comparison	of	differentiation	paths	II:	Pairwise	cosine	similarity	of	cell	state	centroids	35	

We	also	asked	how	the	direct	programming	and	standard	motor	neuron	differentiation	paths	were	36	
related	to	each	other	by	performing	a	pairwise	comparison	of	cell	state	centroids.	Centroids	are	the	37	
average	or	center	of	mass	in	gene	expression	space	for	a	collection	of	cells.	Centroids	can	provide	a	very	38	
accurate	estimate	of	global	gene	expression	that	averages	over	the	noise	intrinsic	to	single-cell	RNA	39	
sequencing	at	the	level	of	individual	cells.	By	computing	the	cosine	similarity	between	two	cell	state	40	
centroids	we	are	asking	how	similar	these	states	are	in	average	gene	expression.	If	the	paths	do	indeed	41	
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split	and	then	reconverge	our	expectation	was	to	see	similarity	between	early	and	late	states	in	both	1	
progressions,	but	not	between	the	intermediate	states.	We	chose	to	perform	these	comparisons	in	a	PV-2	
gene	space	constructed	from	cells	in	both	protocols	to	make	our	comparisons	as	sensitive	as	possible.	3	
We	obtained	similar	but	less	sensitive	results	using	all	genes	above	a	minimum	expression	value	(not	4	
shown).	A	summary	of	the	steps	of	this	analysis	is:	5	

1. Combine	all	cells	from	both	protocols,	extract	PV-genes	(as	described	above),	and	z-score	6	
normalize	their	expression.	7	

2. Calculate	the	centroid	of	every	cluster	from	each	trajectory	in	this	PV-gene	space.	8	
3. Compute	the	pairwise	cosine	similarity	for	all	direct	programming	clusters	versus	all	standard	9	

protocol	clusters.		10	
4. Visualize:	we	chose	to	use	a	heatmap	(Fig.	3C).	11	

	12	

Comparison	of	differentiation	paths	III:		Maximum	likelihood	assignment	of	single	cells	to	cell	state	13	
centroids	between	trajectories	14	

Finally,	we	performed	an	independent	comparison	of	the	differentiation	paths	that	did	not	depend	on	15	
our	definition	of	cluster	boundaries	in	the	direct	programming	trajectory.	We	asked	whether	any	16	
potentially	rare	individual	cells	or	subpopulations	in	the	direct	programming	trajectory	resemble	the	17	
intermediate	states	of	the	standard	trajectory.	Because	we	were	now	dealing	with	single	cells,	not	18	
averages	of	many	measurements,	care	was	necessary	in	this	analysis	to	remain	robust	relative	to	the	19	
noise	in	single	cell	measurements.	We	therefore	took	a	Bayesian	approach	and	reasoned	as	follows.	In	20	
our	data,	each	cell	is	a	vector	of	counts,	with	one	element	for	every	gene.	These	counts	can	be	viewed	21	
as	a	multinomial	sample	from	some	underlying	distribution	of	gene	expression.	Since	each	state	of	the	22	
standard	differentiation	trajectory	is	defined	by	a	particular	gene	expression	distribution,	we	can	ask:	23	
what	is	the	probability	a	given	direct	programming	protocol	cell	was	sampled	from	each	standard	24	
differentiation	trajectory	cluster?	In	this	usage,	probability	amounts	to	a	measure	of	similarity,	with	high	25	
probability	indicating	high	similarity.	We	obtained	similar	results	working	in	either	a	PV-gene	expression	26	
space,	or	considering	all	genes	expressed	above	a	minimum	counts	threshold.	The	results	of	this	analysis	27	
using	PV-genes	are	presented	in	Figure	3D.	We	also	obtained	similar	(but	more	noisy)	results	using	28	
cosine	similarity	as	an	alternative	distance	metric	(not	shown).	The	specific	steps	of	our	computation	are	29	
as	follows:	30	

1. Extract	a	set	of	genes	with	which	to	make	comparisons	(either	PV-genes	or	all	genes	above	a	31	
minimum	expression	threshold).	32	

2. For	each	cluster	of	the	standard	trajectory,	calculate	the	probability	of	observing	a	given	gene	33	
(i.e.	the	fraction	of	counts	in	that	cluster	from	the	gene).	For	genes	that	are	not	detected	add	34	
1e-07	total	counts.	35	

3. For	each	cell	in	the	direct	programming	trajectory,	calculate	the	log-likelihood	that	it	was	drawn	36	
from	each	of	these	clusters.	This	log-likelihood	is	from	the	multinomial	distribution	function	37	
using	the	probabilities	obtained	in	step	2.	38	

4. Identify	and	tally	the	maximum	likelihood	assignments	of	all	direct	programming	cells.	39	
Normalize	raw	assignments	so	that	they	sum	to	100	(giving	the	percentage).	Plot	the	percentage	40	
of	direct	programming	cells	assigned	to	each	standard	protocol	state.	41	

	42	
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Cell	cycle	gene	expression	analysis	1	

Cell-cycle	activity	can	be	estimated	from	a	cell	cycle	associated	gene	expression	signature;	populations	2	
that	express	higher	average	levels	of	cell	cycle	genes	are	most	likely	cycling	at	higher	frequency	than	a	3	
population	with	lower	level	expression	of	these	genes.	In	Fig.	4b	and	Fig.	S4	we	performed	an	analysis	in	4	
this	spirit	to	determine	which	parts	of	the	DP	and	SP	differentiation	trajectories	appeared	to	be	5	
proliferative,	and	to	estimate	where	cells	are	exiting	the	cell	cycle.	We	computed	a	proliferation	score	6	
that	was	the	aggregate	expression	of	a	panel	of	21	cell	cycle	related	genes:	Aurka,	Top2a,	Ccna2,	Ccnd1,	7	
Ccnd2,	Ccnd3,	Ccne1,	Ccne2,	Ccnb1,	Cdk4,	Cdk6,	Cdk2,	Cdk1,	Cdkn2b,	Cdkn2a,	Cdkn2c,	Cdkn2d,	Cdkn1a,	8	
Cdkn1b,	Cdkn1c,	Mcm6,	Cdc20,	Plk1,	and	Pcna.	We	also	computed	a	cell	cycle	exit	score	on	the	basis	of	9	
the	aggregate	expression	of	a	panel	of	4	tumor	suppressor	genes	that	inhibit	the	cell	cycle:	Cdkn1c,	10	
Cdkn1b,	Cdkn1a,	and	Cdkn2d.	In	Fig.	S4	we	show	the	expression	of	representative	individual	genes	from	11	
this	score;	in	general	cell	cycle	genes	were	correlated	with	each	other	in	their	expression	over	cells,	as	12	
were	cell	cycle	exit	genes.	13	

	14	

Comparison	of	motor	neurons	in	vitro	with	primary	motor	neurons	using	single-cell	data	15	

How	does	the	transcriptional	state	of	motor	neurons	produced	by	both	protocols	compare	to	that	of	16	
motor	neurons	in	vivo?	To	answer	this	question	we	leveraged	the	ability	of	single-cell	RNA	sequencing	to	17	
compare	cell	states	even	within	populations	that	are	not	pure	(also	see	below	for	functional	18	
comparisons	of	the	phenotypes).	We	performed	three	analyses.	First,	we	computed	the	cosine	similarity	19	
between	the	centroids	of	each	cell	state	in	both	protocols	and	primary	motor	neurons	(Fig.	5B).	The	20	
specific	steps	of	this	analysis	were	as	follows:	21	

1. Combine	all	cell	states	from	both	protocols,	and	from	HB9+	E13.5	primary	tissue,	extract	PV-22	
genes	(as	described	above),	and	z-score	normalize	their	expression.	23	

2. Calculate	the	centroid	of	every	cluster	from	each	trajectory,	and	from	primary	motor	neurons,	in	24	
this	PV-gene	space.	25	

3. Compute	the	cosine	similarity	for	all	in	vitro	populations	versus	primary	motor	neurons,	and	26	
visualize	as	a	bar	graph.	27	

Second,	we	performed	a	co-clustering	analysis	(Supp.	Fig.	6).	If	cells	cluster	together	this	is	an	indication	28	
of	similarity.	An	advantage	of	co-clustering	is	that	it	allows	one	to	make	statements	at	a	single	cell	level	29	
about	the	fraction	of	cells	within	a	state	that	resemble	another	state,	for	example.	The	specific	steps	of	30	
our	coclustering	analysis	were:	31	

1. For	standard	protocol,	direct	programming,	and	primary	HB9+	cells,	filter	for	neurons:	in	this	32	
analysis	we	defined	neurons	as	cells	with	>	2.5	UMIs	from	universal	neuronal	marker	Tubb3.	33	

2. Perform	tSNE	and	local	density	gradient	clustering	(as	above;	Supp.	Fig.	6A).	34	
3. For	every	condition,	count	the	fraction	of	cells	belonging	to	each	cluster.	Similar	states	should	35	

belong	to	the	same	cluster.	36	
4. Visualize:	we	chose	to	use	a	pie	chart.	37	

Third,	we	performed	differential	gene	expression	analysis,	comparing	the	most	mature	motor	neuron	38	
states	from	each	protocol	with	primary	HB9+	motor	neurons	(Supp.	Fig.	7).	This	analysis	was	performed	39	
as	described	above.	We	also	performed	differential	expression	analysis	of	these	populations	using	bulk	40	
microarrays	as	validation	(see	below).	41	

28
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	1	

qPCR	2	

RNA	was	isolated	using	Qiagen	Rneasy	Plus	Kit.	Purified	RNA	was	then	reverse	transcribed	using	Bio-3	
rad's	iSCRIPT	cDNA	synthesis	kit.	Quantitative	PCR	was	performed	using	Bio-rad's	SYBR	green	Supermix	4	
on	a	CFX96	Real-Time	PCR	system.	5	

	6	

Immunostaining	7	

Antibodies	used	for	immunostaining	were	anti-Tubb3	(Cell	Signaling	D71G9;	1:100),	anti-Map2	(Sigma	8	
M9942;	1:200),	anti-VACht	(Synaptic	Systems	139	103;	1:200),	anti-Isl1	(Abcam	ab109517;	1:1000),	and	9	
anti-Hb9	(DSHB	81.5C10;	1:100).	Differentiated	cells	were	fixed	in	4%	paraformaldehyde	for	20	minutes	10	
and	then	permeabilized	with	0.1%	Triton-X	for	15	minutes.	After	primary	incubation	for	1	hour,	samples	11	
were	labeled	with	a	secondary	antibody	conjugated	to	AlexaFluor647.	Samples	were	co-stained	with	12	
DAPI	before	imaging	on	a	Nikon	Eclipse	TE2000-E	microscope.	13	

	14	

Electrophysiology	15	

All	recordings	were	carried	out	at	room	temperature	within	6	days	of	plating	the	neurons	in	35	mm	dish.	16	
Whole-cell	voltage	clamp	recordings	were	made	with	a	Multiclamp	700B	amplifier	(Molecular	Devices)	17	
and	patch	pipettes	with	resistances	of	2˗3	MΩ.	Pipette	solution	was	135	mM	K-Gluconate,	10	mM	KCl,	1	18	
mM	MgCl2,	5	mM	EGTA,	10	mM	HEPES,	pH	7.2,	adjusted	with	NaOH.	The	external	solution	was	140	mM	19	
NaCl,	5	mM	KCl,	2	mM	CaCl2,	2	mM	MgCl2,	10	mM	HEPES,	and	10	mM	D-glucose,	pH	7.4,	adjusted	with	20	
NaOH.	We	used	gravity	perfusion	system	connected	with	Perfusion	Pencil®	with	Multi-Barrel	Manifold	21	
Tip	(AutoMate	Scientific)	to	externally	apply	0.5	µM	tetrodotoxin,	100	µM	AMPA,	kainate,	GABA,	or	22	
glycine	to	the	cells.	Command	protocols	were	generated	and	data	was	digitized	with	a	Digidata	1440A	23	
A/D	interface	with	pCLAMP10	software.	24	

	25	

Co-culture	muscle	contraction	assays	26	

C2C12	myoblasts	were	grown	in	10%FBS+DMEM	media	and	then	differentiated	into	myotubes	by	27	
incubating	in	differentiation	medium	(2%	horse	serum	+	DMEM).	After	myotubes	were	formed,	the	28	
neurons	were	dissociated	by	trypsinization	and	reseeded	on	top	of	the	differentiated	muscle	to	allow	29	
contractions	to	develop.	Video	of	contractions	were	taken	using	Metamorph	software	and	manually	30	
counted	over	5	second	intervals.	For	stopping	assay,	300	µM	Tubocurarine	(Sigma)	was	added	to	the	31	
media	as	an	acetylcholine	competitor.	For	labeling	of	acetylcholine	receptors,	bungarotoxin	(Invitrogen)	32	
was	used	after	cells	were	fixed	with	paraformaldehyde.	Similarly	to	C2C12	cells,	ES	cells	over-expressing	33	
MyoD	were	also	differentiated	to	myotubes	using	differentiation	medium	and	subjected	to	co-culture	34	
with	neurons.	35	

	36	

Microarray	Analysis	37	

29

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 5, 2017. ; https://doi.org/10.1101/124594doi: bioRxiv preprint 

https://doi.org/10.1101/124594
http://creativecommons.org/licenses/by/4.0/


The	mRNA	of	undifferentiated	iNIL	ES	cells	and	NIH	3T3	cells	(grow	in	DMEM+10%FBS)	were	collected	1	
and	purified	by	RNA	extraction	using	RNeasy	Plus	Extraction	Kit	(Qiagen).	Neurons	differentiated	by	2	
either	protocol	were	first	sorted	by	flow	cytometry	on	a	BD	FACSaria	II	machine	(Beckton	Dickinson,	3	
USA)	to	collect	Hb9::GFP+	cells,	and	then	were	subjected	to	RNA	extraction	in	a	similar	fashion.	4	
Collected	RNA	was	then	amplified	and	hybridized	to	Affymetrix	GeneChip	Mouse	Transcriptome	Arrays	5	
(MTA	1.0).	Results	were	processed	by	the	Children’s	Hospital	Microarray	Core	Facility,	and	were	6	
analyzed	using	Affrymetrix’s	Transcriptome	Analysis	Console	and	Expression	Console	software.	 	7	
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