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Abstract 
Background: Genetic risk scores can quantify part of the predisposition of an individual to a 
disease. The identification of environmental factors is more challenging. Collider bias appears 
between two causes (e.g. gene and environment) when conditioning on a shared consequence (the 
collider, disease). 
Methods: We introduce Disease As Collider (DAC), a new case-only methodology to validate 
environmental factors using genetic risk. A complex disease is a collider between genetic and 
environmental factors. Under reasonable assumptions, a negative correlation between genetic risk 
and environment in cases provides a signature of a genuine environmental risk factor. Simulation of 
disease occurrence in a source population allows to estimate the statistical power of DAC as a 
function of prevalence of the disease, predictive accuracy of genetic risk and sample size. We 
illustrate DAC in 831 type 1 diabetes (T1D) patients. 
Results: The power of DAC increases with sample size, prevalence and accuracy of genetic risk 
estimation. For a prevalence of 1% and a realistic genetic risk estimation, power of 80% is reached 
for a sample size under 3000. Power was low in our case study as the prevalence of T1D in children 
is low (0.2%). 
Conclusions: DAC could provide a new line of evidence for discovering which environmental 
factors play a role in complex diseases, or validating results obtained in case-control studies. We 
discuss the circumstances needed for DAC to participate in the triangulation of environmental 
causes of disease. We highlight the link with the case-only design for gene environment interaction. 
Key-words: collider bias, graphical models, genetic risk estimation, environmental factors. 
Key messages : 

• Disease is a collider between genetic risk and environmental factors. 
• This can be used to discover or validate the association between a disease and an 

environmental factor in a case-only setting. 
• Statistical power of this approach depends strongly on the prevalence of the disease as well 

as on sample size and genetic risk prediction accuracy. 
Introduction 
The dissection of environmental determinants of complex diseases is difficult. For diseases with a 
prevalence under 1% such as T1D, celiac disease and inflammatory bowel disease, prospective 
cohort studies imply to follow tens of thousand of participants for many years. Screening a 
population for genetic predisposition is a way of making prospective studies more tractable such as 
in the ongoing TEDDY1 study for T1D. In comparison, the case-control design allows to obtain a 
large population of cases at a reduced cost. It is however sensitive to the choice of controls. All in 
all, progress in identifying environmental determinants of these diseases is slow, vexing and 
expensive2–4. 
On the other hand, the genetics of diseases have become better understood in the past decade. 
Genome-wide association studies (GWAS) have resulted in over a thousand validated associations 
between disease and loci5. Another use of GWAS datasets has been to estimate at an individual level 
the genetic risk of developing the disease using statistical learning techniques8–13. This provides a 
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one dimensional summary of genetic data relevant to epidemiology. Genetic risk scores have been 
obtained for T1D, Crohn’s disease and celiac disease. For those three diseases, the prediction 
accuracies of the scores were comparable, achieving area under the receiver operating curve (AUC) 
around 0.858,9,11.  
GWAS has allowed epidemiology to flourish at the crossroad between gene and environment. Such 
efforts have focused mainly on identifying GxE interactions6 and on Mendelian randomization7. In 
this article, we examine the interplay between genetic risk estimation and environmental risk factors 
and we do so by considering the concept of collider bias. 
Collider bias is the negative correlation that appears between two causes when conditioning on their 
shared consequence (the collider)14. It can mislead epidemiological investigation15,16. A classic 
example is Berkson’s bias in which two diseases are negatively associated in a hospitalized 
population even though they are independent in the general population17,18. In this example, the 
collider is hospitalization, the shared consequence of both diseases. By looking only at patients in 
the hospital, i.e. by conditioning on hospitalization, a negative correlation appears between the two 
diseases. Collider bias has been suggested as an explanation for the birth weight paradox, the 
observation that neonatal mortality is higher in low birth weight infants whose mother did not 
smoke19. 
In this paper, we propose a change of viewpoint. Instead of considering collider bias as a nuisance, 
we try to harness it in service of epidemiology. Indeed, disease is a collider between genetic risk 
and environmental factors. By conditioning on disease, i.e. by considering only cases, a negative 
association found between the genetic risk and an environmental candidate will signal a possible 
causal link between the environmental factor and the disease. This idea is summarized in Fig 1. We 
refer to this methodology as Disease As Collider (DAC). To sum up, DAC allows to detect or 
validate a putative environmental factor by looking for an association of this factor with genetic risk 
in case-only data. 

 
 

 

 
Figure 1: DAC methodology. a: Disease is a consequence of both genetic and environmental 
causes. Those are often independent in the general population. The environmental factor’s 
association with the disease requires confirmation. b: When conditioning on the disease and if there 
is a genuine association between the environmental factor and the disease, a negative association 
appears between genetic risk and the environmental factor. This confirms that the environmental 
factor is associated with the disease. 
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In the next section, we describe the method and its assumptions. We present a simulation framework 
of disease occurrence as a function of the individual genetic susceptibility and environmental risk 
that allows to estimate the power of DAC. Then, we illustrate our methodology on a subset of 
genotyped patients from the Isis-Diab case-control study of T1D focused on the search of 
environmental factors20. Finally, we estimate power for our example and in generic scenarii by 
relying on our simulation framework and the genetic risk distribution in our illustration data. We 
evaluate the influence on power of prevalence, prediction accuracy of the genetic risk estimation 
and sample size. 
 
Methods 
Model assumptions 
Genetic risk and environmental factor independence 
In order to attribute to collider bias the responsibility for an association between genetic risk and an 
environmental factor in cases, we need to assume that genetic risk and the environmental factor are 
independent in the general population. 
Multiplicative combination of odd ratios  
We need to make an assumption on how genetic risk and environmental risk combine in order to 
evaluate the power of DAC. In order to express our assumption, we need a few definitions.  
The logistic model transfers probabilities in [0,1] to log odd-ratios in the real line thanks to the logit 
function logit(x)=log(x/(1-x)). We refer to the target set of the logit function as the logit scale.  
For an individual with genome G (e.g. genotyping) and environment E (e.g. responses to an 
environmental questionnaire), we can define its genetic risk of developing a disease D by 
Rg(G)=logit(P(D=1|G)) and its environmental risk Re(E)=logit(P(D=1|E)). Rg and Re are actually 
the logit of an absolute risk. As most of our calculations are made on the logit scale, we will write 
risk instead of risk on the logit scale throughout.  
The simplest way to define the total risk R(G,E)=logit(P(disease|G,E)) is to assume that 
environmental and genetic odd ratios combine multiplicatively, i.e. environmental and genetic risk 
combine linearly on the logit scale. We therefore have that: 
R(G,E)=logit(P(disease|G,E))=Rg(G)+Re(E).  
This is an assumption of absence of interaction between the genetic risk and the environmental risk.  
Description of DAC 
Under the assumptions described above, there is an association between genetic risk and 
environmental factors in cases due to collider bias. Our method consists simply in estimating the 
genetic risk in cases and then on testing for association between genetic risk and environmental 
factors using standard tests (such as a linear regression t-test) while controlling for potential 
confounders. 
The association that appears because of collider bias is a negative association. Therefore, DAC 
predicts that the cases the most at risk genetically are the least at risk because of environment.  
Therefore, when a putative direction of association has been established, one can perform one-sided 
tests. This is the case, when DAC is applied to validate findings from a case-control association. 
Framework for estimating power of DAC 
In order to estimate the power of our approach, we simulate disease occurrence in a source 
population according to our model assumptions. For a sample size of N patients, the source 
population consists of N/K individuals, K being the prevalence of the disease. 
To allocate disease status in this synthetic population, we need to define a genetic risk distribution 
and an environmental risk distribution. We describe the choice of both distributions used for our 
illustration below. Once both distributions are defined, we then attribute to each individual in the 
population its genetic risk and its environmental risk by drawing independently from those 
distributions. This uses the assumption of independence of genetic risk and environmental factor in 
the population. 
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Once both a genetic risk and an environmental risk are defined for each individual in our source 
population, we define the total risk as the sum of the two risks in accordance with our assumption of 
multiplicative combination of odd-ratios. 
To decide if an individual with genes G and environment E has the disease, we draw a uniform 
variable U on [0,1] and we could then define the disease variable D: 

{D=1 if U≤P(disease|G,E) 

D=0 if U>P(disease|G,E) 
This approach would yield a different number of cases in each simulation. To have a fixed number 
of patients, we compute R(G,E)-logit(U) and define the top N individuals for that sum as the patients 
(D=1). The distribution of logit(U) where U is uniformly distributed over [0,1] is called the Laplace 
distribution. 
We then perform a regression of the environmental factor on the genetic risk in the patients and 
obtain a one-sided p-value. We repeat the procedure the desired number of times (100 000 times in 
our illustration). Our estimator of power is then the proportion of p-values under the threshold 0.05. 
 
Application of DAC to the Isis-Diab study 
The Isis-Diab cohort is a multi-centric study of T1D patients in France which recruitment started in 
2007. Criteria for entering the study were insulin-dependent diabetes mellitus with positivity for 
anti-GAD, or anti-insulin, or anti-IA2 antibodies. As the genetic risk estimator described below was 
trained on patients and controls of European descent, we excluded other ethnicities in the following 
analyses. 
 
Genome wide genotyping and imputation  
 Among the 1491 Isis-Diab patients for whom genotype data were available, 817 patients were 
genotyped with Illumina Human610-Quadv1_B (610 000 SNPs) microarrays, and 673 patients with 
Illumina Human Omni 5 Exome microarrays (4 500 000 SNPs). Genome-wide genotyping was 
performed on bar-coded LIMS (Laboratory Information Management System) tracked samples 
using two different Illumina microarrays (Human610-Quadv1_B and HumanOMNI5-4v1_B). 
BeadChips were processed within an automated BeadLab at the Centre National de Genotypage as 
per the manufacturer's instructions. Samples were subject to strict quality control criteria including 
assessment of concentration, fragmentation and response to PCR. A total of 20 µl of DNA aliquoted 
to a concentration of 50 ng/µl was used for each array. In the discovery phase, genome-wide 
genotypes were used for controlling the quality of the samples. First individuals with call rates 
<95% or duplicates and individuals who were possibly non-European were removed. By using this 
filtered sample set, we calculated quality control statistics, and SNPs with call rates <98% or SNPs 
with a Hardy-Weinberg equilibrium test p-value <10−6 or SNPs with a minor allele frequency <1% 
were excluded.  
Finally, 517 864 SNPs (Human610-Quadv1_B) and 3 309 261 SNPs (HumanOMNI5-4v1_B) were 
used for imputation analysis. Imputation was done using IMPUTE v222, following the instructions 
provided by the author. Full sequence data from the phase I 1000 Genomes Project was used23. Only 
SNPs with an info metric over 0.8 for both chips were kept for analysis. 
 
Environmental data 
The long questionnaire used in the Isis-Diab case-control study has been described before20. When 
patients did not respond to the long questionnaire used in the case-control study, a shorter 
questionnaire of 49 questions was sent. This questionnaire was designed while the study was 
underway and partial results were used to choose the included questions. As a result, 7 of the 22 
variables deemed significant in the analysis of the case-control study are among the 49 questions of 
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the shorter questionnaire. We applied DAC to those 7 variables. The 7 variables are the answers to 
the following questions concerning the period before diagnosis:  
-“As a baby, did the patient like baby food jar containing sweet foods more than the ones without 
sweet foods?”,  
-“Had the patient gone to the dentist?”,  
-“How many times a day did the patient brush his teeth?”,  
-“Did the patient experience severe diarrhea accompanied by vomiting?”,  
-“Did the patient eat hazelnut cocoa spread?”,  
-“Had the patient been to winter sports?” and  
-“Did the patient attend a club with other children (sports, music,…)?”.  
The associations of those variables with T1D in the case-control data were all negative. 
A total of 2959 patients filled a questionnaire: 1713 patients filled the long questionnaire and 1246 
the short questionnaire. Finally, 831 patients of European descent had both genetic data and 
environmental data from a questionnaire. This subset constitutes the dataset on which we apply 
DAC. 
 
Genetic risk estimation 
To define a genetic risk score for each patient, we used a genetic risk estimator as close as possible 
to the best one in Wei et al.8. It has obtained an AUC of 0.84 on a Canadian and an American 
dataset8. Our estimator was trained on the same data: the Wellcome Trust Case Control Consortium 
1 (WTCCC1)24 T1D study (1963 cases and 2938 controls). Cases from the WTCCC1 studies on the 
non-autoimmune diseases type 2 diabetes, hypertension, coronary artery disease and bipolar 
disorder totaling 7670 individuals were used as validation controls. We refer to this group as cases 
of non-autoimmune diseases (CNAD). 
The same quality control was used as in the original paper to filter SNPs: missing rate<5%, Hardy-
Weinberg Equilibrium p-value >10-3 and minor allele frequency>5% in the training set. 
Additionally, SNPs had to have missing rate<5% in the Isis-Diab study. SNPs were then selected if 
their training set association p-value was under 10-5 which was the tied best-performing threshold in 
the original paper. This resulted in a set of 505 SNPs. 
The remaining missing data in the training set, the CNAD controls and the Isis-Diab patients were 
imputed by sampling randomly the training set. 
The machine learning method achieving the best performance in the original paper is Support 
Vector Machine (SVM). It is part of a family of methods called kernel methods25. 
SVM with the default radial kernel was trained on the training set. The estimator was then used to 
predict on the validation set: Isis-Diab patients and the CNAD. AUC on the validation set was 
computed. The e1071 package implementation of SVM was used.  
A machine learning prediction maximizes the separation between the two classes as measured by 
AUC. However, AUC depends only on the ranking of the predictions and not on its numerical 
value. For our purpose, in particular for the estimation of power, we need the genetic risk to encode 
probabilities. Therefore, we perform calibration of our risk estimate on the validation set: the SVM 
estimated probabilities are replaced by probabilities estimated by a logistic regression of disease 
outcome on the logit of the SVM estimated probabilities. 
 
Analysis 
A potential source of dependence between genetic risk and environmental factors is age at 
diagnosis. For T1D, the MHC region, the region that affects genetic risk the most, is also associated 
with age at diagnosis26,27. Of course, age at diagnosis has a strong impact on the experiences that a 
child has had before diagnosis and therefore the environment of patients as measured by a 
questionnaire.  Consequently, we assessed association between genetic risk and age at diagnosis 
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using linear regression on the 1491 Isis-Diab patients of European descent for whom genetic risk 
was available. 
 
Our main analysis is testing for association between environmental factors and genetic risk. This 
association was assessed while controlling for age at diagnosis. We used a generalized additive 
model (GAM) in order for the dependence between environmental factor and age to be captured by 
a smooth function. The environmental factor was regressed on the genetic risk and a smooth 
function of age. Association with genetic risk was tested using the standard Student test provided by 
the fitted GAM. The tests were one sided as explained above. In our case, the associations with 
disease are negative and therefore the association between genetic risk and environmental factor is 
expected to be positive: the most at risk genetically were more exposed to protective factors. The 
mgcv package was used for GAM28. 
 
Empirical power estimation 
We estimate power for the precise setting of each variable tested in the Isis-Diab data. We also 
consider more generic scenarios in order to evaluate the influence of prevalence, predictive 
accuracy and sample size on the power of DAC. The simulations performed for each purpose follow 
the general framework described above but differ on the values of parameters and the definition of 
environmental risk. 
Genetic risk distribution 
The distribution of genetic risk in the general population is a mixture of the distribution of genetic 
risk in the controls and in the patients. If we denote D(X) the distribution of X, we have that: 
D(Rg) =(1-K)D(Rg

controls) + KD(Rg
cases). 

It should be noted that an individual whose genetic risk comes from the distribution of genetic risk 
for cases does not necessarily have the disease. In practice, we sample N genetic risks from the 
genetic risks of Isis-Diab patients and we sample the rest, i.e. the majority, from the genetic risks of 
the CNAD controls. 
It should be noted that the model used for simulation is similar but slightly different from the 
threshold liability model used in the quantitative genetics literature29. The assumption of normality 
for genetic risk in the threshold liability model is replaced by the actual predicted risk distribution in 
the population and the noise is Laplace-distributed instead of normally distributed. 
Power estimation for Isis-Diab 
For the power estimation on the Isis-Diab data, the prevalence K was set to 0.2%, the prevalence of 
T1D in France, and the sample size was set to the actual sample size available after excluding 
missing data for each variable.  
To define the environmental risk for the Isis-Diab data, we need to choose an effect size for each 
environmental factor. In order to do this, we took into account the results of the case-control study. 
Two analyses were performed on the case-control data. Between the two resulting effect size 
estimate for each variable, we chose the most extreme, i.e. the most favorable scenario for power.  
To have a power estimate as precise as possible, we need to obtain in the simulated case population 
approximately the observed distribution of the environmental factor in cases. To achieve this goal, 
the distribution in the source population is the observed distribution in cases weighted by the 
inverse of the effect size. 
Power estimation in generic scenarios 
For the estimation of power in the generic scenarios, we evaluated the influence of prevalence and 
then of prediction accuracy of genetic risk. To do this for prevalence, genetic risk was left 
untouched, we set prevalence to 0.2%, 0.6% or 1% and sample size to 500, 1500, 3000 or 5000. The 
three prevalences correspond to the prevalence of T1D in France for the lowest, T1D in Finland for 
the intermediate value and high estimation of prevalence of celiac disease for the highest21.  
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Concerning the influence of prediction accuracy of the genetic risk, we set prevalence at 0.2%, we 
modified the genetic risk estimate to have an AUC of 0.88, 0.90 or 0.92 and we set the sample size 
to 500, 1500, 3000 or 5000. The genetic risk distribution with modified AUC was obtained by 
adding to the risk of patients a constant chosen to obtain the desired AUC. The distribution of risk 
in patients and controls was then calibrated again. 
Concerning the definition of the environmental risk, we chose an effect size of 3 which is a large 
but plausible effect size for epidemiology and we chose the most favorable distribution of the 
environmental factor in the patients, i.e the one with the most variance: an evenly split binary 
variable. In the same fashion as above, the distribution in the source population was chosen to 
obtain the desired distribution in cases. 
 
Code 
Code used for analysis and power estimation is available at github.com/FelBalazard/DAC . 
 
Results  
Genetic risk 
The genetic risk estimation trained on the WTCCC1 yielded an AUC of 0.86 when evaluated on 
Isis-Diab patients and CNAD controls. This value is intermediate between the AUC of 0.89 
obtained in cross-validation on the WTCCC1 data and the AUC of 0.84 obtained on North-
American cohorts. This may be due to the use of controls from the same study as the training set. 
The ROC curve, calibration plot and density plot of the genetic risk are presented in figure 2. The 
estimator is well calibrated except for the highest intervals. Given the larger proportion of controls 
compared with cases, those intervals also contain the least observations. 
Genetic risk and age at diagnosis 
Regression of age on genetic risk yielded a negative association. In average, patients with a genetic 
risk increased by one standard deviation were younger at diagnosis by 3.5 months (CI=[-5.7,-1.3], 
p=2x10-3). This underscores the importance of controlling for age at diagnosis when looking for an 
association between genetic risk and environmental factors. 
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Results and power of DAC on the Isis-Diab patients 
Results are summarized in Table 1. Oral hygiene is nominally associated with genetic risk in the 
expected direction in Isis-Diab patients. However, this does not take into account correction for 
multiple testing. Other variables do not show association with genetic risk. 
The estimation of power for DAC in the Isis-Diab data showed that DAC had power under 10% for 
every variable. Given the low power of DAC herein, the nominally significant result for oral 
hygiene is almost as unlikely under the alternative than under the null. This low power estimate 
shows that DAC is not informative in the Isis-Diab data.  

 
Figure 2: Genetic risk estimation on the CNAD and Isis-Diab patients. a: Receiver operating curve 
(ROC) of the estimator. The AUC is given. b: Calibration plot after calibration of the risk estimator. 
The range of values taken by the estimator is divided in 10 bins of equal length. The average 
prediction is plotted against the actual proportion of cases in each bin. c: Density plot on the logit 
scale of the risk estimate of the CNAD and Isis-Diab patients. 
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Variable Missing data DAC p-value Effect size in simulation Power 

Taste for sugar (baby) 4% 0.09 0.59 7% 

Dentist 4% 0.80 0.37 10% 

Oral hygiene 2% 0.032 0.39 8% 

Diarrhea 6% 0.66 0.56 7% 

Cocoa spread 0.4% 0.77 0.33 7% 

Winter sports 1% 0.22 0.49 8% 

Club 1% 0.60 0.49 8% 

Table 1 :Results of the DAC method for confirmation of 7 variables from the Isis-Diab case-
control study. The effect size used in simulations is the farthest from 1 in the two analysis made for 
the case-control study.  
 
Power estimation 
The results of the power estimation in generic scenarios are presented in figure 3. Power increases 
with sample size, prediction accuracy of the genetic risk and prevalence of the disease.  
With a prevalence of 0.2% and an AUC of 0.86, power was very limited. Even if our sample size 
had been 5000 cases and despite the favorable assumptions made on the effect size and the 
distribution of the environmental factor in cases, power would be only 26%.  
Our estimation show that power depends strongly on prevalence of the disease. For a disease with 
prevalence of 1%, 80% power is attained for a sample size under 3000. 

 

 

Discussion 

 
Figure 3:  Power of the DAC methodology in different settings. The effect size is set at 3 and the 
environmental factor in cases is evenly split. a: Influence of the prevalence of the disease on power. 
The AUC of the genetic risk estimator remains at 0.86. b: Influence of the genetic risk accuracy 
(AUC) on power. The prevalence of the disease remains at 0.2% 
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Studies of environmental factors of disease are long, difficult and expensive. While the recent 
progress in the genetic study of disease is in itself a success, it can also be leveraged to inform the 
environmental determinants of disease. The most successful methodology in this direction is 
Mendelian randomization but all possibilities have not been explored. 
As such a new possibility, we propose DAC to discover or validate associations of environmental 
factors with disease using genetic risk and environmental data in a case-only setting. Its main 
strength is that the information it provides is independent from the choice of controls, an important 
source of confusion in the case-control design. Ideally, DAC should be used after a standard 
environmental case-control study to validate findings. A practical advantage is that it requires 
genetic data only on cases. 
DAC leverages collider bias. It assumes independence between genetic risk and the environmental 
factors in the general population as well as lack of interaction between them.  
The assumption of independence is reasonable but deviation from it should be kept in mind as an 
alternative explanation for a positive result. While certain genes affect certain exposures such as 
alcohol consumption, coffee consumption or smoking30–32, there is some a priori for independence 
between most genes and most environmental factors. We stress that the only independence needed 
is between the aggregated genetic risk score and the environmental factor: DAC does not require 
independence between each SNP and the environmental factor. 
DAC is sensitive to the assumption of multiplicative combination of odd-ratios. Indeed, interactions 
between genetic risk and environmental factor are problematic. A negative interaction strengthens 
the negative association that DAC tries to uncover but makes the findings less actionable as the 
people at highest genetic risk would respond less to intervention on the environmental factor. A 
positive interaction cancels the negative association that DAC tries to uncover despite increasing 
the prevention potential of the factor. This is a notable caveat to DAC as interactions between 
genetic risk and environmental factors have been detected in relation to obesity33 and must be 
present in other settings as well. 
The epidemiological design closest to DAC is the case-only design for gene-environment 
interaction (CODGEI)34. Like DAC, CODGEI relies on case-only data, crosses genetic data and 
environmental data and relies on the assumption that gene and environment are independent in the 
general population. The goal of CODGEI differs from DAC: it aims to discover interactions 
between gene and environment. Therefore, there is no assumption of absence of interaction between 
gene and environment in CODGEI. 
A second difference is that CODGEI needs a rare disease assumption. This is not limited to the 
prevalence being negligible compared to 1. If we denote the value taken by a variant i by Gi with 
values in a set J, the precise assumption is: 
For all j in J, P(D=1|Gi=j) is negligible compared to 1. 
Under that assumption, an association between a gene and an environmental factor in cases is proof 
of an interaction between the two. In particular, this tells us that under the rare disease assumption, 
there will be no effect due to collider bias. Therefore, this shows that DAC has low power for low 
prevalences of the disease. As a consequence genetics are considered differently in the two 
methods. DAC needs to maximise the distance to the rare disease assumption and therefore uses an 
aggregated risk estimation. On the other hand, in CODGEI, each variant is considered on its own. 
This theoretical argument for absence of collider bias at low prevalences is in accordance with the 
results of power estimation. Those power estimations show that DAC can be successful in higher 
prevalence situations, with large sample sizes and better genetic risk estimation.  
In particular, DAC is quite sensitive to the prevalence of the disease. However, in more common 
diseases, genetic risk estimation typically obtains sensibly weaker results and the prospective cohort 
design is more feasible. Nevertheless, DAC needs stronger prevalences of the disease to achieve 
reasonable power. This can mean being applied in a country with high prevalence of T1D such as 
Finland or on more frequent diseases such as celiac disease. 
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Given the prevalence of T1D in France, DAC is underpowered in the setting of the Isis-Diab study. 
Nevertheless, we decided to present the application of our method on this data to illustrate the 
practical considerations that go into applying DAC such as the problem of confounding by age at 
diagnosis. Furthermore, it allowed to base our power estimations on the actual predicted genetic risk 
distribution.  
DAC underscores the importance for epidemiology of having a genetic risk estimation as predictive 
as possible. There has been limited access to the largest consortium datasets for this goal and a 
consequent turn to methods that use only summary statistics12,35. In the case of Crohn’s disease and 
ulcerative colitis, the International Inflammatory Bowel Disease Genetic Consortium dataset was 
used for this purpose and significant improvement was obtained 9. Methodology to adapt machine-
learning methods to GWAS datasets is also a promising avenue of research13. 
The power estimations we performed for DAC can also be seen as a way to test the validity of the 
rare disease assumption for CODGEI. This assumption has attracted less scrutiny than the gene-
environment independence assumption. It is not always respected in practice36 and is not mentioned 
in the review by Thomas of methods for identification for gene-environment interaction6. As our 
power estimations show, this is problematic. 
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