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Abstract

Background:  Case-only  design  for  gene-environment  interaction  (CODGEI)  relies  on  the  rare

disease  assumption.  A  negative  association  due  to  collider  bias  appears  between  gene  and

environment when this assumption is not respected. Genetic risk estimation can quantify part of the

predisposition of an individual to a disease.

Methods:  We introduce  Disease As Collider  (DAC),  a  new case-only  methodology to discover

environmental factors using genetic risk estimation: a negative correlation between genetic risk and

environment in cases provides a signature of a genuine environmental risk marker. Simulation of

disease occurrence in a source population allows to estimate the statistical power of DAC and the

influence of collider bias in CODGEI. We illustrate DAC in 831 type 1 diabetes (T1D) patients.

Results: The power of DAC increases with sample size, prevalence and accuracy of genetic risk

estimation. For a prevalence of 1% and a realistic genetic risk estimation, power of 80% is reached

for a sample size under 3000. Collider bias offers an alternative interpretation to the results of

CODGEI in a published study on breast cancer.

Conclusion:  DAC could  provide  a  new line  of  evidence  for  discovering  which  environmental

factors play a role in complex diseases or confirming results obtained in case-control studies. We

discuss  the  circumstances  needed  for  DAC  to  participate  in  the  dissection  of  environmental

determinants of disease. We provide guidance on the use of CODGEI regarding the rare disease

assumption.
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Key messages :

 A complex disease is a collider between genetic determinants and environmental factors; it

is a consequence of both.

 Collider bias can affect the results of the case-only design for gene-environment interactions

when the disease is common.

 Using  genetic  risk  estimation,  collider  bias  can  be  used  to  discover  or  confirm  the

association between a disease and an environmental factor in a case-only setting.

 Statistical power of this approach is small when the disease is rare. Power increases with

sample size, prevalence and genetic risk prediction accuracy.

Introduction

Case-only gene-environment studies are attractive since data are often easily available in cases. It

also means that the selection of controls, a sensitive process, can be avoided. Case-only design for

gene-environment  interaction  (CODGEI)  allows  to  study  gene-environment  interactions  in  this

setting1,2.  Here,  we  propose  DAC,  a  new  methodology  that  uses  the  same  data.  The  two

methodologies are complementary as DAC has statistical power when the rare disease assumption

of CODGEI is violated.

CODGEI uses case-only data to identify gene-environment interaction. Specifically, if both G and E

are binary traits as shown in Table 1, the cross-product ratio (CPR) ad/bc computed from the case-

only data is an estimator of the interaction odds-ratio ORI between G and E. 

G=0 G=1
E=0 a b
E=1 c d
Table 1 : Gene-environment data in a case-only setting.

CODGEI  needs  two  assumptions  to  be  applied:  G and  E  must  be  independent  in  the  general

population3,4 and the disease must be rare at all levels of gene and environment: 

for all g and e, P(D=1|G=g,E=e)<<1
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When this second assumption is not valid, collider bias appears between gene and environment and

may jeopardize the interpretation of studies applying CODGEI.

Collider bias (or collider-stratification bias) is the negative correlation that appears between two

causes  when  conditioning  on  their  shared  consequence  (the  collider)5.  It  can  mislead

epidemiological  investigation6,7.  A classic  example is  Berkson’s  bias  in  which two diseases  are

Figure  1: Collider  bias  in  case-only  gene-environment  data.  a:  In  the  general  population,  disease  is  a

consequence of both genetic and environmental causes. Depending on the environmental factor considered,

we  can  assume  independence  between  gene  and  environment.  b:  When  considering  only  cases  ie

conditioning on the disease,  a negative association appears  between genetic  risk and the environmental

factor.  c  and  d:  If  the  environmental  factor  E  is  only  a  marker  for  the  unobserved U that  is  the  true

environmental cause, collider bias appears nevertheless between G and E.
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negatively associated in a hospitalized population even though they are independent in the general

population8,9.  In  this  example,  the  collider  is  hospitalization,  the  shared  consequence  of  both

diseases.  By looking  only  at  patients  in  the  hospital,  i.e.  by  conditioning  on hospitalization,  a

negative correlation appears between the two diseases. 

In the setting of case-only gene-environment data, if both the gene and the environmental factor

under consideration are causes of the disease, then conditioning on the disease, i.e. considering only

cases, a negative association appears between gene and environment. This principle is illustrated in

Figure 1a and 1b. However, it is not necessary for the environmental factor to be a cause for collider

bias to appear. If the environmental factor of interest is simply correlated with a causal factor for the

disease, collider bias will appear as shown in Figure 1c and 1d. No causal claim can therefore be

made.

However, Piegorsch et al.1 showed is that when the rare disease assumption is verified, the CPR

estimates the interaction odds-ratio ORI and therefore collider bias is not present. The impact of

deviations  from the  rare  disease  assumption  has  been  studied  by  Schmidt  and  Schaid10.  These

authors noted that the CPR’s asymptotic value is the interaction risk ratio RR I. The RRI measures

the departure from multiplicative risk ratios. However, the interaction term that is estimated by a

case-control study is an interaction odd-ratio ORI that measures the departure from multiplicative

odd-ratios, i.e. an interaction in the logistic model. Under the rare disease assumption, RRI=ORI.

Schmidt and Schaid evaluated the influence of deviations from the rare disease assumption on the

mismatch between ORI and RRI. Their conclusion was that RRI can be substantially smaller than

ORI under  large  deviations  from the  assumption.  We believe  that  this  conclusion  is  somewhat

misleading. Since ratios are on a multiplicative scale, an underestimation would mean that RRI is

closer to 1 compared to ORI. In their Figure 3, you can see that when ORI=1, we have RR1<1. This

means that when there is no interaction in the logistic model, an inverse interaction will be detected

by CODGEI,  in  other  words  a  negative  association  appears  between G and E.   This  negative

association is expected when one considers collider bias.
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CODGEI estimates correctly under all circumstances RRI. However, meta-analysis need to collate

estimators of the same quantity. Having RRI for case-only studies and ORI for case-control studies

is  problematic  as  the  null  hypotheses  of  no  interaction  are  different  in  the  two  quantities.  To

document  an  example  where  collider  bias  is  the  driving  force  hidden  behind  epidemiological

results, we searched in the literature for a study that applied CODGEI in a situation where the rare

disease assumption is not respected.  The study that best  suited our criterion is the Genetic and

Environmental Modifiers of BRCA1/BRCA2 Study (GEMS)11. It deviates strongly from the rare

disease  assumption  as  it  considers  interactions  between  the  highly  penetrant  BRCA1/2  and

environment  in  breast  cancer,  the  most  common  cancer  in  women.  We  show  below  that  the

conclusions of the study are changed if we define the null hypothesis as multiplicative odd-ratios

and not multiplicative risk ratios. 

In the example of CODGEI and also more generally in epidemiology, collider bias is seen as a

nuisance that hinders understanding. Herein we propose a change of view-point in order to harness

collider bias in service of epidemiology. In order to do this, we need to maximize collider bias and

therefore deviate as much as possible from the rare disease assumption. This can be achieved if,

instead of considering one variant at a time, we consider genetic risk predictions that uses many

variants to estimate as accurately as possible the genetic risk. Indeed the individuals with the worst

combination  of  variants  will  have  a  non-negligible  risk  of  disease.  Genome-Wide  Association

studies  (GWAS)  datasets  have  been  used  to  estimate  genetic  risk  using  statistical  learning

techniques12–17. Genetic risk predictions have been evaluated for T1D, Crohn’s disease and celiac

disease.  For those three diseases,  similar prediction accuracy was achieved with area under the

receiver operating curve (AUC) around 0.8512,13,15.

By conditioning on disease, i.e. by considering only cases, a negative association found between the

genetic  risk  and  an  environmental  candidate  will  signal  a  true  association  between  the

environmental marker and the disease. We refer to this methodology as Disease As Collider (DAC).
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To sum up, DAC allows to detect or confirm a putative environmental marker by looking for an

association of this factor with genetic risk in case-only data.

In the next section, we describe the method and its assumptions. We illustrate our methodology on a

subset of genotyped patients from the Isis-Diab case-control study of T1D focused on the search of

environmental  factors18.  Then,  we  present  a  simulation  framework  of  disease  occurrence  as  a

function of the individual genetic susceptibility and environmental risk that allows to estimate the

power  of  DAC  as  well  as  to  evaluate  the  influence  of  collider  bias  in  CODGEI.  Using  this

framework and relying on the genetic risk distribution from our illustration data, we estimate power

for  our  illustration  and in  generic  scenarii.  We evaluate  the influence  on power  of  prevalence,

prediction  accuracy of  the  genetic  risk estimation  and sample  size.  Using the  same simulation

framework, we also show the influence of collider bias in the GEM Study that applied CODGEI on

breast cancer11.

Methods

Disease as collider

Model assumptions

Genetic risk and environmental marker independence

In order to attribute to collider bias the responsibility for an association between genetic risk and an

environmental factor in cases, we need to assume that genetic risk and the environmental factor are

independent in the general population. This assumption is shared with CODGEI.

Multiplicative combination of odd ratios 

We need to make an assumption on how genetic risk and environmental risk combine in order to

evaluate the power of DAC. In order to express our assumption, we need a few definitions. 

The logistic model transfers probabilities in [0,1] to log odd-ratios in the real line thanks to the logit

function logit(x)=log(x/(1-x)). We refer to the target set of the logit function as the logit scale. 

For an individual with genome G (e.g.  measured through genotyping) and environment E (e.g.

measured through responses to an environmental questionnaire), we can define its genetic risk of
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developing a disease D by Rg(G)=logit(P(D=1|G)) and its environmental risk Re(E)=logit(P(D=1|

E)). Rg and Re are actually the logit of an absolute risk. As most of our calculations are made on the

logit scale, we will write risk instead of risk on the logit scale throughout. 

The  simplest  way  to  define  the  total  risk  R(G,E)=logit(P(disease|G,E))  is  to  assume  that

environmental and genetic odd ratios combine multiplicatively, i.e. environmental and genetic risk

combine linearly on the logit scale. We therefore have that:

R(G,E)=logit(P(disease|G,E))=Rg(G)+Re(E). 

This is an assumption of absence of interaction between the genetic risk and the environmental risk.

It  is  the  main  difference  between  DAC  and  CODGEI  as  the  latter  attempts  to  detect  such

interactions.

Description of DAC

Under  the  assumptions  of  independence between gene and environment  and multiplicativity  of

odds-ratio, there is an association between genetic risk and environmental factors in cases due to

collider bias. Our method consists simply in estimating the genetic risk in cases and then on testing

for association between genetic risk and environmental factors using standard tests (such as a linear

regression t-test) while controlling for potential confounders.

The association that appears because of collider bias is a negative association. Therefore,  DAC

predicts that the cases the most at risk genetically are the least at risk because of environment.

When a putative direction of association has been established, one can perform one-sided tests. This

is the case when DAC is applied to confirm findings from a case-control association.

Application of DAC to the Isis-Diab study

The Isis-Diab cohort is a multi-centric study of T1D patients in France which recruitment started in

2007. We used a genetic score presented in the article by Wei et al12 and trained on the WTCCC1

data19. Using this genetic risk score, we applied DAC on 7 questions on the environment before

diagnosis which had been associated with T1D in the previously published case-control study18. 831
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patients were used in the analysis. Detailed description of the data, the analysis and the results are in

the supplementary material.

Framework for estimating influence of collider bias in a case-only study

Quantifying collider bias in a case-only study allows us to estimate the power of DAC and also to

assess the bias in the application of CODGEI. The assumptions made for DAC correspond to the

null hypothesis of no interaction on the logit scale that CODGEI tests. In both cases, we simulate

disease occurrence in a source population according to our model assumptions. For a sample size of

N patients, the source population consists of N/K individuals, K being the prevalence of the disease.

To allocate disease status in this synthetic population, we need to define a genetic risk distribution

and an environmental risk distribution. We describe the choice of distributions used for the different

tasks  below.  Once  both  distributions  are  defined,  we  then  attribute  to  each  individual  in  the

population  its  genetic  risk  and  its  environmental  risk  by  drawing  independently  from  those

distributions. This uses the assumption of independence of genetic risk and environmental factor in

the population.

Once both a genetic risk and an environmental risk are defined for each individual in our source

population, we define the total risk as the sum of the two risks in accordance with our assumption of

multiplicative combination of odd-ratios.

To decide whether  an individual  with genes  G and environment  E has  the disease,  we draw a

uniform variable U on [0,1] and we could then define the disease variable D:

{ D=1 if U≤P(D=1|G,E)

D=0 if U>P(D=1|G,E)

This  approach would yield a  different  number  of  cases  in  each simulation.  To always have  N

patients, we compute R(G,E)-logit(U) and define the top N individuals for that sum as the patients

(D=1). The distribution of logit(U) where U is uniformly distributed over [0,1] is called the Laplace

distribution.
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Finally, when the simulated sample has been defined, we compute from it the quantity of interest

and store it. We then repeat the procedure the desired number of times. We then have a distribution

of the quantity of interest.

In the case of estimation of power of DAC, on each simulated sample, we perform a regression of

the environmental factor on the genetic risk in the patients and obtain our quantity of interest: a one-

sided p-value. Our estimator of power is then the proportion of p-values under the threshold 0.05.

In the case of the influence of collider bias in CODGEI, we compute the cross-product ratio (CPR)

on  each  simulated  sample.  With  the  resulting  empirical  distribution  of  CPR  under  the  null

hypothesis  of  no  interaction  on  the  logit  scale,  we  can  define  a  rejection  region  as  the

complementary of the 95% confidence interval of the CPR under the null. 

We now turn to the definition of the genetic and environmental risk distribution and the choice of

parameters in each setting.

Genetic risk distribution

The distribution of genetic risk in the general population is a mixture of the distribution of genetic

risk in the controls and in the patients. If we denote D(X) the distribution of X, we have that:

D(Rg) =(1-K)D(Rg
controls) + KD(Rg

cases).

It should be noted that an individual whose genetic risk comes from the distribution of genetic risk

for cases does not necessarily have the disease. In practice, we used the distributions of genetic risk

obtained  in  our  application  of  DAC  on  the  Isis-Diab  study  (cf  supplementary  material  and

supplementary  figure  1).  The  genetic  risk  estimation  has  been  calibrated  in  order  to  represent

probabilities. We  sample N genetic risks from the genetic risks of Isis-Diab patients and we sample

the rest from the genetic risks of the controls (cases of non-auto immune diseases in the WTCCC1

data).

In the case of a single variant such as BRCA1 or BRCA2, the distribution in the general population

is given by the prevalence of the mutations. Its risk on the logit scale can be obtained from the

prevalence of breast cancer in the general population and in carriers of the mutation. We chose a
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prevalence of breast cancer of 12 %, a prevalence of breast cancer among carriers of BRCA1/2 of

60%20 and therefore the OR for BRCA was 11. We chose a prevalence of 0.1 % for BRCA1 and

0.2 % for BRCA221.

Power estimation in generic scenarii

For the estimation of power in the generic scenarii, we evaluated the influence of prevalence and

also  of  prediction  accuracy  of  genetic  risk.  To  do  this  for  prevalence,  genetic  risk  was  left

untouched, we set prevalence to 0.2%, 0.6% or 1% and sample size to 500, 1500, 3000 or 5000. The

three prevalences correspond to the prevalence of T1D in France for the lowest, T1D in Finland for

the intermediate value and high estimation of prevalence of celiac disease for the highest22. 

Concerning the influence of prediction accuracy of the genetic risk, we set prevalence at 0.2%, we

modified the genetic risk estimate to have an AUC of 0.88, 0.90 or 0.92 and we set the sample size

to 500, 1500, 3000 or 5000. The genetic risk distribution with modified AUC was obtained by

adding to the risk of patients a constant chosen to obtain the desired AUC. The estimate of risk in

patients and controls was then calibrated again to correspond to probabilities.

Concerning the definition of the environmental risk, we chose an effect size of 3 which is a large

but  plausible  effect  size  for  epidemiology and we chose the most  favorable  distribution of  the

environmental  factor in the patients,  i.e  the one with the most variance:  an evenly split  binary

variable. The distribution in the source population was weighted by the inverse of the relative risk

to obtain the desired distribution in cases.

Estimating collider bias in GEMS

We investigated if the four significant associations reported in the GEM study could be explained

by collider bias. The four associations were BRCA1 and alcohol use (yes vs no), BRCA1 and parity

(nulliparous vs 3 children or more), BRCA2 and parity (nulliparous vs 2 children) and BRCA2 and

age at menarche (before 11 vs after 14). Given the main effects in the literature for the three risk

factors, the RRI were in the direction expected from collider bias. We used the sample size and the

number of carriers relevant for the 4 comparisons. We chose a RR of 1.32 for alcohol use vs no
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alcohol23, a RR of 1.29 for nulliparous vs 2 children, a RR of 1.54(=1.29/0.84) for nulliparous vs

more than 3 children24 and a RR of 1.05-4 for menarche after 14 years old vs menarche before 1125.

In  the  same fashion as  above,  the  distribution  of  the  risk  factor  in  the  source  population  was

weighted by the inverse of the relative risk to obtain the observed distribution in cases.

The general procedure presented above had to be adapted to the precise setting of the GEM study.

Indeed, all patients were not included in the study: they included all patients carrying BRCA1/2 and

a  number  of  non-carrier  patients  as  a  comparison  group.  In  consequence,  the  prevalence  of

BRCA1/2 is much higher in the study than in the population of patients. To take this into account,

we add an additional  step to  the simulation after  the  allocation of  disease  status.  We define  a

variable for inclusion in the study. All patient carriers are included in the study and the rest of the

sample size is filled at random from non-carrier patients. We then use only the patient who are

included in the study. This means that the source population is larger than N/K. We adjust the size

of the source population to obtain in average the observed fraction of carriers in the simulated

samples. 

Code

Code used for analysis and power estimation is available at github.com/FelBalazard/DAC .

Results 

Power estimation

The results of the power estimation in generic scenarii are presented in figure 2. Power increases

with sample size, prediction accuracy of the genetic risk and prevalence of the disease. 

With a prevalence of 0.2% and an AUC of 0.86, power was very limited. Even if our sample size

had  been  5000  cases  and  despite  the  favorable  assumptions  made  on  the  effect  size  and  the

distribution of the environmental factor in cases, power would be only 26%. 

Our estimation show that power depends strongly on prevalence of the disease. For a disease with

prevalence of 1%, 80% power is attained for a sample size under 3000.
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Figure  2:  Power  of  the  DAC  methodology  in  different  settings.  The  effect  size  is  set  at  3  and  the

environmental factor in cases is evenly split. a: Influence of the prevalence of the disease on power. The

AUC of the genetic risk estimator remains at 0.86. b: Influence of the genetic risk accuracy (AUC) on power.

The prevalence of the disease remains at 0.2%

Collider bias in the GEM Study

The  results  are  presented  in  Table  2.  The  median  and a  95% CI  for  the  CPR under  the  null

hypothesis of multiplicativity on the odds-ratio scale is presented alongside the CPR adjusted for

age and center from the original article. In the 4 cases, there is a shift away from 1 of the median

CPR and the reported CPR falls in the 95% CI. This means that the results from the GEM Study are

not significant under the null hypothesis used in case-control studies.

Interaction Median CPR (CI) under H0 Reported CPR

BRCA1-alcohol 0.86 (0.63;1.20) 0.65

BRCA1-parity 1.26 (0.86;1.85) 1.54

BRCA2-parity 1.15 (0.78;1.72) 1.54

BRCA2-menarche 1.11 (0.71;1.76) 1.65
Table 2: Results of simulations under the null hypothesis of no interaction on the logit scale for the

4 significant associations in the GEM Study. The reported CPR is reproduced from the original

paper.

Discussion
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CODGEI has  been  proposed in  1994 to  uncover  gene-environment  interaction  using  case-only

data1. Here, we propose DAC as a new methodology for analysis of case-only data; it allows to

discover  or  confirm  associations  of  environmental  factors  with  disease  using  genetic  risk

estimation.  Ideally,  DAC should  be  used  after  a  standard  environmental  case-control  study  to

confirm findings.

As important information is missing in the case-only setting, assumptions need to be made to be

able to draw conclusions from case-only data. Both DAC and CODGEI rely on an assumption of

independence between gene and environment. This is reasonable but deviation from independence

should be kept in mind as an alternative explanation for a positive result. While certain genes affect

certain exposures  such as  alcohol  consumption26,  coffee  consumption27 or  smoking28,  there is  a

priori for independence between most genes and most environmental factors. We stress that the only

independence needed for DAC is between the aggregated genetic risk score and the environmental

factor: DAC does not require independence between each SNP and the environmental factor. When

the environmental factor has genetic determinants and case-control data is available,  Mendelian

randomization29 will be more informative as it allows to substantiate causal claims.

Under  the  assumption  of  independence,  two  phenomenons  are  present  in  the  case-only  gene-

environment data: interactions and collider bias. If there is no interaction between genetic risk and

environment, only collider bias is left and DAC can be applied. This means that DAC is dependent

on  an  assumption  of  absence  of  interaction.  Indeed,  interactions  between  genetic  risk  and

environmental  factor  are  problematic  for  DAC.  A negative  interaction  strengthens  the  negative

association that DAC tries to uncover but makes the findings less actionable as the people at highest

genetic risk would respond less to intervention on the environmental factor (if the factor is a cause

and not a mere marker). A positive interaction cancels the negative association that DAC tries to

uncover despite increasing the prevention potential of the factor. This is a notable caveat to DAC as

interactions between an aggregated genetic risk and environmental factors have been detected in

relation to obesity30 and must be present in other settings as well. 
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Under the rare disease assumption, collider bias is negligible and therefore only interactions are left

to explain an association between gene and environment in the case-only data. This is the rationale

for CODGEI. As a consequence, genetics are considered differently in the two methods. For DAC

to be successful, we need to maximize the distance to the rare disease assumption and therefore we

use an aggregated risk estimation. On the other hand, in CODGEI, each variant is considered on its

own.

This theoretical argument for absence of collider bias at low prevalences is in accordance with the

results of power estimation. Those power estimations show that DAC can be successful in higher

prevalence situations, with large sample sizes and better genetic risk estimation. However, in more

common  diseases,  genetic  risk  estimation  typically  obtains  sensibly  weaker  results  and  the

prospective cohort design is more feasible. Nevertheless, DAC needs stronger prevalences of the

disease to achieve reasonable power. This could be obtained in countries where T1D has a high

prevalence such as Finland or on more frequent diseases such as celiac disease.

Given the prevalence of T1D in France, DAC is underpowered in the setting of the Isis-Diab study

as shown in the supplementary material. Nevertheless, the application of our method to these data

illustrates  the  practical  considerations  that  go  into  applying  DAC  such  as  the  problem  of

confounding by age at  diagnosis.  Furthermore,  it  allowed to base our power estimations on an

actual predicted genetic risk distribution. 

DAC underscores the importance for epidemiology of having a genetic risk estimation as predictive

as possible. There has been limited access to the largest consortium datasets for this goal and a

consequent turn to methods that use only summary statistics16,31. In the case of Crohn’s disease and

ulcerative colitis, the International Inflammatory Bowel Disease Genetic Consortium dataset was

used for this purpose and significant improvement was obtained13. Methodology to adapt machine-

learning methods to GWAS datasets is also a promising avenue of research17.

CODGEI  is  quite  resistant  to  the  rare  disease  assumption.  For  example,  interaction  between

BRCA1/2 and oral contraceptives in ovarian cancer32 are only marginally affected by collider bias
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despite the high penetrance of BRCA1/2 (results not shown). However, assuming one is interested

in multiplicativity of odd-ratios and not the less used multiplicativity of relative risks, interactions

between risk factors and BRCA1/2 in breast cancer in the GEM Study11 can be explained by collider

bias.  When the  disease  is  common and there  is  highly  penetrant  variants,  CODGEI should  be

applied with caution and collider bias should be considered as an alternative explanation for a

significant negative association between gene and environment in cases. If the prevalence of the

disease and the main effects  of both genetic  variant  and environmental  factor  are  known,  it  is

possible  to  use  the  simulation  framework that  has  been described here  to  test  the  presence  of

interaction on the logit scale.
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