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ABSTRACT 11 

The antibody repertoire is a vast and diverse collection of B-cell receptors and antibodies that 12 
confer protection against a plethora of pathogens. The architecture of the antibody repertoire, 13 
defined by the network similarity landscape of its sequences, is unknown. Here, we established 14 
a novel high-performance computing platform to construct large-scale networks from high-15 
throughput sequencing data (>100’000 unique antibodies), in order to uncover the architecture 16 
of antibody repertoires. We identified three fundamental principles of antibody repertoire 17 
architecture across B-cell development: reproducibility, robustness and redundancy. 18 
Reproducibility of network structure explains clonal expansion and selection. Robustness 19 
ensures a functional immune response even under extensive loss of clones (50%). Redundancy 20 
in mutational pathways suggests that there is a pre-programmed evolvability in antibody 21 
repertoires. Our analysis provides guidelines for a quantitative network analysis of antibody 22 
repertoires, which can be applied to other facets of adaptive immunity (e.g., T cell receptors), 23 
and may direct the construction of synthetic repertoires for biomedical applications. 24 

 25 
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 27 

INTRODUCTION 28 

The high diversity of antibody repertoires enables broad and protective humoral immunity, thus 29 
understanding their system sequence-related properties is essential to the development of new 30 
therapeutics and vaccines 1,2. The source of antibody diversity has long been identified to be the 31 
V-, (D- in the heavy chains) and J-gene somatic recombination 3. Further additions and 32 
deletions of nucleotides at the junctions of the gene segments generate a large collection of 33 
antibodies and B-cell receptors, which is called the antibody repertoire 4,5. Antibody identity 34 
(clonality) and antigen specificity are primarily encoded in the highly diverse junctional site of 35 
recombination in the variable heavy chain, known as the complementarity determining region 3 36 
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(CDR3) 6. Therefore, the similarity landscape of CDR3 sequences represents the clonal 37 
architecture of an antibody repertoire, which reflects the breadth of antigen-binding and 38 
correlates to humoral immune protection and function. However, due to limitations in 39 
technological sequencing depth and computing power, the fundamental principles that govern 40 
antibody repertoire architecture have remained unknown, thereby hindering a profound 41 
understanding of humoral immunity. 42 

Recently, different aspects of network analysis have been employed to investigate antibody 43 
repertoires in health and disease. Antibody repertoire networks represent CDR3 sequence-44 
nodes connected by similarity-edges 7–11. Sequence-based networks have first been used to 45 
show immune responses defined by similarity between clones, a proxy for clonal expansion 8. 46 
Network connectivity was later also used to discriminate between diverse repertoires of healthy 47 
individuals and clonally expanded repertoires from individuals with diseases such as chronic 48 
lymphocytic leukemia 7 and HIV-1 infection 10. A predominant part of network analysis has 49 
involved visualization of clusters and the display of clonal composition 7–11. Yet, visualization 50 
alone does not provide quantitative insights into the architecture of antibody repertoires and is 51 
limited to the informative graphical display of a few hundred nodal clones. It has been shown 52 
that the natural antibody repertoire exceeds the informative visualization threshold (hundreds 53 
clonal nodes) by at least three orders of magnitude (Glanville et al., 2009), a limit that previous 54 
research did not explore given the lower biological coverage (102–103 unique clones analyzed). 55 
Consequently, computational methods for constructing  large-scale networks with more than 103 56 
nodes have remained underdeveloped in systems biology (Kidd et al., 2014). Furthermore, only 57 
networks expressing clonal similarity relations of one nucleotide (nt) or one amino acid (a.a.) 58 
between sequences have been analyzed so far, which is insufficient in covering the clonal 59 
relationships possible considering the extensive mutational landscape of somatic hypermutation 60 
12,13. Thus, the lack of quantitative investigation of a relatively (and exceedingly) small subset of 61 
the antibody repertoire, with respect to clone numbers and network size, has limited the 62 
biological insight of repertoire architecture. 63 

To reveal the fundamental principles of antibody repertoire architecture, we implemented a 64 
large-scale network analysis platform coupled to high-coverage antibody repertoire high-65 
throughput sequencing data to answer the following questions: (i) Does sequence similarity 66 
among clones show reproducible signatures across individuals? (ii) How robust are antibody 67 
repertoires to removal of a fraction of clones, given their kinetics and rapid turnover? (iii) To 68 
what extent is the repertoire architecture intrinsically redundant? (Figure 1). 69 

 70 

RESULTS 71 

A high-performance computing platform for large-scale network analysis of antibody 72 
repertoires  73 

The global landscape of antibody clonal similarities is vast and complex; for example, on the 74 
amino acid level, the size of the distance matrix of all-against-all sequences is ≈1010 for a 75 
representative repertoire of ≈105 clones (murine naïve B cells). In order to extract the 76 
construction principles of antibody repertoires from the high-dimensional similarity space, we 77 
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developed a large-scale network analysis approach, which was based on representing CDR3 78 
a.a. clones as sequence-nodes connected by similarity-edges. Specifically, we developed a 79 
computational platform that leverages the power of distributed cluster computing, which is able 80 
to compute the extremely large distance matrices required for entire repertoires (≥105 CDR3 81 
sequences, Figure S1). Analysis of circa 105 or more sequences is an intractable problem 82 
without parallel computing, thus our implementation utilized the Apache Spark 14 distributed 83 
computing framework to partition the work among a cluster of machines (Figure S1B). The 84 
construction of large-scale networks is computationally demanding: a large network comprised 85 
of 1.6 million nodes (simulated strings) required 15 minutes if the calculation was performed 86 
simultaneously on 625 computational cores (Figure S1C). Computational costs could have been 87 
lowered by performing network analysis on a subsample of the repertoire (e.g., 103), as was 88 
done in previous studies 7–11. However, extensive analysis into sub-networks has revealed that 89 
they are not statistically representative of entire networks, specifically in that sub-network 90 
measurements are not always representative of key parameters such as degree distribution, 91 
betweenness, assortativity and clustering 15,16. Thus, it was imperative to construct and analyze 92 
large-scale networks based on a similarity distance matrix that covers the full clonal diversity of 93 
biological antibody repertoires. 94 

Comprehensive biological sampling of antibody repertoires was ensured by the usage of high-95 
throughput RNA sequencing data (≈400 million full-length antibody sequence reads) from 96 
murine B-cell populations, isolated at key stages in humoral development (data was provided by 97 
Greiff et al.). Data was analyzed from pre-B cells (pBC), naïve B cells (nBC) and memory 98 
plasma cells (PC) isolated from 19 mice, which were stratified into one unimmunized and three 99 
immunized cohorts. The experimental design allowed for the assessment of antibody 100 
architecture across several important parameters: i) across key stages of B-cell development, ii) 101 
before (pBC, nBC) and after antigen-driven clonal selection and expansion (PC), (iii) differences 102 
in the complexity of the protein antigen [hepatitis B surface antigen (HBsAg), ovalbumin (OVA) 103 
and nitrophenylacetyl-conjugated hen egg lysozyme (NP-HEL)], and (iv) across a scale of 104 
different repertoire sizes (102–105 of unique CDR3 clones). The experimental data provided 105 
maximal technological and high biological coverage (Greiff et al.), enabling comprehensive 106 
assessment of clonal diversity and the global similarity landscape and architecture of antibody 107 
repertoires.  108 

For each sample (n=57, from 19 mice and three B-cell stages), antibody repertoire architecture 109 
was based on the pairwise a.a. sequence similarity of all clones (Levenshtein distance (LD) 110 
matrix, hereafter referred to as similarity layer, Figure 1A). When two sequences were similar 111 
within a defined threshold, they were connected in the repertoire network (i.e., similarities of 1 112 
a.a. differences were captured in similarity layer 1, LD1, 2 a.a. in LD2 and so on). 113 

 114 

Global patterns of antibody repertoire networks are reproducible 115 

In order to quantify the extent to which architectural patterns are reproducible across antibody 116 
repertoires, we analyzed the base similarity layer in antibody repertoires (similarity layer LD1). 117 
The base layer of the network organization provides information regarding the minimal 118 
differences (e.g., 1 a.a.) of all antibody sequences that compose the repertoire. Solely the base 119 
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similarity layer, LD1, has previously been analyzed to describe antibody repertoires as networks 120 
7–11. Although repertoires varied highly among mice (74–85% clonal variability, Figure S2A), we 121 
found a remarkable cross-mouse consistency in patterns of clonal interconnectedness (similarity 122 
of antibody sequences) within each B-cell stage: the average number of edges among clones 123 
(𝐸"#$ = 230,395±23,048; 𝐸,#$ = 1,016,928±67,080; 𝐸01 = 45±10), the average size of the 124 
largest component (𝑝𝐵𝐶 = 46±0.7%; 𝑛𝐵𝐶 = 58±0.5%; 𝑃𝐶 = 10±1.6%; Figure 2A) and cluster 125 
composition (Figure S2B) varied negligibly across mice (see Methods, Network analysis). Thus, 126 
although unique sequence composition varied substantially between individuals, the overall 127 
structure of the network remained similar.  128 

Along B-cell development, PC repertoires were five-fold more disconnected than pBC and nBC 129 
networks (PC largest component was nearly 5 times smaller than pBC and nBC, Figure 2A), 130 
and their centrality was concentrated on specific clones compared to the homogeneously 131 
connected clones in pBC and nBC networks (centralization 𝑧01 = 0.05, density 𝐷01 = 0.01, 132 
𝑧;<1,=<1 ≈ 𝐷=01,=<1 ≈ 0, Figure S2C). Compared to pBC networks, nBC were on average 4–5 133 
times larger and showed a higher average degree (𝑘"#$ = 3, 𝑘,#$ = 5, 𝑘@$ = 1, Figure S2B) 134 
although both pre- and naïve B-cell repertoires had identical diameter (𝑑"#$,,#$ = 26, 𝑑@$ = 6, 135 
Figure 2B), indicating a similar coverage of the sequence space. We observed that clones in 136 
pBC and nBC repertoires connected to comparable clones in terms of degree (assortativity 17–19, 137 
	𝑟"#$ = 0.48, 𝑟,#$ = 0.41), whereas PC networks were consistently disassortative: their highly 138 
connected clones were linked to clones with few connections (𝑟@$ = −0.09, Figure 2B). The 139 
characterization of the global patterns of antibody repertoire networks indicated that pBC, nBC 140 
and PC repertoires were reproducible. pBC and nBC clones cover a larger diversity space than 141 
clones in PC repertoires, where sequence similarity showed to be centralized and targeted 142 
towards certain clones. 143 

 144 

Clonal features of antibody repertoire networks are reproducible  145 

Antibody repertoire architecture was also reproducible at the level of clonal (local) features in 146 
pBC and nBC networks, which were characterized by a low variability (coefficient of variation, 147 
CV) across various clonal parameters. The low variability of clonal parameters in pBC and nBC 148 
networks (𝐶𝑉"#$ = 2 − 28%, 𝐶𝑉,#$ = 1 − 24%) was in contrast to the higher variability observed 149 
in PC repertoires (𝐶𝑉@$ = 13 − 118%, Figure 2C). Specifically, low variability across different 150 
individuals was observed in several average clonal parameters such as degree, transitivity, 151 
authority and PageRank, closeness and betweenness. Variation analysis of the similarity 152 
degree indicated that the average number of similar clones to each of the clones in a repertoire 153 
varied marginally in pBC and nBC (𝐶𝑉"#$,,#$ = 5, 6%). Transitivity showed that the similarity 154 
between clones both similar to a third CDR3 clone varied only negligibly between individuals 155 
(𝐶𝑉"#$,,#$ = 1, 2%). Authority and PageRank showed that the centrality of a CDR3 in the 156 
repertoire topology varied respectively 𝐶𝑉;<1,=<1 = 11% and 25% across individuals, suggesting 157 
that individual repertoires were centered variably around certain CDR3 clones which were 158 
centers of highly connected (similar) clonal regions compared to less connected regions in the 159 
same repertoire network.  160 
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Closeness analysis revealed that an analogous number of similarity edges were required to 161 
access every other CDR3 from a given CDR3 clone in antibody repertoire networks of different 162 
individuals, as the similarity of a clone to every other CDR3 clone in the repertoire varied by 163 
𝐶𝑉"#$,,#$ = 17%. Betweenness, the “bridge” function of a clone in sequence similarity, varied 164 
slightly across individuals with 𝐶𝑉"#$,,#$ = 28%, suggesting a comparable structure of the 165 
similarity route function of CDR3 sequences in these repertoires. These characteristics reflect 166 
the transversal diversity of pBC and nBC antibody repertoires where the clones cover a larger 167 
space and their similarity is more homogenously distributed at the global repertoire level.  168 

Although a higher variability was detected across PC repertoire networks (Figure 2C), clonal 169 
parameters were specific to B-cell stages (ppBC,nBC/PC < 0.05): PC clones possessed higher 170 
centrality compared to pBC and nBC (closeness 20, eigenvector 21, and PageRank 22), while 171 
antigen-inexperienced clones bridged sequence similarity (betweenness 23, Figure S2D). 172 
Furthermore, in contrast to pBC and nBC, PC network clonal parameters correlated with CDR3 173 
frequency (clonal degree median 𝑟@HIJKL, = 0.55, betweenness 𝑟@HIJKL, = 0.82) suggesting that 174 
clonally expanded CDR3 sequences were structural centers of similar clones (Figure S2E, F). 175 
CDR3 authority correlated positively with germline V-gene frequency in PC clones (𝑟@HIJKL, =176 
0.39), denoting the potential role of the V-gene usage in the centralization of these networks 177 
(Figure S2G). Thus, certain high frequency V-genes predispose clones to be highly connected 178 
and similar to other clones. 179 

 180 

The structure of antibody repertoires is reproducible and depends on the immune status 181 

Network analysis revealed that antibody repertoires were constricted along B-cell development 182 
throughout all similarity layers. At LD1, 44–62% of clones were similar (connected) to at least 183 
one other clone in all B-cell stages, revealing a high degeneracy in clonal generation and 184 
selection (Figure 2D). This indicated that nearly half of antibodies in the respective repertoires 185 
had similar clones, thus demonstrating the extent of constriction present in antibody repertoires.  186 

In order to understand if such degeneracy in CDR3 sequence similarity translated into 187 
reproducible repertoire network structures 21, we determined the clonal empirical degree 188 
distribution. The degree distribution is a distinctive feature of different types of networks and it 189 
provides an immediate indication of how similarities (degrees) between antibody sequences are 190 
distributed in repertoires. Analysis of the cumulative degree distribution revealed that antigen-191 
inexperienced pBC, nBC and unimmunized PC repertoires were exponentially distributed (LD1), 192 
whereas PC repertoires of immunized cohorts were power-law distributed (base similarity layer 193 
LD1, Figure 2E, Figure S3D, E, F, G). Clusters of connected CDR3 clones showed a typical 194 
tree-like structure for pBC and nBC, and a star-like structure for PC. The structure of the 195 
network suggested an extended and chain-wise sequence similarity of the antibody clones in 196 
pBC and nBC repertoires and targeted expansion of certain clones in PC after immunization.  197 

In order to prove the tree-/star-like hypothesis and further investigate the sequence similarity 198 
space, we performed k-core 24 decomposition and neighborhood analysis (Figure 2F, G, H). The 199 
k-core decomposition revealed that the largest k-cores (after all external shells with k<kmax were 200 
removed, where k is the degree, i.e. number of similar clones, see Methods) of pBC and nBC 201 
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(0.04% and 0.06% of CDR3 clones in k-core, respectively) were 200-fold smaller than those of 202 
PC (8.2%, Figure 2F). Antigen-inexperienced repertoires were thus characterized by larger 203 
coreness values (>20), signifying a more layered structure of CDR3 similarity (Figure S2J, K) 204 
and confirming their tree-like structure. Furthermore, the high convergence of V-genes at the 205 
core-level of antibody repertoire networks (pBC=50%, nBC=70%, PC=1–10%, Figure 2G), in 206 
contrast with the low exact CDR3 sequence core-overlap (Figure S3A, B, C), suggested a 207 
genetically determined origin of the structure. 208 

The average CDR3 neighborhood size, which designated the set of similar CDR3 clones along 209 
each sequential step of similarity from a certain clone (orders n=1–50), was order-independent 210 
in PC and plateaued at 2% of the network, confirming that PC clones were connected to one 211 
central clone in a star-like similarity structure, reflecting clonal selection and expansion 212 
signatures. Neighborhood size 25, the number of similar clones to each clone, increased order-213 
wise in antigen-inexperienced cells up to 34% (Figure 2H), signifying tree-like similarity 214 
structures that enable maximal exploration of sequence space within the genetically 215 
predetermined repertoire constriction space, suggesting that antibody repertoires are 216 
evolutionarily wired to respond to diverse antigenic stimuli.  217 

 218 

Antibody repertoires are highly robust systems 219 

We hypothesized that the reproducible architecture of antibody repertoires may have evolved to 220 
be robust to fluctuations in clonal composition. It is known that antibody repertoires are very 221 
dynamic systems characterized by a high turnover rate 26–28. Therefore, we investigated the 222 
robustness of antibody repertoire architecture to clonal removal (deletion).  223 

It is has been recently established that individual repertoires have public clones, which are 224 
defined as identical clones present in multiple individuals 29. While mostly distinct, antibody 225 
repertoires possessed a fraction of public clones (15–26% along B-cell development, Figure 226 
S2A). Given their regular presence, we determined if public clones were essential to the 227 
maintenance of antibody repertoire architecture. We found that the highest authority clones 228 
were public (Figure 3A) and up to 74% of private clones (specific to an individual) were 229 
connected to at least one public clone (Figure S2I). To quantify the extent to which public clones 230 
maintain the architecture of antibody repertoires, we tested the effect of removing public clones 231 
on CDR3 degree distributions. In pBC and nBC, removal of all public clones transformed their 232 
network structure from exponential to power-law; in contrast, removal of public clones led to no 233 
change in PC network structure (Figure 3B). To assess if such a structural shift was specifically 234 
due to the deletion of public clones, we removed (repeatedly) random subsets of clones 235 
representing a similar fraction of public clones. The structure of antibody repertoires was robust 236 
along B-cell stages at up to 50% removal of random clones. The same structural shift in 237 
repertoire structure caused by the deletion of public clones could only be replicated by removing 238 
90% of random clones (Figure 3C). Therefore, public clones represent pillars that are critical for 239 
maintaining the architecture of an antibody repertoire, and the robustness of this architecture 240 
suggests a functional immunity is preserved even after extensive (random) loss of antibody 241 
clones (or B cells). 242 

 243 
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Antibody repertoires are evolutionary redundant 244 

Redundancy is a hallmark of robust systems; for example, redundancy in genes with the same 245 
function is the main mechanism of robustness against mutations in genetic networks 30. To 246 
investigate the extent of redundancy within antibody networks, we examined whether their 247 
architecture at the base similarity layer (LD1) was manifested in higher order similarity layers 248 
(LD>1). Differences greater than one a.a. between antibody sequences could represent the 249 
potential personal scenarios of antibody repertoire evolution (somatic hypermutation 12,13), a 250 
result of successful survival through selective processes. Specifically, if a clone connected to 251 
many other clones in the LD1 similarity layer mutates into a similar clone at a specific a.a. 252 
position, this potential clone will be connected to many clones in the LD2 similarity layer. Thus, 253 
higher order similarity layers can serve as surrogates for the evolution of potential antibody 254 
repertoires from antigen-inexperienced B-cell populations.  255 

To quantify the extent of redundancy across similarity layers, we calculated the prediction 256 
accuracy of LD1 versus similarity layers LD2–12 using a leave-one-out cross-validation approach 257 
(Figure 3D, Figure S3H and S3I). Specifically, quantitative redundancy was low in PC 258 
(LD1→LD2–3 prediction accuracy was 28% on average); however, LD1 of pBC and nBC predicted 259 
CDR3 degree profiles of proximal similarity layers LD2–3 with ≥80% accuracy (Figure 3D and 260 
3E), thereby indicating a high redundancy in antibody repertoire architecture. This high 261 
redundancy is explained by the structure of the antibody networks (Figure 2E–H). Although the 262 
distance between proximal similarity layers (LD1 to LD3) seems small (1–3 a.a. CDR3 sequence 263 
differences), it represents ≈20% of potential change in clonal a.a. sequence (99% of CDR3 264 
clones are 4–20 a.a. long), which is in the range of highly mutated antibodies (e.g., broadly-265 
neutralizing HIV-specific 31). Therefore, redundancy in the antigen-inexperienced repertoire is 266 
maintained throughout a large sequence space and provides details on the pre-programmed 267 
evolvability 32,33 of antibody responses. 268 

 269 

DISCUSSION 270 

In summary, leveraging a custom-developed analysis platform for generating large-scale 271 
networks from datasets of millions of unique sequences, we have discovered three fundamental 272 
principles of antibody repertoire architecture: (i) reproducibility (ii) robustness and (iii) 273 
redundancy. We were able to detect a high cross-individual reproducibility by quantifying 274 
network parameters 17–19 at the global (size, diameter and assortativity) and clonal level (degree, 275 
transitivity, authority, closeness, betweenness, PageRank) of antibody repertoires along B-cell 276 
development. Importantly, the reproducible clonal similarity properties were suggestive of the 277 
underlying immunobiology of each B-cell stage: antigen-inexperienced repertoires covered an 278 
extended sequence diversity space (tree-like exponential similarity structure) to counter high 279 
antigen diversity whereas, antigen-experienced repertoires presented a centralized network 280 
structure (star-like, power-law), with many clones being similar to one central clone possibly 281 
originating from antigen-dependent clonal expansion and selection 34. 282 

Large-scale network analysis of entire antibody repertoires revealed that these systems are 283 
robust enough to be amenable to subsampling, which is in contrast to other systems (Lee et al., 284 
2006; Sethu and Chu, 2012). Specifically, we showed that the structure of antibody repertoire 285 
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networks was robust to extensive subsampling of up to 50% of the clones. This result is crucial 286 
for the network analysis of human antibody repertoires, where biological subsampling remains 287 
an important problem 35,36. The robustness of antibody repertoires might also explain their 288 
functionality despite the large fluctuations of antibody repertoire composition over time 26–28. 289 
Interestingly, the structure of antibody repertoires was fragile to the removal of public clones. 290 
The crucial role that public clones play as pillars of antibody repertoire architecture was 291 
revealed by large-scale networks, yet future research will need to determine the functional role 292 
(antigen specificity) of public clones in a humoral response. 293 

We found that antibody repertoires presented intrinsic redundancy across similarity layers. This 294 
means that not only minimal differences (1 a.a. of the base layer LD1) but also further 295 
diversification (> 1 a.a. differences between antibody sequences) may be hardcoded into the 296 
constricted sequence space of antibody repertoires, thus rendering their evolvability robust 297 
(analogously to other biological systems such as transcription factor networks 33). 298 

This work delineates guidelines for the large-scale network construction and analysis of large 299 
and diverse immune repertoires. In particular, our network analysis approach can be used 300 
where a partial biological coverage of the repertoire is available, although this might depend on 301 
the B-cell stage, species, and similarity layer investigated. The network quantitative analysis of 302 
global and clonal properties of adaptive immune repertoires (antibody and T cell receptor 303 
repertoires) in health and disease is essential to comprehensively understand their architecture 304 
and may resolve limitations arising from visualization of graphics featuring high-dimensional 305 
data. 306 

The three fundamental principles of the architecture of antibody repertoires uncovered here 307 
through network analysis may serve as a blueprint for the construction of synthetic antibody 308 
repertoires, which may be used to simulate natural humoral immunity for monoclonal antibody 309 
drug discovery and vaccine development 32,37. Large-scale antibody network analysis could be 310 
useful in personalized medicine in the prediction of immunity scenarios for repertoire-311 
transforming diseases such as autoimmunity or lymphomas, which lead to major alterations in 312 
repertoire composition 38,39; this may allow for interventions to modify disease progression on 313 
the repertoire level by precision therapeutic clonal targeting. Finally, we believe the stage is set 314 
for a rapid progression of the present guidelines into what was long ago envisioned by Niels K. 315 
Jerne 40: the field of network systems immunology, which offers the potential to obtain greater 316 
understanding of the complexity of immune responses. 317 
 318 
 319 
 320 
 321 
 322 
 323 
 324 
 325 
 326 
 327 
 328 
 329 
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MAIN FIGURE LEGENDS 467 
 468 
Figure 1. Large-scale network analysis reveals the architecture of antibody repertoires 469 
and its three main principles.  470 
(A) Large-scale networks (>500,000 nodes) of antibody repertoires were constructed from the 471 
Levenshtein distance (LD, edit string distance) matrix of CDR3 clonal sequences (a.a) using a 472 
custom high-performance computing platform (see Methods). Networks represent antibody 473 
repertoires of similar CDR3 nodes connected by edges when amino acid CDR3 sequences 474 
differ by a predetermined LD. All clones of a repertoire connected at a given LD form a similarity 475 
layer (LDn).  476 
(B) Deconvolution of the complexity of antibody repertoire architecture was performed by 477 
quantifying (i) its reproducibility through global and clonal (local) properties, (ii) robustness to 478 
clonal deletion and (iii) redundancy across its similarity layers in the sequence space (Figure 479 
S1). 480 
 481 
Figure 2. Global and clonal properties of antibody repertoire networks are reproducible. 482 
(A) Network size of antibody repertoires. The y-axis indicates the absolute number count of 483 
CDR3 nodes, CDR3 edges (similarities) and CDR3 clones in the largest component. The mean 484 
percentage of the CDR3s belonging to the largest component by B-cell development stage is 485 
shown on top of the dark blue bar.  486 
(B) Global properties, diameter and assortativity coefficient are shown for pre-B cells (pBC), 487 
naïve B cells (nBC) and plasma cells (PC).  488 
(C) The mean value of the coefficient of variation for clonal properties in pBC, nBC and PC 489 
repertoires. Wilcoxon test, ppBC,nBC/PC < 0.05 (see Methods).  490 
(D) Percentage of clones connected to at least one other clone in the repertoire at LD1, LD≤2, …, 491 
LD≤12 in pre-B cells, naïve B cells, plasma cells and randomly constructed CDR3 strings.  492 
(E) The power-law (orange), exponential (red) and Poisson (grey) distributions were fit to the 493 
cumulative degree distributions of naïve B cell and plasma cell (unimmunized) repertoires of a 494 
mouse for similarity layers LD1,3,7 (log-log scale). Representative clusters are shown for LD1.  495 
(F) Percentage of CDR3 clones (mean±s.e.m) that compose the maximal core. Subgraph of the 496 
maximal k-core (red), and k-1 (black), k-2 (dark grey) and k-3 (light grey) cores in a 497 
representative pBC sample (Unimmunized mouse n. 2).  498 
(G) Percentage overlap of CDR3 germline V-genes in the maximal core of nBC repertoires (n = 499 
5 mice and data sets for Unimm, OVA, NP-HEL, n = 4 mice sets for HBsAg).  500 
(H) Normalized neighborhood size for orders n={1–10, 15, 20, 30, 40, 50} across CDR3 clones 501 
(similarity layer LD1).  502 
For 2A, B, D, barplots show mean±s.e.m; for 2A-E, each B-cell stage n = 19 mice. 503 
 504 
Figure 3. The architecture of antibody repertoires is robust and redundant.  505 
(A) CDR3 clones of an exemplary naïve B-cell repertoire (from OVA-immunized mouse n. 1) 506 
have been ordered from increasing to decreasing frequency (CDR3 rank). Public clones are 507 
color-coded in red.  508 
(B) Bootstrapped p-values of the power-law fit are shown for complete antibody repertoires and 509 
after removing public clones. Power law is a good fit to degree distributions for p-values above 510 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 5, 2017. ; https://doi.org/10.1101/124578doi: bioRxiv preprint 

https://doi.org/10.1101/124578


 13 

the dashed red line (p-value = 0.1). Examples of exponential (red) and power-law (grey) 511 
networks are shown on the top panel.  512 
(C) CDR3 clones were removed randomly at 10%, 50% and 90% from each original repertoire 513 
(20 times) and the power-law distribution was fit to the cumulative degree distributions of the 514 
remaining CDR3 clones. A p-value=0.1 is indicated as a red dashed line. In PC samples a fit 515 
was not feasible after removal of 90% of CDR3 clones (NA).  516 
(D) Heatmaps indicate the mean prediction accuracy (Q2, leave-one-out cross-validated R2) of 517 
similarity layer LD1 versus similarity layers LD2–12. The scatterplot shows Q2 for LD1 vs. LD2 for 518 
each CDR3 clone.  519 
(E) Prediction accuracy (Q2) for LD1 vs. LD2 and LD3.  520 
For 2B, C, E, barplots show mean±s.e.m. 521 
 522 
SUPPLEMENTARY FIGURE LEGENDS 523 
 524 
Figure S1. High-performance computing platform to construct and analyze large-scale 525 
networks from entire antibody repertoires.  526 
(A) Data preprocessing, network construction and model fits to degree distribution (see 527 
Methods, Degree distribution fits for further details). Network parameters (global and mean 528 
local/clonal) are shown for the exemplary network.  529 
(B) Software schematics showing the distributed parallel computing platform used to partition 530 
the work among a cluster of many workers.  531 
(C) Computation time to construct large-scale networks depends on the number of CDR3 532 
sequences and the number of cores used. 533 
 534 
Figure S2. Global and clonal (local) network parameters of antibody repertoires of pre-B 535 
cells (pBC), naïve B cells (nBC) and plasma cells (PC). 536 
(A) Percentage of public clones, shared CDR3 clones between mice in pre-B cell (pBC), naïve B 537 
cell (nBC) and plasma cell (PC) repertoires. 538 
(B–C) Global properties: Cluster analysis shows the average normalized cluster size and cluster 539 
number in the antibody repertoire networks. Average degree, clustering coefficient, density and 540 
(degree) centralization characterize the networks at the global level.  541 
(D) Local properties: authority, PageRank, eigenvector, closeness and betweenness describe 542 
each clone in the network. Average values are shown for each B cell population, pre-B cells 543 
(pBC), naïve B cells (nBC) and plasma cells (PC). Barplots show mean±s.e.m, mice n=19. 544 
(E) Pairwise Pearson correlation (r, mean±s.e.m) of CDR3 degree with CDR3 frequency in pre-545 
B cells (pBC), naïve B cells (nBC) and plasma cells (PC) antibody repertoire networks.  546 
(F) Pairwise Pearson correlation of local properties with CDR3 frequency (median, mice n=19).  547 
(G) Pairwise Pearson correlation of local properties with germline V-gene frequency (mean, 548 
mice n=19).  549 
(H) Pairwise Pearson correlation of CDR3 clonal (local) properties with public (1) vs. non-public 550 
(0) CDR3 clones (mean, mice n=19).  551 
(I) Percentage of public clones similar (connected) to at least one other public CDR3 clone 552 
sequence by cohort (mean, mice n=19). 553 
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(J) Coreness density distribution for the unimmunized cohort of pre-B cells (pBC), naïve B cells 554 
(nBC) and plasma cells (PC). The x-axis shows the k-core (after removing sequentially shells of 555 
nodes of degree k-1). Line colors depict different mice.  556 
(K) Example of CDR3 clones in the largest clique (complete connected subgraph) from a pre-B 557 
cell repertoire (NP-HEL cohort). 558 
For S2A-E, I, barplots represent mean±s.e.m; for each B-cell stage, n=19 mice. 559 
 560 
 561 
Figure S3. Core and structure (degree distributions of CDR3 similarity) analysis, and 562 
similarity layer prediction of antibody repertoire networks. 563 
(A) Maximal core CDR3 clones overlap in pre-B cells (pBC), naïve B cells (nBC) and plasma 564 
cell (PC) repertoire networks.  565 
(B) Maximal core germline V-genes overlap in pre-B cells and plasma cell.  566 
(C) Percentage of the largest cliques (completely connected subgraph) along B cell 567 
development. Barplots represent mean±s.e.m; for each B-cell stage, n=19 mice. 568 
(D) Cumulative degree distributions (CDF). Each distribution line (different symbols) depicts one 569 
similarity layer LD1–12 (HBsAg-immunized mouse n. 4).  570 
(E) p-values (mean±s.e.m) of the power-law fit for each cohort.  571 
(F) One-sided and two-sided p-values (mean±s.e.m) for the discrimination between the 572 
exponential (one-sided p-value=1, two-sided p-value=0) and the power-law fits. 573 
(G) Graphics of power-law (γ =2.2), exponential and random network models of 100 nodes. 574 
(H) Prediction accuracy (Q2, leave-one-out cross-validated R2, mean±s.e.m) of selected distant 575 
similarity layers LD4–12 from LD1.  576 
(I) Prediction accuracy (Q2, mean±s.e.m) of all similarity layers (LD2–12) from LD1. 577 
 578 
 579 
 580 
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METHODS 593 
 594 
EXPERIMENTAL MODEL AND SUBJECT DETAILS 595 
 596 
Dataset 597 
The dataset analyzed was produced as described by Greiff et al. in the attached manuscript. 598 
Briefly, murine B-cell populations of pre-B cells (pBC, IgM, bone marrow), naïve follicular B cells 599 
(nBC, IgM, spleen), and memory plasma cells (PC, IgG, bone marrow) were sorted using 600 
fluorescence-activated cell sorting (FACS) from C57BL/6J mice unimmunized (n=5) or prime-601 
boost immunized with alum-precipitated antigens: nitrophenylacetyl-conjugated hen egg 602 
lysozyme (NP-HEL, n=5), ovalbumin (OVA, n=5) or Hepatitis B virus surface antigen (HBsAg, 603 
n=4). Following total RNA extraction, full-length antibody variable heavy chain (VDJ) libraries 604 
were generated by a two-step PCR process, as described previously 41. Libraries were 605 
sequenced using the Illumina MiSeq (2x300bp) platform. Mean Phred-scores of raw data were ≥ 606 
30. Approximate paired-end reads (full-length VDJ) were: pBC 5x106 reads, nBC 10x106 reads 607 
and PC 4x106 reads. 608 
 609 
METHOD DETAILS 610 
 611 
Data preprocessing and CDR3 clonal analysis 612 
Antibody sequences have been preprocessed and VDJ annotated with MiXCR 42  and further 613 
filtered to retain only those sequences that had CDR3 length ≥ 4 a.a. and occurred more than 614 
once in each CDR3 repertoire data set (Figure S1A). Clones were defined by 100% a.a. 615 
sequence identity of CDR3 regions. CDR3 regions were defined by MiXCR according to the 616 
nomenclature of the Immunogenetics Database (IMGT) 43. 617 
 618 
Network construction 619 
To construct networks (graphs), a sparse triangle matrix of pairwise Levenshtein distances (LD) 620 
between CDR3s must first be computed. For small samples (up to 100,000 unique CDR3 621 
sequences) such a calculation is relatively quick on a single computer. However, due to the N2 622 
complexity of required calculations, computing the pairwise matrix for samples of >100,000 623 
unique CDR3 sequences becomes prohibitively expensive. To perform these computations, we 624 
developed software that utilizes the Apache Spark (2) distributed computing framework to 625 
partition the work among a cluster of many machines (Figure S1B). We chose specifically 626 
Apache Spark because i) its deployment is very flexible with regard to underlying computing 627 
infrastructure and ii) for similarity layers LD>1, the networks become extremely large and difficult 628 
to process. In these cases, our package can take advantage of the Spark GraphFrames 629 
distributed graph library 44, which allows scaling to even larger samples with millions of 630 
sequences (Figure S1C). With this approach we were able to compute the distance matrices for 631 
large samples (>100,000 unique CDR3 sequences) within minutes (Figure S1, B and C).  632 
In addition to the computational complexity inherent in creating the distance matrix, the 633 
construction of networks for large LD is very computationally and time-wise costly. We therefore 634 
avoided constructing networks altogether for calculating the node degrees and instead used a 635 
map-reduce distributed algorithm. For practical purposes, the construction of small networks 636 
was performed using the Networkx library 45. For generating and outputting the largest graphs to 637 
disk in common network formats, we used the efficient graph-tool library (https://graph-638 
tool.skewed.de/, 46). For manipulating and analyzing the largest networks, our software package 639 
took advantage of the Spark GraphFrames distributed graph library 44.  640 
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The software was developed in python (https://www.python.org/) using the Numpy/Scipy 47 641 
scientific libraries for matrix and array manipulation and Apache Spark 14 as the distributed 642 
backend. Our software package for antibody repertoires imNet is available 643 
(https://github.com/rokroskar/imnet) and includes tutorials and demos, including scripts to set up 644 
the distributed computation environment on commonly-used compute cluster infrastructure. The 645 
results shown in this work were obtained using 1–625 cores of the Euler parallel-computing 646 
cluster operated by ETH Zürich. 647 
 648 
QUANTIFICATION AND STATISTICAL ANALYSIS 649 
 650 
Degree distribution fits 651 
Degrees (number of similar CDR3 sequences to a specific CDR3 sequence) were calculated for 652 
each of the similarity layers LD1–12 for each CDR3 sequence in each sample. CDR3 with zero 653 
degrees that were not similar to any other CDR3 in the network were excluded in order to fit 654 
degree distributions. The power-law, exponential and Poisson distributions were fitted to the 655 
empirical degree distributions of the networks, constructed as described in Network 656 
construction, by estimating xmin (estimated lower degree threshold by minimizing the 657 
Kolmogorov-Smirnoff statistic 48) and optimizing model parameters using the poweRlaw 49 658 
package. We first discriminated if the power-law distribution could describe the best fit to the 659 
degree distribution by bootstrapping 100 times the power-law p-value obtained from each 660 
sample after estimating xmin. Following the approach described by Virkar and Clauset 50, a p-661 
value ≥ 0.1 indicated that the power-law distribution described the degree distribution (Figure 662 
S1A). To determine the degree distribution in cases where the power law was not the best 663 
distribution fit (p-value < 0.1), we compared the exponential and the Poisson fits. Two-sided p-664 
value≈0 indicated that the fitted models could be discriminated, and one-sided p-value≈1 665 
indicated that the first (for example exponential) model was the best fit for the data 49. 666 
 667 
Robustness of the architecture of antibody repertoire networks 668 
Public clones were defined as clones shared among subjects in a cohort (Figure S2). In order to 669 
assess the robustness of the architecture of antibody repertoire networks we removed public 670 
clones from each sample-repertoire. As controls, we performed repeated removal (20 times) of 671 
randomly selected clones in the size of public clones. The p-values for the power-law fit were 672 
calculated after 100x bootstrapping for each repertoire; one-sided and two-sided p-values were 673 
used for the comparison between the exponential and the Poisson fits (see Degree distribution 674 
fits). 675 

 676 
Network analysis 677 
Drawing from network theory 51, we translated the concepts of network analysis 18 to antibody 678 
repertoires. An antibody repertoire network is an undirected graph G = (V, E) described as a set 679 
of nodes (CDR3 vertices, V) together with a set of connections (similarity edges, E), 680 
representing the adjacency matrix A of pairwise Levenshtein distances (LD) between CDR3 a.a. 681 

sequences	𝐀 =
0 ⋯ LDT,
⋮ ⋱ ⋮

LD,T ⋯ LD,,
. 682 

In the context of antibody repertoires, we let N = |V| and L = |E|. The order of a graph N 683 
represents the number of its unique CDR3 clones (nodes). The size of a graph L is the number 684 
of its CDR3 similarity connections (edges). The degree k, that represents the edges connected 685 
to a node, describes the count of all similar CDR3 clones to a CDR3 based on LD. Because the 686 
degree indicates how active a node is, it could be interpreted as a measure of how central a 687 
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CDR3 clone is in the antibody repertoire network. In simpler terms, it quantifies the number of 688 
CDR3 clones that are similar to a certain CDR3, and thus the potential development or the 689 
evolutionary routes to this CDR3. 690 
The average degree	 𝑘 ≡ XYZ

Y[\
]

= ^_
]

 is the average number of similar CDR3 clones. The 691 
degree distribution P k = NX/N, defined as the fraction of nodes with degree 𝑘 (NX) in total 692 
nodes, represents the fraction of CDR3 clones that have the same number of similar CDR3s. 693 
The cumulative degree distribution PX = pXef

XegX  describes the fraction of nodes with degree 694 
greater than or equal to k′. In Erdős–Rényi (ER) random graph models, degrees follow a 695 
Poisson distribution P k = X i	Hj i

X!
  in the limit of large numbers of nodes, while degree 696 

distributions have an exponential tail P k ~enoX in exponential networks 52.  697 
Global characterization 18 described the network as a whole, such as degree distribution, 698 
centralization, largest component, diameter, clustering coefficient, assortativity and coreness. 699 
The centralization analysis indicates if the network is homogeneous (clones are connected in 700 
the same way) or is centered around certain nodes (highly connected clonal regions compared 701 
to less connected regions in the same network). The largest component is the largest cluster of 702 
connected CDR3 clones. The diameter (d) is the maximum distance (shortest path between two 703 
nodes) between any pair of CDR3 sequences. The clustering coefficient (C) represents the 704 
probability that neighbors of a node are also connected, which translates in antibody repertoires 705 
as the probability that CDR3 clones similar to a specific CDR3 are also similar among one 706 
another. Network density (D) is the ratio of the number of edges (CDR3 similarities) and the 707 
number of all possible edges in the network. The assortativity coefficient (r) indicates if nodes in 708 
a network connect to nodes with similar characteristics. It is positive if nodes tend to connect to 709 
nodes that are similar to them (i.e. highly connected CDR3 sequences are similar and connect 710 
to highly connected CDR3 sequences), and negative otherwise. Coreness is a measure of the 711 
network’s cohesion and allows one to understand the global network structure and is useful in 712 
comparing complex networks by analyzing the subsets of CDR3-cores that form layers in the 713 
antibody repertoire. K-core decomposition is a process that is performed by iteratively removing 714 
shells of all vertices of degree less than k (k<kmax) leaving the k-cores of a network (its 715 
connected component). The k-core of a graph is the maximal subgraph in which each node has 716 
at least degree k. We have computed the maximal k-core of antibody repertoire networks (the 717 
innermost core, kmax) and the core distribution along k degrees.  718 
Clonal (local) characterization of antibody repertoires was performed by analyzing local 719 
properties of the networks 18. The importance of CDR3 clones was measured by calculating the 720 
authority 53, eigenvector 22 and PageRank 23 scores of each node in repertoire networks. In 721 
particular, the authority (a) of nodes is defined as the principal eigenvector of the transpose 722 
matrix t 𝐀 ∗ 𝐀, where 𝐀 is the adjacency matrix of the network. Eigenvector centrality indicates 723 
the centrality of a CDR3 clone, not only dependent on the number of similar CDR3 (number of 724 
degree, connections) but also on the quality of those connections: CDR3-nodes with high 725 
eigenvector values are connected to many other nodes which are, in turn, connected to many 726 
others (and so on). PageRank measures the importance of the similarity between two CDR3 727 
clones within the network extending beyond the approximation of a CDR3 importance or quality. 728 
Closeness (centrality 21) (c) was calculated to measure how many steps were required to 729 
access every other CDR3 from a given CDR3 clone in antibody repertoire networks. We 730 
calculated the normalized closeness by multiplying the raw closeness by n-1, where n was the 731 
number of nodes in the network. Clique analysis identified maximally-connected subgraphs (a 732 
subset of nodes) in which every CDR3 was similar to every other CDR3 sequence and the 733 
largest clique was the maximal completed subgraph which had more nodes than any other 734 
clique in the network. The node betweenness (b) is the number of geodesics (shortest paths) 735 
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going through a node and indicates the “bridge” function of a CDR3 sequence. Network 736 
properties were calculated using the igraph 54 R package. 737 

 738 
Quantifying the predictive performance (Q2) of linear regression models 739 
The predictive performance (𝑄^) of each linear regression model (𝒀 = 𝑿𝛽 + 	𝜺) was calculated 740 
using leave-one-out cross-validation (LOOCV): 𝑄^ = 1 − PRESS

TSS
∙ 100, where PRESS is the 741 

predictive error sum of squares ( 𝒀𝒋 − 𝒀[|]
^=

|gT  with 𝒀[|] denoting the prediction of the model 742 
when the j-th case is deleted from the training set and TSS is the total sum of squares 743 
( 𝒀𝒋 − 𝒀

^=
~gT ) (Greiff et al., 2012). X and Y are CDR3 degree vectors of repertoires at each 744 

LD1–12. LOOCV was performed using the forecast R package 55. Cross-validation was used 745 
because, in contrast to regular regression analysis, it enables the quantification of the predictive 746 
performance of each regression model. 747 
 748 
Simulated networks 749 
Networks (nodes V=102–105) were simulated with the ER, exponential and power-law models 750 
using base R 56 and igraph 54. Random networks were simulated according to the ER model, 751 
exponential networks were simulated setting a probability of a connection between two nodes 752 
p=0.5 and scale-free networks were simulated using the Barabási-Albert model (Barabási and 753 
Albert, 1999). 754 

 755 
Graphics 756 
Graphic representations were produced using  base R 56 and the ggplot2 R package 57 . 757 
Heatmaps were produced using the NMF package 58. Networks and network clusters 758 
visualization were performed using igraph 54 employing the Fruchterman–Reingold force-759 
directed and Kamada–Kawai layout algorithms. Large-scale networks (Figure 1a) were 760 
visualized using Gephi (version 0.9.1) 59; node size was scaled 10–100 proportional to the 761 
degree of a node and a blue to grey color gradient was applied to nodes from high to low 762 
degrees. 763 
 764 
Statistical significance 765 
Statistical significance was tested using the Wilcoxon rank-sum test. Results were considered 766 
significant for p<0.05. 767 
 768 
DATA AND SOFTWARE AVAILABILITY  769 
 770 
Antibody repertoire sequencing data analyzed is available with ArrayExpress accession 771 
number: E-MTAB-5349. Software is available at https://github.com/rokroskar/imnet. 772 
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