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ABSTRACT 
It is well known that microbial cell populations can exhibit sustained exponential growth. More surprising is the fact that at high 
antibiotic levels, cell populations exhibit sustained exponential decay over several orders of magnitude. The boundary between 
growth and decay occurs at the Minimal Inhibitory Concentration (MIC) of the antibiotic, where the density of living cells remains 
constant over time. These observations suggest that positive (growth) or negative (decay) exponents arise as a difference of cell 
division and death rates obeying first-order kinetics. Thus for antibiotic concentrations below MIC, division dominates; for 
concentrations above MIC, death dominates; while MIC itself is a dynamic steady state of balanced division and death, rather than 
cell stasis. To measure these rates we separately tracked living and dead cells in Escherichia coli populations treated with the 
ribosome-targeting antibiotic kanamycin. We found that cells divide rapidly even at MIC: inferred division and death rates at MIC 
are 0.6 times the antibiotic-free division rate. A stochastic model of cells as collections of self-replicating units we term “widgets” 
reproduces both steady-state and transient features of our experiments, and explains first-order exponential kinetics. In this model 
cell division and death rates at MIC can be tuned from low to high values by amplifying molecular noise in the synthesis, 
degradation and partitioning of the widgets. At extremely low noise, cells approach the classic bacteriostatic limit at MIC: neither 
dividing nor dying. Noise-induced division and death of cells following antibiotic treatment could increase the likelihood of sepsis 
and antibiotic resistance. 
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Exponential growth and decay are macroscopically 

observable features of cell populations; division and 
death are microscopic single-cell processes. It is tacitly 
assumed that growing populations contain mainly 
dividing cells, while decaying populations contain 
mainly dying cells. The reality is richer and more subtle: 
under many growth conditions, cells are both dividing 
and dying, and the net growth or decay exponent arises 
from the difference of the two [1: Liu et al., 2004]. This 
idea forms the starting point of our discussion, and 
naturally leads us to confront randomness and molecular 
noise. 

The study of bacterial growth has been instrumental in 
revealing fundamental aspects of cell division, 
metabolism, and regulation [2: Monod, 1949; 3: 
Campbell, 1957; 4: Zaritsky & Woldringh, 2015]. 
Campbell [3: 1957] realized that exponentially growing 
populations were in a state of “balanced growth”: the 
chemical composition of a daughter cell immediately 
after division was invariant from one generation to the 
next, leading to a well-defined and constant doubling 
time. The specific dependence of the exponential growth 
rate (the exponent of the cell density versus time curve) 
on nutrient or antibiotic concentrations can be 
summarized as “growth laws” [5: Schaechter et al., 
1958]. Models of bacteria as autocatalytic chemical 
reactors accurately capture many mathematical features 
of these growth laws [6: Scott et al., 2010; 7: Scott et al., 
2014; 8: Parth & Jain, 2017]. 

Studies of bacterial growth laws have focused mainly 
on exponential growth. However, bacterial populations in 
the presence of high antibiotic levels can also undergo 
sustained exponential decay over several orders of 
magnitude (Fig. 1A) [9: Craig & Ebert, 1990; 10: 
Barbour et al., 2010]. This is surprising: exponential 
growth can arise from deterministic cell doubling, but 
exponential decay with first-order kinetics typically 
occurs when individuals in a population die at random, 
like radioactive nuclei. However, cells are not indivisible 
objects: if some cells die early while others die later, this 
must be due to some underlying cell-to-cell variability. 
The growth of single cells is known to be a stochastic, 
fluctuating process [11: Kiviet et al., 2014; 12: Iyer-
Biswas et al., 2014; 13: Taheri-Araghi et al., 2015], an 
outcome of noisy biochemical reactions [14: Raj & van 
Oudenaarden, 2008]. We should therefore consider the 
possibility that the exponential growth or decay of a cell 
population arises as a competition between two random 
microscopic processes: cell division and cell death. This 
contrasts with the usual assumption that any change in 
exponential growth rates is due to a change in division 
rate alone, rather than a difference of division and death 
rates [6: Scott et al., 2010; 7: Scott et al., 2014]. No 
analysis has so far attempted to simultaneously account 
for molecular noise, cell division, and cell death within a 
common framework.  
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Here we experimentally demonstrate that growth at 
“bacteriostatic” antibiotic concentrations, where the total 
number of living cells remains constant over time, is in 
fact a dynamic balance between cell division and cell 
death. This observation can be understood if we think of 
cells as collections of sub-cellular self-replicating units. 
A self-replicating unit is a minimal autocatalytic set of 
molecules and reactions [15: Jain & Krishna, 2001]. The 
ribosome lies at the heart of such a unit, since most of the 
energy and biomass budget of a bacterial cell is devoted 
to ribosomes making more ribosomes [6: Scott et al., 
2010; 7: Scott et al., 2014]. Ribosomes must be 
supplemented by DNA replication, and the synthesis of 
non-ribosomal proteins and biomass components via 
central metabolism. Here we sidestep the precise 
molecular nature of the self-replicating unit, and group it 
into a single abstract “widget”. We model the synthesis, 
degradation and partitioning of widgets as noisy 
biochemical processes. Cell division or death occurs 
when a cell hits high or low thresholds of these widgets. 
Remarkably, this basic model reproduces observed 
qualitative features of cell growth and decay, and gives a 
mechanistic explanation for the continued division of 
cells at high antibiotic concentrations. Our central insight 
is that molecular noise in the number of widgets can 

drive a stochastic choice between cell division and death. 
Increased levels of noise drive increased rates of both 
division and death, and the net number of living cells at 
any time is determined by the balance between these 
processes. Our observations raise fundamental questions 
about the molecular nature of the self-replicating widget, 
and of the blurry boundary between cell division and 
death.  
 
Results 
 
Measuring cell growth in the presence of antibiotics. 
Different classes of antibiotics act through distinct 
mechanisms [16: Kohanski et al., 2010]. Since we focus 
on self-replicating units, here we use the aminoglycoside 
antibiotic kanamycin which irreversibly binds to and 
inhibits the ribosome [17: Greulich et al., 2015]. The 
effect of an antibiotic is typically quantified in terms of 
its impact on growth rates. It is common to use turbidity 
measurements (OD600) for this purpose, since these are 
easy to carry out and automate [18: Toprak et al.,  2013]. 
Cell growth is more accurately determined by measuring 
the density of viable colony-forming units (CFU/ml) [10: 
Barbour et al., 2010]. These two are not equivalent: 
colony-forming units measure the density of living cells, 

 

Figure 1: Growth and decay of cell populations under antibiotic treatment. (A,B,C) Measurements for E. coli populations. Each 
curve corresponds to different concentrations of the antibiotic kanamycin; see key in panel (C). [Kan] = 4.21 µg/ml is the Minimal 
Inhibitory Concentration (MIC) at which the viable cell count is constant over time. (A) Viable cell count (CFU/ml) over time, 
mean and standard deviation over four technical replicates. (B,C) Turbidity (OD600) over time, on logarithmic and linear axes. The 
gray area indicates the nutrient depletion zone. (D,E,F) Predictions of a stochastic model of cell growth. Curves show solutions to 
Eq. 4 for the division threshold 𝛺 = 10 and increasing values of 𝛾/𝛼, corresponding to increasing antibiotic levels; see key in 
panel (F). 𝛾/𝛼 = 1 corresponds to MIC. (D) The number of living cells 𝑐! corresponds to CFU/ml. The inset shows the prediction 
for a cell that has no internal structure and divides as soon as 𝛺 = 2. (E,F) The total number of living and dead cells 𝑐! + 𝑐! 
corresponds to OD600. We have labeled the asympotic behavior of the predicted curves: exponential (exp), linear (lin), logarithmic 
(log), or flat. 
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whereas turbidity measures the total density of all non-
lysed cells, living or dead. The Minimal Inhibitory 
Concentration (MIC) of an antibiotic is often defined as 
the concentration at which turbidity increase is 
prevented, but this depends on the duration and 
sensitivity of the measurement [19: Chait et al., 2007]. 
Here we rigorously define MIC as the antibiotic 
concentration at which the density of colony-forming 
units is asymptotically constant over time. This 
“bacteriostatic” antibiotic treatment is sometimes 
contrasted with “bactericidal” treatments which cause 
cell death, but this is not a sharp distinction [16: 
Kohanski et al., 2010]. As we show below, at the 
microscopic level cell division and cell death can 
continue while the macroscopic count of viable cells 
remains static. 

 
Decomposing exponential growth or decay into cell 
division and death rates. We monitored the effect of 
kanamycin addition on Escherichia coli cells grown in an 

initially antibiotic-free medium (Fig. 1A,B,C; Methods: 
Growth and measurement protocols). To get a detailed 
picture of the effect of the antibiotic, we simultaneously 
measured living cell density (viability: CFU/ml) and total 
cell density (turbidity: OD600) over time. After a brief 
transient, CFU/ml settled into an exponentially growing 
profile (for low [Kan]) or an exponentially decaying 
profile (for high [Kan]) (Fig. 1A). At the boundary 
between these two regimes CFU/ml remained constant 
over time, defining the MIC ([Kan] = 4.21 µg/ml). The 
behavior of turbidity was strikingly different: OD600 
always monotonically increased, with a convex 
accelerating profile (for low [Kan]) or a concave 
decelerating profile (for high [Kan]) (Fig. 1B,C). At the 
boundary between these two regimes, OD600 increased 
precisely linearly (Fig. 2B). These trends persisted until 
the medium was depleted of nutrients (gray zone, Fig. 
1A,B,C). 

These observations are consistent with the idea that 
CFU/ml measures the density of living cells (𝑐!, which 
can increase or decrease) while OD600 measures the total 
density of living plus dead cells (𝑐! + 𝑐!, which can only 
increase). As a first attempt to understand these 
dynamics, we decompose the separate contributions of 
cell division (𝜙!) and death (𝜙!) rates (Fig. 3C): 

 
 𝑑𝑐!/𝑑𝑡 = 𝜙! − 𝜙! 𝑐!  

 𝑑𝑐!/𝑑𝑡 = 𝜙!𝑐!    [1] 
 

In the period once the transient response to the antibiotic 
has settled but nutrients are not yet depleted, 𝜙± are 
constant over time. The solution to Eq. 1 is then: 
 
 !!

!!
!"!# = 𝑒 !!!!! ! 

 !!
!!
!"!# =

!!
!"!#

!!
!"!# +

!!
!!!!!

𝑒 !!!!! ! − 1  [2] 

 
where we have scaled cell numbers by their initial values 
at the end of the transient. 
𝜙± depend on the antibiotic concentration, two values 

of which are of particular interest. At zero antibiotic we 
have 𝜙! ≡ 𝜙!! and 𝜙! = 0, so 𝑐! = 𝑐!!"!#𝑒!!

! ! and 
𝑐! = 0. Indeed we find OD600 is directly proportional to 
CFU/ml at zero antibiotic, and both grow with exponent 
𝜙!! = 0.017  𝑚𝑖𝑛!! (or 𝜏!"#$%& ~ 40 min; Fig. 2A). The 
scale factor 8×10! converts OD600 to CFU/ml, allowing 
us to plot 𝑐! and 𝑐! + 𝑐! on the same axes. At MIC the 
situation is more interesting since by definition 
𝜙! = 𝜙! ≡ 𝜙!"# , so 𝑐!(𝑡) = 𝑐!!"!# and 𝑐! 𝑡 = 𝑐!!"!# +
𝑐!!"!#𝜙!"#𝑡. That is, living cell numbers are constant 
because death and division rates balance, while dead cell 
numbers increase linearly because they arise from the 
continuing death of living cells. This is precisely what 
we observe: the slope of the OD600 curve at MIC shows 
that 𝜙!"# = 0.011  𝑚𝑖𝑛!! (or 𝜏!"#$%& ~ 60 min; Fig. 2B). 
Interestingly the OD600 curve tracks the CFU/ml curve 
for the first hour following antibiotic treatment, after 

	
  

Figure 2: Comparing cell viability measurements (CFU/ml) 
to turbidity measurements (OD600) reveals cell dynamics at 
MIC. Dark curves: CFU/ml, equivalent to living cell number 
𝑐! in Eq. 2. Light curves: OD600, equivalent to total cell 
number 𝑐! + 𝑐! in Eq. 2. We have applied the scale factor 
CFU/ml = 8×10!×OD600 to plot both on the same axis. (A) 
At zero antibiotic CFU/ml and OD600 are completely 
overlapping and show perfect exponential growth in this 
log-lin plot; we have inserted an offset so both can be seen. 
The division rate is 0.017 min-1. (B) At MIC the CFU/ml 
curve flattens out while the OD600 curve continues to 
increase linearly in this lin-lin plot. Division and death rates 
are both equal to 0.011 min-1. 
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which the CFU/ml curve flattens while the OD600 curve 
increases linearly. This shows that cell death only begins 
after a lag, while cell division is relatively unperturbed 
by the presence of antibiotic. This is corroborated by the 
ratio 𝜙!"#/𝜙!!   ~  0.6 being close to unity: rapid cell 
division and death continue even at MIC. 

 
A model of cell growth in terms of widgets: sub-
cellular self-replicating units. The initial transient 
response of cells to antibiotic addition is a sign of inertia 
due to internal re-organization. The phenomenological 
model of Eq. 1 incorrectly predicts pure exponential 
growth or decay (inset, Fig. 1D) because it assumes a cell 
has no internal structure. If we wish to determine how 
𝜙± depend on antibiotic concentration or time, this must 
either be directly measured, or predicted from a more 
microscopic model. We therefore consider a cell as a 
collection of self-replicating units we term “widgets” 
(Fig. 3; Methods: Stochastic model of cell division and 
death). The widgets themselves obey a birth-death 
dynamics analogous to Eq. 1, but with microscopic birth 
and death rate constants 𝛼 and 𝛾 (Fig. 3A). For 
concreteness we imagine 𝛼 to be constant (e.g. the 
catalytic efficiency of ribosomes) while 𝛾 depends on the 
antibiotic concentration (e.g. the rate of irreversible 
ribosome inhibition by kanamycin), but these 
assumptions may be relaxed. We specify how cell 
division and death depend on the widgets as follows (Fig. 
3B). When the widget number hits 𝑤 = 0 the cell dies 
since no new widgets can be made. When the widget 
number hits a threshold 𝑤 = 𝛺 the cell instantaneously 
divides, and the widgets are partitioned binomially 
between two daughter cells. This is arguably the simplest 
possible microscopic model of cell growth. 

The dynamics of the widgets can be used to determine 
the effective parameters 𝜙± that appear in Eq. 1 (Fig. 
3C). We consider a population of cells, binned according 
to the number of widgets they contain: 𝑐! is the number 
of cells with precisely 𝑤 widgets, for 𝑤 = 1,… ,𝛺 − 1 
(Fig. 3D; Methods: Stochastic model of cell division and 
death). Individual cells do a biased Poisson random walk 
along the 𝑤-axis: moving to the right if they gain a 
widget, or to the left if they lose one. The number of 
living and dead cells are: 

 
 𝑐! = 𝑐!!!!

!!!  𝑐! = 𝑐!.   [3] 
 
Cells that cross the left boundary (𝑖 = 1) move to bin 𝑐! 
and die, so 𝑐! decreases by one. Cells that cross the right 
boundary (𝑖 = 𝛺 − 1) move to the bin 𝑐! and 
instantaneously divide into two daughters, so 𝑐! 
increases by one. The daughters re-enter the distribution 
at two positions 𝑤′ and 𝑤′′ such that 𝑤! + 𝑤!! = 𝛺. 
These processes define a transition matrix 𝐴 (Methods: 
Stochastic model of cell division and death) so that: 

 
 𝑑𝑐!(𝑡)/𝑑𝑡 = 𝐴!"(𝛼, 𝛾)𝑐!(𝑡)!!!

!!!   [4] 
 

This can be easily solved for 𝑐!(𝑡) from any 𝑐! 𝑡 = 0  
by matrix exponentiation. Once we find the number of 
cells in each bin, we can track how many cells cross the 
right or left boundary. We can thus write an equation 
similar to Eq. 1, where 𝜙± are now time-dependent 
because the distribution of cells evolves from its initial 
state: 
 
 𝜙! 𝑡 = 𝛼 𝛺 − 1 𝑐!!!(𝑡)/𝑐!(𝑡) 

 𝜙! 𝑡 = 𝛾𝑐!(𝑡)/𝑐!(𝑡)   [5] 

	
  

Figure 3: A stochastic model of cell division and 
death. (A) A widget is a self-replicating unit obeying 
a birth-death process with rates 𝛼 and 𝛾, the latter 
proportional to antibiotic levels. (B) Cells are 
collections of widgets. When a cell hits 𝑤 = 𝛺 it 
divides; when it hits 𝑤 = 0 it dies. (C) The widget 
dynamics can be used to define the cell dynamics, 
with effective time-dependent division and death 
rates 𝜙±. (D) Dynamics of a cell population: 𝑐!  
represents the number of cells with exactly 𝑤 
widgets. Individual cells move to the right (gain a 
widget) or left (lose a widget). 𝜙! is the per-cell rate 
at which cells cross the left boundary at 𝑤 = 1 and 
die. 𝜙! is the per-cell rate at which cells cross the 
right boundary at 𝑤 = 𝛺 − 1 and divide. At division 
the widgets binomially partition into two daughter 
cells, which re-enter the main distribution. The area 
of the red bin gives the number of dead cells, the 
total area of the gray bins gives the number of living 
cells. Over time the gray distribution reaches a 
constant shape but can increase or decrease in area. 
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Over time, the distribution of living cells over widget 
number reaches a steady state, proportional to the 
eigenvector of the transition matrix corresponding to its  
largest eigenvalue 𝜆. If we define a normalized 
distribution 𝑓!(𝛼, 𝛾) such that 𝐴𝒇 = 𝜆𝒇, then: 

 
 𝑐! 𝑡 →∞ = 𝑐! 𝑡 𝑓!  ~  𝑒!"𝑓!  [6] 
 

That is, the shape of the distribution becomes constant, 
while the total number of cells increases or decreases 
exponentially. In particular, this means that 𝜙± become 
time-independent, so comparing Eq. 6 to Eq. 2 we must 
have 𝜆 = 𝜙! − 𝜙!. On the other hand, it is easy to check 
that the largest eigenvalue of 𝐴 is given by 𝜆 = 𝛼 − 𝛾 
(Methods: Stochastic model of cell division and death). 
This gives us two completely distinct ways to decompose 

the growth exponent 𝜆 in the limit 𝑡 →∞: in terms of 
widget birth/death, or in terms of cell division/death: 
 
 𝜆 = 𝛼 − 𝛾 = 𝜙! − 𝜙!   [7] 
 
The intuition behind this result is simple: if the mean 
number of widgets per cell reaches a finite limit, cell 
number must be proportional to widget number. The 
interesting point is that the split between 𝛼 and 𝛾 is very 
different than the split between 𝜙! and 𝜙!. 
 
Comparison of widget model to experimental results. 
If we measure time in units of 𝛼!! the model has only 
two dimensionless parameters: the widget death/birth 
ratio 𝛾/𝛼, and the threshold number of widgets at cell 
division 𝛺. Sweeping 𝛾/𝛼 from low to high values 

	
  

Figure 4: Noise-induced cell division and cell death. (A) Two sources of noise: random partitioning and random birth/death of 
widgets. Immediately after cell division, the number of widgets 𝑤 in a daughter cell follows a binomial distribution (gray 
histogram). Starting at any widget number, the random birth/death dynamics can take a cell to either boundary. We show the 
probability that a cell will successfully divide again rather than die (curves; colors represent different values of 𝛾/𝛼 for 𝛺 =
10). (B) Once sufficient time has passed, distributions of cells over widget number reach a constant shape 𝑓! , as in Eq. 6. We 
show distributions (gray histograms, scaled to fixed height) as 𝛾/𝛼 is increased (top to bottom) for two different values of 𝛺 
(left and right). 𝛾/𝛼 = 1 corresponds to MIC; low 𝛺 is high noise, high 𝛺 is low noise. The maroon arrows show the resulting 
rates of cell division (𝜙!) and cell death (𝜙!). (C) Division rate (𝜙!; decreasing curves) and death rate (𝜙!; increasing curves) 
as a function of antibiotic level (𝛾/𝛼) for various values of 𝛺. Darker curves (higher 𝛺) correspond to lower noise. MIC is 
defined by the point at which 𝜙! = 𝜙! ≡ 𝜙!"# . (D) As the noise decreases 𝜙!"#  drops, ultimately reaching the “bacteriostatic” 
limit of zero division and death. 1/𝛺 is the squared coefficient of variation of the binomial distribution in panel (A), and is a 
convenient measure of noise. (E) The total increase in cell number after antibiotic addition, scaled by the original cell number, 
reflects the number of post-antibiotic cell division events. Below MIC and at MIC itself, the number of division events is 
infinite; above MIC the population eventually dies out, so the number of division events is finite. Increased noise leads to an 
increase in the number of division events. 
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corresponds to increasing the antibiotic concentration, 
with 𝛾/𝛼 = 1 at MIC. The parameter 𝛺 has a less direct 
interpretation, we will return to this when we discuss the 
role of molecular noise. In our experiments we first grow 
cells in in the absence of antibiotic and then add 
kanamycin at the initial measurement point. To model 
this we first find the cell distribution at zero antibiotic: 
𝑓!(𝛼 = 1, 𝛾 = 0). Starting with this 𝑓! as the initial 
condition, we use Eq. 4 to find 𝑐!(𝑡) and Eq. 3 to find 
𝑐! 𝑡  and 𝑐!(𝑡) for various ratios 𝛾/𝛼. The predictions 
using 𝛺 = 10 (Fig. 1D,E,F) qualitatively match our 
experimental observations (Fig. 1A,B,C). In particular, 
we capture the initial transient bump as well as the 
asymptotic exponential growth and decay kinetics of 
CFU/ml (Fig. 1A,D). More interestingly, we also capture 
the response at MIC, where CFU/ml flattens while OD600 
approaches a linear trajectory (Fig. 1B,C vs. Fig. 1E,F). 
 
Noise-induced cell division and cell death. The 
qualitative agreement of the model with measurements 
encouraged us to probe the underlying structure of the 
model further. The key goal is to understand what drives 
the choice of a post-division cell between two ultimate 
fates: division and death (Methods: Probability of 
division). Immediately following division the widgets 
partition binomially between daughter cells, leading to an 
initial post-division variation (histogram, Fig. 4A). At 
this point, the noisy birth-death widget dynamics take 
over. Cells with an initially low value of 𝑤 are more 
likely to hit the left boundary and die, while cells with an 
initially high value are more likely to hit the right 
boundary and divide (curves, Fig. 4A). The addition of 
antibiotics (increasing 𝛾/𝛼) biases the choice against 
division. The squared coefficient of variation (SCV) of 
the post-division binomial distribution 1/𝛺 is a 
convenient measure of noise. Note that increasing 1/𝛺 
increases the strength of molecular noise in both 
binomial widget partitioning and Poisson birth/death 
dynamics. 

Another way to understand the dynamics is to look at 
the steady-state distribution of living cells over widget 
number (Fig. 4B). The more cells there are at the right 
boundary, the greater the rate of division; the more there 
are at the left boundary, the greater the rate of death. The 
addition of antibiotics shifts the entire distribution 
leftward (Fig. 4B, moving top to bottom). More 
interestingly, decreasing the noise (increasing 𝛺) narrows 
the entire distribution away from the boundaries and 
decreases both division and death rates (compare Fig. 
4B, left and right columns).  

At the heart of these results is Eq. 7, which relates 
cell-level parameters to widget-level parameters: it 
constrains how cell division and death rates (𝜙±) depend 
on the antibiotic level (𝛾/𝛼). However, this equation on 
its own does not capture all the details: there are many 
ways to split 𝜙± so the constraint of Eq. 7 is satisfied. It 
is always true that the division rate (𝜙!) decreases and 
the death rate (𝜙!) increases with antibiotic level: at zero 
antibiotic 𝛾 = 0 so 𝜙! ≡ 𝜙!! = 𝛼, and 𝜙! = 0; at MIC 

𝛼 = 𝛾 so 𝜙! = 𝜙! ≡ 𝜙!"# . But the form of these 
curves, and in particular the value of 𝜙!"# , depends 
crucially on the noise level (1/𝛺). When we plot how 𝜙! 
and 𝜙! depend on 𝛾/𝛼 we see a range of behaviors (Fig. 
4C). In the high-noise limit   𝛺 = 2 (lightest curves) each 
cell contains only one widget, and instantaneously 
divides as soon as this widget replicates. Cell dynamics 
are thus identical to widget birth/death dynamics, so 
𝜙! = 𝛼, 𝜙! = 𝛾, and 𝜙!"#  is high. As the noise is 
decreased by increasing 𝛺 (darker curves), cell division 
and death curves drop, and 𝜙!"#  also drops. In the low-
noise limit of high 𝛺 (darkest curves) we approach the 
bacteriostatic limit: below MIC we see only cell division, 
above MIC we see only cell death, at MIC we have 
𝜙!"# = 0 so cells neither divide nor die. The classic 
picture of cell stasis under antibiotic treatment is 
therefore the low-noise limit of a more general dynamics. 
Indeed, 𝜙!"#  scales in proportion to the noise level 1/𝛺 
(Fig. 4D), showing that cell division and death at MIC 
are fundamentally driven by molecular noise. 

 
Discussion 
 
Stochastic cell fate choice as a form asymmetric cell 
division. Suppose we tracked the fate of a single dividing 
cell in the presence of antibiotics. Due to stochastic 
effects both its daughters might die or both might divide; 
the probabilities of these various fates would depend on 
correlations in inherited components across multiple 
generations. Our model does not enforce asymmetry in 
cell division. However, since each widget has an equal 
chance of being inherited by either daughter cell, these 
cells can be distinct due to stochastic partitioning. This 
means the daughters in our model are anti-correlated in 
their probability of division: the one that inherited more 
widgets has the higher probability. We could imagine 
that cells under stress could preferentially partition 
functional components to one daughter, thus further 
enhancing survival rates. Such processes have been 
implicated in the dynamics of bacterial ageing [20: 
Watve et al., 2006]. Single-cell experiments could be 
used to track the probability of next division of 
immediate post-division cells (Fig. 4A). Correlations or 
anti-correlations in this probability between two 
daughters would reveal more complex partitioning than 
we have considered here. 
  
Continued cell division under antibiotic treatment. At 
MIC, by definition, for each parent cell on average one 
of its daughters dies while the other successfully divides. 
The number of living cells is thus replenished and stays 
constant, while the number of dead cells continues to 
increase. For antibiotic levels above MIC, some cells 
would successfully divide but many more would die, and 
the population would eventually collapse. (We have not 
considered persister cells that slow their division under 
antibiotic treatment [21: Balaban et al., 2004]; these are 
significant once nearly all cells in the original population 
have already died). The total increase in OD600 post 
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antibiotic treatment measures the number of additional 
cell divisions before living cells are fully eliminated. Our 
model predicts that the number of post-antibiotic 
divisions is significantly amplified by molecular noise 
(Fig. 4E). This is relevant since each dead cell raises the 
possibility of sepsis in an infection context. Each cell 
division is also coupled to a DNA replication event, and 
represents a chance for new mutations to arise. 
Molecular noise therefore indirectly increases the 
possibility of antibiotic resistance. 

 
Sources of molecular noise. Within our model, the 
parameter 𝛺 plays a nuanced role. Superficially, it 
measures the number of self-replicating units that trigger 
cell division. However, it also controls the level of noise 
in the system. Our model incorporates the intrinsic noise 
due to the discreteness of widgets, but in practice there 
will be additional sources of extrinsic noise that increase 
the rates of division and death [14: Raj & van 
Oudenaarden, 2008]. In Fig. 1 we showed that the model 
matches qualitative aspects of our measurements with 
𝛺 = 10 (note that this is not a numerical fit, just a 
representative parameter choice). This value of 𝛺 
predicts 𝜙!"#/𝜙! = 0.17 (Fig. 4C) whereas the 
measured value is much higher at 𝜙!"#/𝜙! = 0.6, 
suggesting that extrinsic noise is significant. To account 
for this, one could construct more complex models in 
which the division trigger and noise strength were 
separately regulated. 
 
The molecular nature of a widget. Our widget 
hypothesis captures essential qualitative aspects of the 
growth and decay of cell populations. However, it does 
not reveal the nature of a single abstract widget, which is 
actually a collection of diverse molecules and reactions 
[15: Jain & Krishna, 2001]. One operational approach to 
study widgets is via the “Monod curve” which plots cell 
growth rate as a function of some limiting enzyme 
concentration. Such a curve often has a threshold enzyme 
level for non-zero growth, which we can interpret as part 
of a single self-replicating unit. By comparing the 
enzyme level at half-maximal growth with this threshold 
level, we can estimate the number of self-replicating 
units per cell. Single-cell measurements of lac gene 
expression in E. coli suggest this ratio is about 10, to an 
order of magnitude [11: Kiviet et al., 2014]. We might 
extend this idea to probe the full molecular composition 
of cells at the very boundary of death. For each point in 
composition space, we could operationally define this 
boundary as the locus of points at which the probability 
of division drops to some low level, say 1%. The fact 
that cells can recover from such a state means they must 
contain at least one self-replicating unit. This suggests a 
new operational definition of a minimal cell, one that 
complements existing bottom-up [22: Zhu & Szostak, 
2009] and top-down [23: Hutchison et al., 2016] 
definitions. Monod [24: 1974] would probably have been 
very comfortable with such an idea. 
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Methods 
 
Growth and measurement protocols. We grew 
Escherichia coli MG1655 cells, taken from a single 
colony, overnight in Luria Bertani medium at 37°C. We 
transferred 50 µL of this culture to 25 mL glucose M9 
minimal media in a 100 ml flask at 37°C. The OD600 of 
this culture was monitored until it reached a value of 0.1. 
At this point, we added kanamycin of the appropriate 
concentration, and this was defined as the t = 0 time 
point of our measurement. Every 40 minutes, 600 µL of 
this culture was collected for OD600 measurements, and 
100 µL was collected for colony counts. We determined 
both OD600 and colony counts using multiple dilutions. 
Colony counts were measured for four technical 
replicates; at MIC we performed two biological 
replicates, each with four technical replicates. Minimal 
medium composition (100 mL): water, 76.8 mL; 10X M9 
salts 10 mL; 20% glucose, 2 mL; 1M CaCl2, 10 µL; 100 
mM thiamine, 1 mL; 4% casamino acids, 10 mL; 1M 
MgSO4 200 µL. 
 
Stochastic model of cell division and death. The 
transition system shown in Fig. 3D defines a Master 
Equation: 
 
𝑑𝑐!
𝑑𝑡

= 

− 𝛼𝑤𝑐! + 𝛾𝑤𝑐! + 𝛼 𝑤 − 1 𝑐!!! + 𝛾 𝑤 + 1 𝑐!!!  

+2𝛼 𝛺 − 1 𝑐!!!
!

!!!!
𝛺
𝑤    [8] 

 
Here, each 𝑐! represents the number of cells (or the 
normalized probability of cells, depending on the 
context) with precisely w widgets for 𝑤 = 1,… ,𝛺 − 1, 
with the stipulation that 𝑐! = 0. The first line 
corresponds to cells gaining or losing individual widgets. 
The second line corresponds to the creation of two new 
daughter cell by the instantaneous division of a cell that 
hits 𝛺 widgets, which happens at rate 𝛼 𝛺 − 1 𝑐!!!. The 
resulting daughters are defined by 𝑤′ and 𝑤′′ such that 
𝑤! + 𝑤!! = 𝛺. The first factor of 2 accounts for two 
ways of achieving any given 𝑤′, in the left or right 
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daughter. The binomial coefficient occurs because each 
widget has an equal chance of being inherited by either 
daughter cell. Since a cell divides instantaneously when 
it hits 𝛺 widgets, the usual normalizing factor of 1/2! is 
replaced by 1/(2! − 2): the partitions 𝑤!,𝑤!! = {0,𝛺} 
or {𝛺, 0} are ignored since they repeatedly divide until 
some other partition occurs. 

We assume a large number of cells and widgets, so the 
branching process never goes extinct. If 𝒄 = 𝑐!… 𝑐!!! ! 
is a column vector, the system of equations Eq. 8 can be 
written using a transition matrix 𝐴 and solved by matrix 
exponentiation: 

 
 𝑑𝒄(𝑡)/𝑑𝑡 = 𝐴𝒄(𝑡) 

 𝒄 𝑡 = 𝑒!"𝒄(0)     [9] 
 

It is convenient to write the vector 𝒄 as a product of two 
components: the number of living cells 𝑐! = 𝑐!!!!

!!! , 
and the normalized distribution 𝑓! of those cells over the 
different numbers of widgets: 𝒄(𝑡) ≡ 𝑐!(𝑡)𝒇(𝑡). At long 
times this distribution approaches the eigenvector of 𝐴 
corresponding to its largest eigenvalue: 𝐴𝒇 = 𝜆𝒇. 
Therefore 𝑐! 𝑡 →∞   ~  𝑒!". We can see by direct 
substitution that 𝛼 − 𝛾 is an eigenvalue of 𝐴. Since the 
number of living cells cannot increase any faster than the 
number of widgets, we also know this is its largest 
eigenvalue. Once 𝒇(𝑡) is determined, Eq. 5 allows us to 
calculate 𝜙!(𝑡) and 𝜙!(𝑡) by calculating the rate at 
which cells cross the right boundary 𝑤 = 𝛺 − 1 and the 
left boundary 𝑤 = 1. By measuring time in units of 𝛼!!, 
we can see that the values 𝜙±/𝛼 depend only on the ratio 
𝛾/𝛼 and on 𝛺 (Fig. 4C). 
 
Probability of division. An immediate post-division 
daughter cell can have any widget number in the range 
𝑤!"!# ∈ {1,… ,𝛺 − 1}. Starting from the initial condition 
𝑐!!"!# = 𝛿!,!!"!#, the probability of next division is a first-
passage-time problem with absorbing boundaries at 
𝑤 = 0 and 𝑤 = 𝛺. This corresponds to a new transition 
matrix 𝐴 where the binomial partition terms have been 
removed. We can find 𝒄 𝑡 = exp  (𝐴𝑡)𝒄!"!# and define 
 
 𝒃 = 𝒄(𝑡)𝑑𝑡∞

! = 𝐴!!𝒄!"!# [10] 
 
The integrated flux leaving the right and left boundaries 
are then (Fig. 4A): 
 
 ℘ division = 𝛼 𝛺 − 1 𝑏!!! 

 ℘ death = 𝛾𝑏! [11] 
 
and ℘ division + ℘ death = 1 (Fig. 4A). 
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