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Abstract

An important problem that hinders the use of supervised classification

algorithms for brain imaging is that the number of variables for single sub-

ject far exceeds the number of training subjects available. Deriving mul-

tivariate measures of variable importance becomes a challenge in such sce-

narios. This paper proposes a new measure of variable importance termed

sign-consistency bagging (SCB). The SCB captures variable importance by

analyzing the sign consistency of the corresponding weights in an ensemble of

linear support vector machine (SVM) classifiers. Further, the SCB variable

importances are enhanced by means of transductive conformal analysis. This

extra step is important when the data can be assumed to be heterogeneous.

Finally, the proposal of these SCB variable importance measures is completed

with the derivation of a parametric hypothesis test of variable importance.
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The new importance measures were compared with a t-test based univariate

and an SVM-based multivariate variable importances using anatomical and

functional magnetic resonance imaging data. The obtained results demon-

strated that the new SCB based importance measures were superior to the

compared methods in terms of reproducibility and classification accuracy.

Keywords: Bagging, Support Vector Machines, variable importance, MRI,

Alzheimer’s disease, schizophrenia

1. Introduction1

Machine learning is a powerful tool to characterize disease related alter-2

ations in brain structure and function. Given a training set of brain images3

and the associated class information, here a diagnosis of the subject, super-4

vised machine learning algorithms learn a voxel-wise model that captures the5

class information from the brain images. This has direct applications to the6

design of imaging biomarkers, and the inferred models can additionally be7

considered as multivariate, discriminative representations of the effect of the8

disease to brain images. This representation is fundamentally different from9

conventional brain maps that are constructed based on a voxel-by-voxel com-10

parison of two groups of subjects (patients and controls) and the patterns11

of important voxels in these two types of analyses provide complementary12

information (Kerr et al., 2014; Haufe et al., 2014; Tohka et al., 2016).13

An important problem in using voxel-based supervised classification al-14

gorithms for brain imaging applications is that the dimensionality of data15

(the number of voxels in the images of a single subject, i.e., the number of16
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variables1) far exceeds the number of training subjects available. This has led17

to a number of works studying variable selection within brain imaging (see18

Mwangi et al. (2014) for a review). However, in addition to selecting a set of19

important variables, it is interesting to rank and study their importance to20

the classification. This problem, termed variable importance determination,21

has received significantly less attention and it is the topic of this paper.22

The simplest approach to variable importance is to study the correlation23

between the variable and the class label, for example, via a t-test. This is24

exactly what massively univariate analysis does. It considers variables inde-25

pendently of others and, therefore, may miss complex interactions. Indeed,26

a variable can be meaningful for the classification despite not presenting any27

linear relationship with the class label (Haufe et al., 2014). Further, there28

is evidence that this importance measure does not perform well for variable29

selection in discrimation tasks(Chu et al., 2012; Tohka et al., 2016) and,30

therefore, multivariate importance measures might be more appropriate.31

With machine learning based variable importance, one has to stick to32

methods in which the contribution of each variable to the final result can be33

somehow isolated. Instances of this class of methods are linear methods, in34

which each variable receives an individual weight; and random forests with35

trees in which each node just uses a single variable. On the contrary, methods36

such as nearest neighbors, neural networks, and most kernel machines, are37

not suitable for this purpose since it is not possible to isolate the contribution38

of each input variable.39

1In most scenarios relevant to this work, a single variable corresponds to a single voxel,

but this does not have to be the case.
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If the variables have been properly standardized, the weights of a linear40

classifier can be considered as measures of variable importance (Caragea41

et al. (2001), see, e.g, Cohen et al. (2010); Khundrakpam et al. (2015) for42

neuroimaging examples). Linear regressors can be endowed with Lasso and43

Elastic Net regularizations (Friedman et al., 2008; Zou and Hastie, 2005), in44

order to deal with problems with very large number of input variables. These45

regularizations force sparsity and remove variables of reduced relevance from46

the linear model, enhancing the contribution of the remaining variables. More47

elaborated methods take a further step in the exploitation of the relationship48

between the weight of each variable in a linear classifier/regressors and its49

relevance (Guyon et al., 2002). The starplots method of Bi et al. (2003)50

exploits an ensemble of linear support vector regressors (SVR) endowed with51

a Lasso type regularization in the primal space. The regularization filters out52

the non-relevant variables from each regressor, while the starplots look for53

patterns in the weights that correspond with each of the non-filtered variables54

achieves across all the regressors in the ensemble. In addition to the high55

computational burden of some of these methods, in very high dimensional56

problems, they can also present the limitation of reducing dramatically the57

number of input variables to a final quantity comparable to the number of58

training samples. This drawback brings as a consequence that in those cases59

in which a large group of highly correlated variables becomes important,60

only a small fraction of these variables in the group will end up receiving61

importance since a large fraction of the group members will be removed by62

the regularization as their contribution to the final classification is already63

contained in the selected members of the group. To combat this problem,64
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for example, Grosenick et al. (2013) and Michel et al. (2011) have introduced65

brain imaging specific regularizers which take into the account the spatial66

structure of the data. The application of these methods is complicated by a67

challenging parameter selection (Tohka et al., 2016) and deriving a variable-68

wise importance measure is complicated by the joint regularization of weights69

of the different variables.70

Some of the most widely used variable importance measures within the71

machine learning community rely on Random Forests (RFs) (Breiman, 2001).72

RFs are defined as ensembles of decision trees, where each tree is trained with73

a subset of available training subjects and with a subset of the available vari-74

ables. RFs offer two main avenues for assessing the variable importance: one75

based on Gini importance and one based on the analysis of out-of-bag sam-76

ples (sometimes called permutation importance) (Archer and Kimes, 2008).77

Both measures have found applications in brain imaging: Langs et al. (2011)78

studied voxel selection based on Gini importance, Moradi et al. (2015) ranked79

the different types of variables (imaging, psychological test scores) for MCI-80

to-AD conversion prediction based on the out-of-bag variable importance and81

Greenstein et al. (2012) ranked the importance of cortical ROI volumes to82

schizophrenia classification. However, these applications have considered at83

most tens of variables while our focus is on a voxel-wise analyses of whole84

brain scans, where we have tens of thousands variables. Indeed, the usability85

of RFs as base learners for the ensemble is very limited in very high dimen-86

sionality scenarios. In RFs each decision tree comes out of a training set that87

includes a sample of the observations and of the variables. In a data set in88

which the number of variables is far larger than the number of observations89
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each tree definition will rely on a very reduced set of variables (in the order90

of a fraction of the number of observations). This means that in order to91

get all the input variables committed in the definition of a significant num-92

ber of members of the ensemble, so that the aforementioned patterns can be93

detected, each forest must contain an extraordinarily large number of trees,94

and this makes the method computationally infeasible. In addition, each tree95

presents a strong view of the interactions between the variables involved in96

its definition but an extremely weak view of the interactions with variables97

not used in the definition of the splits.98

To overcome the limitations of the regularized linear models and RFs99

for variable importance, we introduce and study a new variable importance100

measure based on sign consistency of the weights in an ensemble of linear101

Support Vector Machines (SVMs). Briefly, we train an ensemble of SVMs102

using only a part of the subjects available for each SVM in the ensemble.103

The main idea is to define the importance of a variable using its sign con-104

sistency, i.e., the fraction of members of the ensemble in which its weight is105

positive (or negative). We thereafter prune the variable importances using106

the ideas from transductive conformal analysis inputting randomly labeled107

data into the method. To complete our proposal, we also derive parametric108

estimates of significance of the variable importance measures and show that109

the new importance measures are an improvement to the SVM-weight based110

p-value estimation (Gaonkar and Davatzikos, 2013). We have earlier applied111

a similar procedure to variable selection (Parrado-Hernández et al., 2014),112

and a preliminary work to extend the method for variable importances was113

presented in the conference proceedings (Gomez-Verdejo et al., 2016). This114
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paper significantly extends the previous method analysis, as well as the ex-115

periments of the conference paper; besides, it presents a novel hypothesis116

test approach to variable selection based on the variable importance mea-117

sure. This approach offers much better stability than the cross-validation118

based procedure and is by an order of magnitude faster.119

2. Methods120

2.1. Variable importance with ensembles of linear SVMs121

We start by introducing the notation. Let there be N subjects, where the122

subject i is characterized by the set of variables (image) xi = [xi1, . . . , xiP ].123

We assume that the values xij are always positive; if this requirement is not124

satisfied naturally, it can be always ensured by adding a suitable constant125

to the values. We consider only binary classification problems. The training126

labels are denoted by yi ∈ {−1, 1}. The predicted label ŷ for the test image127

x is given by ŷ = sign(w0 +wTx)
.
= g(x), where the classifier parameters w0128

and w = [w1, w2, . . . , wP ]T are learned from training data via SVMs.129

This paper builds on the variable selection method of Parrado-Hernández130

et al. (2014) that we call here sign consistency bagging (SCB). We train S131

linear SVMs, each with a different subset of training data selected at random132

without replacement. The SVM s-th in the ensemble is described by the133

weights [ws0, w
s
1, . . . , w

s
P ], where s = 1, . . . , S. Once the ensemble is trained,134

the voxels can be sorted in descending order according to the sign consistency135

observed in their corresponding weights in all the classifiers that form the136

ensemble. Voxels whose weights show the same sign in all the classifiers are137

placed at the top of the list. In essence, we estimate the probability that the138
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sign of wj is positive139

p̂j =

∑S
s=1 p

s
j

S
(1)

where psj = 1 if wsj > 0 and psj = 0 otherwise. Similarly, we can define the140

probability that the sign of wj is negative as 1− p̂j and, then we define the141

importance score Ij ∈ [0, 1] for the variable j as142

Ij = 2 max(p̂j, 1− p̂j)− 1 = 2|p̂j − 0.5|. (2)

The importance score of 1 signifies highly important variable and the impor-143

tance score of 0 signifies unimportant variable.144

There is a strong correlation between the sign consistency of the variable145

and its discriminative capacity. Since xij is always positive, it is the sign146

of the weight wsj which decides the contribution of the product wsjxij to147

the classifier in all training subjects. A variable that systematically appears148

with the same sign in most of the classifiers of the ensemble presents robust149

discriminative power: its value is indicative of one of the classes. On the150

other hand, the sign fluctuations of the non-consistent variables (showing151

both signs in significant proportions) indicate that they are not relevant for152

the classification or that their relevance depends on each particular subject,153

what leads to conclude that their importance is lower. Moreover, since the154

SVMs of the ensemble have been trained with an L2 norm regularization155

that does not enforce sparsity in the primal space, there typically is no zero156

weights. This means that every variable receives an importance score. We157

also argue that since the variable importance is computed at the ensemble158

level, the results are more robust than those variable importances computed159

at the individual classifiers level.160
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The L2 norm regularization deals with brain areas formed by highly cor-161

related variables by splitting the magnitude of the weights among all the162

correlated variables, thus preserving the regional organization of the signal.163

This makes the selected voxels/variables appear in disjoint compact clusters164

with all voxels/variables in a same cluster having the same sign, what forms165

a variable importance pattern.166

Finally, learning thousands of classifiers does not involve a dramatic com-167

putational load since the L2 norm SVM may be optimized in the dual space168

where the number of training instances is in the order of tens to hundreds.169

2.2. Transductive refinement of variable importance170

Classification tasks in brain imaging are ultimately related to localized171

alterations of the brain structure or function. This means that most variables172

in a brain scan are not related to the disease. In fact, most variables in a173

brain scan contribute to separate that brain from the others. In Parrado-174

Hernández et al. (2014), the identification of relevant variables is enhanced175

by borrowing certain ideas from transductive learning and conformal anal-176

ysis. Transduction refers to learning scenarios in which one has access to177

the observations, but not the labels, of the test set (see Gammerman et al.178

(1998) on why this does not lead to a testing on training data problem).179

In a nutshell, conformal analysis would assess to what extent each potential180

label that could be assigned to a test example conforms the training data.181

For example, consider a binary classification problem to be solved with an182

SVM. The training examples belonging to each class determine a classifica-183

tion margin that depends on the separability of the class supports. Now a184

new (unlabeled) test sample arrives. If this sample were of the positive class,185
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one could insert it with a positive label in the training set and re-learn the186

SVM, arriving to a new margin. Analogously one could re-learn the SVM187

inserting the test sample as a negative one and arriving to a new margin,188

different to the previous one achieved if the test sample were considered pos-189

itive. Conformal analysis would look at these two potential new margins and190

suggest assigning the test sample to the class that ends up in the margin191

that better conforms to the training data.192

Here, we generalize the refinement procedure of Parrado-Hernández et al.193

(2014) to variable importances and formulate it in a more general context194

while the original procedure was limited to the leave-one-out scenario. We195

call the resulting importance measure SCBconf and denote the importance as196

Iconfj to separate them from SCB importances Ij of the previous subsection.197

Let ur1, . . . ,u
r
M be a subset of M testing data selected randomly in the198

r-th conformal iteration with r = 1, . . . , R. Now, M independent labellings199

ar1, . . . , a
r
M are generated at random. Label ari is the one generated for sample200

uri in the r-th conformal iteration. Notice that the correct labels of these test201

samples are never used along this procedure because they are not accessible.202

For each of these iterations, we compute the importance measures Ij(r), j =203

1, . . . , P , based on the training data x1, . . . ,xN , the test samples u1, . . . ,uM204

and the labels y1, . . . , yN , a
r
1, . . . , a

r
M . After running R iterations, we set205

Iconfj = min
r
Ij(r). (3)

The definition of Iconfj in essence leads to declare as important those vari-206

ables that turn out to be important in all of the R labellings. The underlying207

intuition is that the importance of variables that yield a high Ij(r) in a few208

the subsets, but not in all of them, strongly depends on particular labellings.209
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Therefore these variables should not be selected as their importances are210

not aligned with the labeling that leads to the disease discrimination, but211

labellings that stress other partitions not relevant for the characterization of212

the disease.213

2.3. Hypothesis test for selecting important variables214

The previous subsections have introduced two scorings, Ij and Iconfj , able215

to assess the relevance of the variables. This subsection presents a method-216

ology to fix qualitative thresholds so that variables with scorings above the217

threshold can be considered as relevant for the classification and variables218

with scorings below the threshold can be safely discarded since their im-219

portance is reduced. For this purpose, we adopt a probabilistic framework220

in which the sign of the weight of variable j in the SVM of bagging itera-221

tion s, sign(wsj), follows a Bernouilli distribution with unknown parameter222

pj ∈ (0, 1); this indicates that wj takes positive and negative values across the223

S classifiers with probabilities pj and 1− pj, respectively. In this framework,224

an irrelevant variable j is expected to yield positive and negative values in225

wj with the same probability, thus one would declare variable j as irrelevant226

if pj = 0.5 with high probability. A natural way of formulating this scenario227

is the following hypothesis test:228  H0 : pj = 0.5, j is not relevant

H1 : pj 6= 0.5, j is relevant
(4)

which we can use to detect relevant variables by rejecting the null hypothesis.229

We propose to solve the test (4) with an statistic zj that relates the actual230

value of pj with its estimate p̂j:231

11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 5, 2017. ; https://doi.org/10.1101/124453doi: bioRxiv preprint 

https://doi.org/10.1101/124453
http://creativecommons.org/licenses/by-nc-nd/4.0/


zj =
p̂j − pj√
Var {p̂j}

. (5)

We remind that the estimate p̂j is computed as the sample mean of the232

observed signs of wsj233

p̂j =

∑S
s=1 p

s
j

S
(6)

where psj = 1 if wsj > 0 and psj = 0 otherwise.234

In the typical case, where the sample independence assumption would

hold, Var {p̂j} = σ̂2
j/S, where σ̂2

j is the estimated variance of the Bernoulli

variable j. However, as the observations come from a bagging process, they

are correlated and independence cannot be assumed. Therefore, we resource

to the following unbiased estimator of Var {p̂j}, proposed by Nadeau and

Bengio (2003) 2:

Var {p̂j} =

(
1

S
+

ρ

1− ρ

)
σ̂2
j

where ρ represents the correlation among samples. Moreover, according to

Nadeau and Bengio (2003), since the bagging corresponds to a scenario in

which, at each iteration, n1 samples are used for training the SVM and

n2 = N − n1 are left out, ρ can be estimated as n2/(n1 + n2); since the

proposed bagging scheme use n1 = γN training samples in each iteration, we

can approximate ρ with 1−γ and, noticing also that S � 1, we can get that

Var {p̂j} =

(
1

S
+

1− γ
γ

)
σ̂2
j '

1− γ
γ

σ̂2
j .

2According to Nadeau and Bengio (2003) this approximation of the variance is good

enough because our scenario presents a case in which the decision function of the SVM

does not change much across the training sets of the different bagging iterations.
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Finally, the variance of the Bernouilli variables can be estimated as σ̂2
j =235

p̂j(1− p̂j) from the observations. With these approximations, the statistic zj236

of (5) becomes237

zj =
p̂j − pj√

1−γ
γ
p̂j(1− p̂j)

. (7)

The statistic zj of (7) follows a t-student distribution with S − 1 degrees238

of freedom (Nadeau and Bengio, 2003). When S is large enough, as it hap-239

pens in our case, one can safely approximate the statistic distribution by240

a standard Gaussian with zero mean and unit variance. Therefore, with a241

significance level α, we will reject the null hypothesis if either z < zα/2 or242

z > z1−α/2, being zα/2 and z1−α/2 the percentiles of the normalized Gaussian243

distribution at values α/2 and 1− α/2, respectively.244

This section closes with a note on the interplay of the hypothesis test245

and the transductive refinement of Subsection 2.2. The selection of Iconfj as246

the minimum of the R scorings Ij(r) is equivalent to select as p̂confj the p̂j,r247

that lies closest to 0.5. The zconfj can be then computed using Eq. (7) and248

substituting p̂j by p̂confj . An equivalent definition would be to select zj with249

the smallest absolute value among the R candidates.250

2.4. Implementation251

Algorithms 1 and 2 sketch the implementation of the method to assess252

variable importance and its version with transductive refinement, respec-253

tively. In both cases, the ensemble of linear SVMs is run a total of S = 10.000254

bagging iterations. In each iteration, half of the available training data255

(γ = 0.5) is selected as training set. The SVM regularization parameter256

C was fixed to 100. All the used training sets involve very high dimensional257
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Algorithm 1 Sign Consistency Bagging

Input: X: N × P matrix with training brain scans (each row is a subject,

each column a variable ); y: vector with the labels corresponding to the rows

of X

Output: I: P × 1 vector with voxel relevances; z: P × 1 vector with signif-

icance statistic

1: p̂← [0, . . . , 0] vector with P zeros

2: for s = 1 to S do

3: Xs,ys ← randomly sample γN training samples

4: ws ← LinearSVM(Xs,ys)

5: for j = 1 to P do

6: if wsj > 0 then

7: p̂j ← p̂j + 1

8: I = []

9: z = []

10: for j = 1 to P do

11: p̂j ← p̂j/S

12: Ij ← 2 max(p̂j, 1− p̂j)− 1

13: Compute score zj using (7)
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Algorithm 2 Sign Consistency Bagging with transductive refinement

Input: X: N × P matrix with training brain scans (each row is a subject,

each column a variable ); y: vector with the labels corresponding to the rows

of X; Xt: Nt × P matrix with testing brain scans

Output: Iconf : P × 1 vector with variable relevances; z: P × 1 vector with

significance statistic

1: I ← [] empty P ×R matrix

2: for r = 1 to R do

3: U r ← randomly sample M testing observations from matrix Xt

4: Ar ← randomly generate a label arm per each urm, m = 1, . . . ,M

5: p̂(r)← [0, . . . , 0] vector with P zeros

6: for s = 1 to S do

7: Xs,ys ← randomly sample γN training data

8: X̂r
s ← [Xs;U

r]

9: ŷrs ← [ys; a
r]

10: ws ← LinearSVM(X̂r
s , ŷ

r
s)

11: for j = 1 to P do

12: if wsj > 0 then

13: p̂j(r)← p̂j(r) + 1

14: for j = 1 to P do

15: p̂j(r)← p̂j(r)/S

16: Ij(r)← 2 max(p̂j, 1− p̂j)− 1

17: Iconf ← [] empty vector with P elements

18: for j = 1 to P do

19: Iconfj ← minr Ij(r)

20: b← arg minr Ij(r)

21: p̂confj ← p̂j(b)

22: Compute score zj using (7) and p̂confj
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problems and this value of C = 100 was observed to be large enough to solve258

properly these linearly separable problems.259

If any of the training sets present unbalanced class proportions, the sub-260

sampling process at each bagging iteration corrects it by sampling the same261

number of data for each class.262

In the case the transductive refinement is applied, the number of confor-263

mal iterations is set to R = 20. For each of these iterations, the number of264

selected test data, M , has been fixed in such a way that no more that one265

or two test data samples is used per each 100 training samples.266

The hypothesis test described in Subsection 2.3 to identify the subset of267

important variables is applied with a significance level of α = 0.05. Note268

that, as parameter γ is set to 0.5, the statistic in (7) becomes:269

zj =
p̂j − pj√
p̂j(1− p̂j)

. (8)

Finally, the overall goodness of the proposed variable importance mea-270

sure is evaluated by checking the discriminative capabilities of a linear SVM271

trained using only the important variables. This SVM has also to be trained272

with C = 100, since in most cases there still are more variables than samples.273

However, unlike in the bagging iterations, in this final classifier the class im-274

balance is solved by using a re-weighting the regularization parameter of the275

samples of the minority class in the training of the SVM. This way the con-276

tribution of the samples of both minority and majority class to the SVM loss277

function is equalized. This is an standard procedure within SVM, contained278

in most SVM implementations (Chang and Lin, 2011).279

The software implementation of all the methods has been developed in280
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Python3. The SVM training relies on the Scikit-learn package (Pedregosa281

et al., 2011) which is based on the LIBSVM of (Chang and Lin, 2011).282

3. Materials283

3.1. Simulated data284

We generated 10 simulated data sets to evaluate the method against285

known ground-truth and to demonstrate characteristics of the different vari-286

able selection/importance methods with a relatively simple classification287

task. The datasets contained 100 controls and 100 patients and had 29852288

voxels similarly to ADNI data in the next subsection.289

The simulations were based on the AAL atlas (Tzourio-Mazoyer et al.,290

2002), downsampled to 4mm3 voxel-size. We selected six regions as impor-291

tant modeling dementia related changes. The voxels of these regions are given292

in sets R1, . . . , R6 which are left and right Hippocampus (R1, R2), Thalamus293

(R3, R4), and Superior Frontal Gyrus (R5, R6). Each of these regions were294

assigned a degree of importance, described by a parameter δk that we set to295

have the value 1. We simulated each important region to have correlated vox-296

els (within a class), to make the task of finding them difficult for multivariate297

variable selection/importance methods. The voxel intensity for i ∈ Rk was298

simulated as299

xij = (1/|Rk|)
∑
i∈Rk

(δk + bj + eij) + vij, (9)

3See this Python notebook for examples https://github.com/vgverdejo/

ResearchActivities/blob/master/Neuroimage/Sign-consistency.ipynb
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if a patient was modeled, and300

xij = (1/|Rk|)
∑
i∈Rk

(bj + eij) + vij, (10)

for a healthy control. The voxel intensity for noise voxels was simply xij = eij301

independently from the class of j, and eij, vij, bj were drawn from zero-mean302

Gaussian distributions with variances 1, 0.01, 0.01, respectively. Thereafter,303

we added white noise with the variance
√

2 projected to the Bayes-optimal304

decision hyperplane to the meaningful voxels. This operation maintains the305

Bayes error rate, but it makes the task of finding important voxels more306

difficult. Finally, we smoothed the images with a filter with an isotropic 4-307

mm FWHM Gaussian kernel to model the smoothness in brain images. The308

Bayes error for this data was 2.2 %. To evaluate the classification accuracy309

of the methods, we simulated a large test set with the same parameters as310

the training set.311

3.2. ADNI data312

A part of the data used in the preparation of this article were obtained313

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.314

loni.usc.edu). The ADNI was launched in 2003 as a public-private part-315

nership, led by Principal Investigator Michael W. Weiner, MD. The primary316

goal of ADNI has been to test whether serial magnetic resonance imaging317

(MRI), positron emission tomography (PET), other biological markers, and318

clinical and neuropsychological assessment can be combined to measure the319

progression of mild cognitive impairment (MCI) and early Alzheimers disease320

(AD). For up-to-date information, see www.adni-info.org.321
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We studied the classification between MCI and healthy subjects (NCs)322

with the ADNI data. This problem is more challenging than NC vs. AD323

classification (Tohka et al., 2016) and therefore offers better insight into the324

capabilities for different variable importance methods. (We did not consider325

stable vs progressive MCI classification as the number of MCI subjects is not326

large enough for the reproducibility analysis performed with this data; see327

(Tohka et al., 2016) for a more detailed discussion). We used MRIs from 404328

MCI subjects and 231 normal controls (NC) for whom baseline MRI data329

(T1-weighted MP-RAGE sequence at 1.5 Tesla, typically 256 x 256 x 170330

voxels with the voxel size of 1 mm x 1 mm x 1.2 mm) were available. The331

MRIs were preprocessed into gray matter tissue images in the stereotactic332

space, as described by (Gaser et al., 2013; Moradi et al., 2015), and thereafter333

they were smoothed with the 8-mm FWHM Gaussian kernel, resampled to334

4 mm spatial resolution and masked into 29852 voxels. We age-corrected335

the data by regressing out the age of the subject on a voxel-by-voxel basis336

(Moradi et al., 2015). This has been observed to improve the classification337

accuracy in dementia related tasks (Tohka et al., 2016; Dukart et al., 2011)338

due to overlapping effects of normal aging and dementia on the brain.339

With these data, we studied the reproducibility of variable importance340

using split-half resampling (aka 2-fold cross-validation) akin to the analysis341

performed by Tohka et al. (2016). We sampled without replacement 100342

subjects from each of the two classes, NC and MCI, so that N = 200. This343

procedure was repeated L = 100 times. We denote the two subject samples344

(split halves; train and test) by Ai and Bi for the iteration i = 1, . . . , L. The345

sampling was without replacement so that the split-half sets Ai and Bi were346
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always disjoint and therefore can be considered as independent train and test347

sets. The algorithms were trained on the split Ai and tested on the split Bi348

and, vice versa, trained on Bi and tested on Ai. All the training operations,349

including the estimation of regression coefficients for age removal, were done350

in the training half. The test half was used only for the evaluation of the351

algorithms.352

3.3. COBRE data353

To demonstrate the applicability of the method for the resting state fMRI354

analysis, we used the pre-processed version of the COBRE sample (Bel-355

lec et al., 2015) that can be downloaded from 4. The dataset, which is a356

derivative of the COBRE sample found in International Neuroimaging Data-357

sharing Initiative (INDI)5, originally released under Creative Commons –358

Attribution Non-Commercial, includes preprocessed resting-state functional359

magnetic resonance images for 72 patients diagnosed with schizophrenia (58360

males, age range = 18-65 yrs) and 74 healthy controls (51 males, age range361

= 18-65 yrs). The fMRI dataset features 150 EPI blood-oxygenation level362

dependent (BOLD) volumes (TR = 2 s, TE = 29 ms, FA = 75 degrees, 32363

slices, voxel size = 3x3x4 mm3 , matrix size = 64x64) for each subject.364

We processed the data to display voxel-wise estimates of the long range365

functional connectivity (Guo et al., 2015). It is well documented that disrup-366

tion of intrinsic functional connectivity is common in schizophrenia patients,367

as well as it depends on connection distance (Wang et al., 2014; Guo et al.,368

4https://figshare.com/articles/COBRE_preprocessed_with_NIAK_0_12_4/

1160600
5http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html
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2015). First, the fMRIs were preprocessed using the NeuroImaging Analy-369

sis Kit (NIAK 6) version 0.12.14 as described at 4. Summarizing, for each370

fMRI data the preprocessing included slice timing correction and motion371

correction using a rigid-body transform. Thereafter, the median volume of372

fMRI of each subject was coregistered with the T1-weighted scan of the sub-373

ject using the Minctracc tool (Collins and Evans, 1997). The T1-weighted374

scan was itself non-linearly transformed to the Montreal Neurological Insti-375

tute (MNI) template (symmetric ICBM152 template with 40 iterations of376

non-linear coregistration (Fonov et al., 2011)). The rigid-body transform,377

fMRI-to-T1 transform and T1-to-stereotaxic transform were all combined,378

and the functional volumes were resampled in the MNI space at a 3 mm379

isotropic resolution. The scrubbing method of (Power et al., 2012) was used380

to remove the volumes with excessive motion (frame displacement greater381

than 0.5 mm). A minimum number of 60 unscrubbed volumes per run, cor-382

responding to 180 s of acquisition, was required for further analysis. For this383

reason, 16 controls and 29 schizophrenia patients were rejected from the sub-384

sequent analyses, yielding 43 patients and 58 healthy controls to be used in385

the experiment. The following nuisance parameters were regressed out from386

the time series at each voxel: slow time drifts (basis of discrete cosines with a387

0.01 Hz high-pass cut-off), average signals in conservative masks of the white388

matter, and the lateral ventricles as well as the first principal components of389

the six rigid-body motion parameters and their squares (Giove et al., 2009).390

Finally, the fMRI volumes were spatially smoothed with a 6 mm isotropic391

6https://github.com/SIMEXP/niak
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Gaussian blurring kernel and the gray matter (GM) voxels were extracted392

based on the probabilistic atlas (0.5 was used as the GM probability thresh-393

old).394

Following this preprocessing, we computed the correlations between the395

time series of GM voxels which were at at least 75 mm apart from each other.396

We use N75
i to denote the set of voxels at least 75 mm apart from the voxel397

i and z(r)ij to denote the Fisher transformed correlation coefficient between398

the voxels i and j. Then, two features x−i , x
+
i are defined per voxel:399

x−i =
∑

j∈N75
i ;z(r)ij<0

−z(r)ij; x+i =
∑

j∈N75
i ;z(r)ij>0

z(r)ij. (11)

The long-range connection threshold of 75 mm is rather arbitrary, but it400

has been used often to define short and long range connections (e.g. in Guo401

et al. (2015); Wang et al. (2014)). We separated the positive and negative402

connections following (Guo et al., 2015). This preprocssing yielded altogether403

81404 variables, corresponding to two times 40702 GM voxels.404

4. Compared methods405

4.1. SVM with permutation test (SVM+perm)406

The closest approach to SCBs is training a linear SVM and studying the407

importance of the weights of different variables in the SVM by means of a408

permutation test (Mouro-Miranda et al., 2005; Wang et al., 2007). Here, we409

use an analytic implementation of this approach (Gaonkar and Davatzikos,410

2013) based on considering a linearly separable problem (as it is our case411

since P � N) and, thus, approximating the SVM solution by that of the412
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LS-SVM one, which is given by:413

w = XT

[(
XXT

)−1
+
(
XXT

)−1
J
(
−JT

(
XXT

)−1
J
)−1

JT
(
XXT

)−1]
y

(12)

where X is the N × P (number of subjects × number of variables ) training

data matrix, y = [y1, . . . , yN ]T is the associated class label vector, and J is a

column matrix of ones. On the other hand, considering that the permutation

test randomly generate different label values with probabilities

P {yi = 1} = p1 P {yi = −1} = 1− p1

being p1 the percentage of patient data, we can define the expected value

and variance of the labels during permutations as:

E {yi} = 2p1 − 1

Var {yi} = 4p1 − 4p21

And using (12), we can obtain the mean and variance of the j-th SVM weight414

as:415

E {wj} = (2p1 − 1)
N∑
i=1

Bij (13)

416

E {wj} =
(
4p1 − 4p21

) N∑
i=1

B2
ij (14)

where

B = XT

[(
XXT

)−1
+
(
XXT

)−1
J
(
−JT

(
XXT

)−1
J
)−1

JT
(
XXT

)−1]
Thus, we can claim that a variable is relevant with a confidence level of417

α, if the probability that a normal distribution, with mean (13) and variance418

(14), generates the value wj (given by (12)) is in the interval [α
2
, 1− α

2
].419
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4.2. T-test and Gaussian Naive Bayes (T-test+NGB)420

Although the central part of the discussion is focused on the advan-421

tages of SCB over the combination SVM+perm, it is worthy to briefly stress422

some advantages of SCB over a typical univariate filter-based variable selec-423

tion/importance. The most widely used massively univariate approach to424

assess the importance of variables is the application of t-test to each vari-425

able separately. Once these tests are applied, the selection of the variables426

that will be used during the classification can be performed by determining a427

suitable α-threshold on the outcome of the tests, and selecting as important428

variables those that exceed the corresponding threshold. The classifier that429

consumes the variables selected with the t-test filters is the Gaussian Naive430

Bayes classifier (John and Langley, 1995). As with the other approaches, we431

set the α-threshold to 0.05, two-sided.432

5. Results433

5.1. Synthetic data434

Table 1 lists the results achieved by the methods under study on the435

synthetic data. We evaluated:436

• the classification accuracy (ACC) computed using a separate and large437

test sample;438

• the sensitivity (SEN) of the variable selection defined as the ratio be-439

tween the number of correctly selected important variables and the440

number of important variables;441
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• the specificity (SPE) of the variable selection defined as the ratio be-442

tween the number of correctly identified noise variables and the number443

of noise variables;444

• the mean absolute error (MAE) defined as:445

MAE =
∑
j∈I

ρ̂j/|I|+
∑
j∈N

(1− ρ̂j)/|N |, (15)

where ρ̂j is the estimated p-value for the variable j to be important (the446

lower the p-value the more important the variable), and I, N are the447

sets of the important and noise variables, respectively. For the sake of448

clarity, we remind that, for the SCB methods, ρ̂j values were computed449

based on Eq. (8).450

ACC, SEN, SPE measures depend on a categorization of variables into451

important ones and noise. The categorization, since all the studied methods452

provide p-values for the variable importance, was determined by a (two-sided)453

α-threshold of 0.05.454

Table 1 shows that the accuracy of SCB methods was substantially better455

than either of the competing methods. Indeed, a t-test (not to be confused456

with the t-test for variable importance) over the 10 different training sets457

indicated a p-value < 0.001 in every case. In addition, the MAEs by the458

SCB methods also compared very favorably to baseline approaches (the sta-459

tistical significance evaluated with t-tests in the 10 data partitions provided460

a p-value < 0.05). Notice that the MAE is independent of the thresholds461

used to categorize variables as important or not. The specificity (or 1 - SPE)462

values of the methods were interesting as they can be compared to the nomi-463

nal α-threshold of 0.05; it can be noted that SCB without conformal analysis464
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SCB SCBconf

SVM+perm t-test+NGB

Figure 1: Examples of variable importances on a plane cutting through Thalami and

Superior Frontal Gyri. The areas surrounded by red color are important in the ground-

truth. The values shown are absolute values of z-scores of the variable importance.
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Table 1: Quantitative results with synthetic data. The values shown are averages and

standard deviations over 10 different training sets. ACC is the classification accuracy

evaluated using a large test set, SEN is the sensitivity of the variable selection, SPE is the

specificity of the variable selection, and MAE is the mean absolute error. See the text for

details. Variables are selected using the α-threshold of 0.05.

Method ACC SEN SPE MAE

SCB 0.916 ± 0.004 0.369 ± 0.013 0.889 ± 0.002 0.392 ± 0.004

SCBconf 0.879 ± 0.008 0.208 ± 0.011 0.957 ± 0.002 0.380 ± 0.006

SVM+perm 0.797 ± 0.005 0.076 ± 0.004 0.992 ± 0.001 0.411 ± 0.004

t-test+NGB 0.818 ± 0.010 0.259 ± 0.013 0.949 ± 0.002 0.396 ± 0.004

was too lenient compared to the nominal threshold while the SCBconf well465

attained the nominal threshold. SVM+perm was clearly too conservative466

and the t-test, as it is expected since the synthetic data holds the t-test as-467

sumptions, attained well the nominal level. The examples in Fig. 1 visualize468

the same conclusions. Interestingly, as visible in Fig. 1, there was a tendency469

for all methods to give a high importance to the same variables. This was as470

expected with a relatively simple simulation.471

5.2. ADNI472

With ADNI data, we performed a split-half resampling (2-fold cross-473

validation) type analysis following (Tohka et al., 2016). This analysis informs474

us, in addition to the average performance of the methods, about the vari-475

ability of variable importances due to different subject samples in the same476

classification problem.477

The quantitative results are listed in Table 2. As in Tohka et al. (2016),478

27

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 5, 2017. ; https://doi.org/10.1101/124453doi: bioRxiv preprint 

https://doi.org/10.1101/124453
http://creativecommons.org/licenses/by-nc-nd/4.0/


we recorded the test accuracy (ACC) of each algorithm (the fraction of the479

correctly classified subjects in the test half) averaged across L = 100 re-480

sampling iterations. Moreover, we computed the average absolute difference481

in ACC between the two split-halves, i.e.,482

∆ACC =
1

L

L∑
i=1

|ACC(Ai, Bi)− ACC(Bi, Ai)| , (16)

where ACC(Ai, Bi) means accuracy when the training set is Ai and the test483

set is Bi. SCBconf and SCB performed similarly in terms of the classification484

accuracy and ∆ACC. SCB methods were significantly more accurate than t-485

test+NGB (p-value < 0.05) according to a conservative corrected repeated 2-486

fold CV t-test (Bouckaert and Frank, 2004; Nadeau and Bengio, 2003), which487

is an improvement of 5X2 CV test of Dietterich (1998) and McNemar’s test488

(see (Bouckaert and Frank, 2004)). However, this conservative test did not489

indicate a significant difference between the accuracy of the SCB methods490

and SVM+perm; although, ∆ACC was considerably smaller with the SCB491

based methods than with the two other methods.492

The average number of selected voxels (with the α-threshold of 0.05)493

was the smallest with SCBconf and SVM+perm. SCB selected roughly two494

times more voxels than SCBconf and the t-test was clearly the most liberal495

selection method. However, when evaluating the standard deviations in the496

numbers of selected voxels, we note that SCB and SCBconf were the most497

stable methods in this regard. Especially, the number of voxels selected by498

SVM+perm varied considerably as demonstrated in Fig. 2. We interpret499

this as a handicap of SVM+perm as the α-threshold was the same. Also, the500

t-test+NGB produced more variation than the SCB-based methods on the501
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Figure 2: The numbers of selected voxels within each split-half resampling run. The SCB

methods were more stable with respect to the number of selected voxels than the other

methods. Especially, SVM+perm suffered from an excess variability.

numbers of selected voxels.502

We again computed the MAE measure between p-values computed based503

on the two independent training sets. According to this measure, SCBconf504

and t-test were the most reproducible (see 2).505

We quantified the similarity of two voxel sets selected on the split-halves506

Ai and Bi using modified Hausdorff distance (mHD) (Dubuisson and Jain,507

1994). This has the advantage of taking into account spatial locations of the508

voxels . Let each of the voxels a be denoted by its 3-D coordinates (ax, ay, az).509
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Then, the mHD is defined as510

H(VA, VB) = max(d(VA, VB), d(VB, VA)), (17)

where

d(VA, VB) =
∑
a∈VA

min
b∈VB

||a− b||.

It was shown in Tohka et al. (2016) that reproducibility measures of the voxel511

selection are correlated with the number of selected voxels. To overcome this512

limitation and make the comparison fair, we here studied standardized sets513

of voxels by forcing each algorithm to select the same number of voxels as514

SCBconf in the split half Ai. For each algorithm, we then selected the voxels515

in the Bi according to the α-threshold obtained for the split-half Ai. The516

mHD computed using this standardization is denoted by mHDsta in Table517

2. As shown in Table 2, the t-test was the most reproducible according to518

the uncorrected mHD. However, this was an artifact of the over-liberality519

of the test. When standardized with the respect to the number of selected520

voxels (the row mHDsta) , the SCB based methods were most reproducible;521

however, the difference to the t-test was not statistically significant. The522

SVM+perm was clearly and significantly less reproducible than any of the523

other methods.524

Fig. 3 shows examples of visualized voxel importance maps. All meth-525

ods displayed, for example, Hippocampus and Amygdala as important. An526

interesting difference can be observed in middle frontal gyrus, where there527

was a cluster of highly important voxels according to the SCB methods.528

However, the t-test did not consider these voxels as important. Both SCB529

methods identified several clusters of important voxels, with SCBconf being530
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Table 2: Quantitative results with the ADNI split-half experiment. The values listed are

the averaged values over 100 resampling runs followed, where reasonable, by their standard

deviations. mHD and mHDsta are computed in voxels. ACC is the classification accuracy,

∆ACC is the variability of the ACC Eq. (16), Nsel is the number of selected voxels, mHD

is the modified Hausdorff distance Eq. (17), mHDsta is the modified Hausdorff distance

when all methods are forced to selected the same number of variables and MAE is the

mean absolute error between the variable importance p-values obtained using independent

training sets.

SCBconf SCB SVM+perm T-test+NGB

ACC 0.769 0.766 0.713 0.704

∆ACC 0.030 0.029 0.047 0.045

Nsel 2067 ± 255 4420 ± 420 1884 ± 2286 10253 ± 2278

mHD 1.536 ± 0.105 1.174 ± 0.049 2.952 ± 0.843 0.669 ± 0.144

mHDsta 1.536 ± 0.105 1.546 ± 0.111 2.938 ± 3.590 1.707 ± 0.705

MAE 0.194 ± 0.006 0.278 ± 0.007 0.267 ± 0.064 0.197 ± 0.020
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Figure 3: Variable importance Z-scores from a randomly selected example run of the ADNI

split-half experiment. The Z-scores are thresholded at |Z| > 1.96, corresponding to two-

sided alpha threshold of 0.05. Positive Z values indicate positive weights. Axial slices at

the z-coordinate of the MNI stereotactic space of 0mm, -10mm -20mm, and -30mm are

shown.
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more conservative. SVM+perm importance appeared to be more scattered531

and the t-test was the most liberal selecting many more voxels than the other532

methods.533

5.3. COBRE534

The classification accuracies and numbers of selected voxels with the CO-535

BRE data are listed in Table 3. In this experiment, SCBconf was significantly536

more accurate than the other methods (p-value always < 0.01, according537

to the corrected resampled t-test (Bouckaert and Frank, 2004; Nadeau and538

Bengio, 2003)). The other methods performed similarly in terms of the cross-539

validated classification accuracy. This indicates that the conformal analysis540

was an essential addition to SCB, probably because the COBRE dataset541

can be assumed to be more heterogeneous than the ADNI dataset. The542

heterogeneity of COBRE data probably stems from multiple sources. For543

example, schizophrenia is often characterized as a heterogeneous disorder544

(Seaton et al., 2001), the subjects suffering from schizophrenia were receiv-545

ing various medications at the time of scanning (Kim et al., 2016), the age546

range of the subjects in the dataset was large, and resting state fMRI is547

more prone to noise due to, for example, subject motion than anatomical548

T1-weighted MRI. It is particularly in these kinds of applications where we549

expect the conformal analysis to be most useful. The classification accuracy550

achieved with SCBconf appeared to outperform recent published analyses of551

the same data (Chyzhyk et al., 2015; Kim et al., 2016). However, note that552

the direct comparison of the classification performance with these works is553

not fair, since it is subject to the differences in variable extraction (different554

variables were used), data processing (different subjects were excluded) and555
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evaluation (different cross-validation folds were used).556

The SCBconf selected, on average, 4251 variables and was more conserva-557

tive than the plain SCB as expected. SVM+perm was even more moderate,558

selecting 2433 variables on average. The number of variables selected by559

SVM+perm was less variable then in the ADNI experiment where this vari-560

ation was clearly a problem for SVM+perm. The t-test was overly liberal.561

Interestingly, the t-test selected many more variables corresponding to the562

negative correlation strength (on average 24283) than to the positive corre-563

lation strength (on average 2474). Instead, SCB methods and SVM+perm564

selected similar numbers of variables corresponding to the positive and neg-565

ative correlation strength. This is also visible in Figs. 4 and 5, where the566

median magnitudes of the variable importances are visualized (medians of567

absolute value of z-scores, see Eq. (8), over 10 CV runs). Concentrating on568

the SCBconf, widely distributed and partially overlapping areas were found569

to be important for both negative and positive correlation strength. Par-570

ticularly, the most important variables (with medians of absolute z-scores571

exceeding 15 or equivalent p-values smaller than 10−51) were found in left572

cerebellum, left inferior temporal gyrus, left and right thalamus, left inferior573

parietal gyrus, right inferior frontal gyrus, left medial frontal gyrus, and left574

middle frontal gyrus for negative correlation strength. For positive correla-575

tion strength, median absolute z-scores exceeding 15 were found in left and576

right cerebellum, left inferior frontal gyrus, left caudate, right lingual gyrus,577

right middle temporal gyrus and left medial frontal gyrus. We note that a578

high z value of 15 was selected as threshold in this discussion to concentrate579

only to the most important variables. We have made the complete maps580
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Table 3: Average accuracy and number of selected voxels with the 10-fold CV with the

COBRE experiment. The values after ± refer to the standard deviations over 10 CV-folds.

SCBconf SCB SVM+perm T-test+NGB

ACC 0.952 ± 0.069 0.695 ± 0.154 0.731 ± 0.136 0.709 ± 0.170

Nsel 4251 ± 598 11085 ± 588 2433 ± 216 26757 ± 3397

of variable importance available at NeuroVault service (Gorgolewski et al.,581

2015) at http://neurovault.org/collections/MOYIOPDI/.582

With the COBRE data, we studied the effect of multiple comparisons cor-583

rection to the classification accuracy and to the number of selected variables.584

For multiple comparisons correction, we used variable-wise false discovery585

rate (FDR) correction with Benjamini-Hochberg procedure (assuming inde-586

pendence) (Benjamini and Hochberg, 1995). The classification accuracies587

and the numbers of selected variables, with and without FDR correction, are588

shown in box-plots of Figure 6. SVM+perm was excluded from this experi-589

ment as the multiple comparisons problem is different with it (Gaonkar and590

Davatzikos, 2013) and it was found to produce an empty set of variables in591

some cases. As is shown in Figure 6, including multiple comparisons cor-592

rection had no influence to the classification performance with any of the593

methods.594

5.4. Computational complexity595

The experiments were run in a computer Intel Xeon 2.40Ghz with 20596

cores and 128 Gb of RAM. The training of several SVMs that takes place in597

the bagging stages of both SCB and SCBconf is distributed in parallel across598

all the cores of the computer. Then, the weight aggregation that leads to the599
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Figure 4: Median magnitudes of variable importance Z scores among 10 CV runs with

COBRE data. The Z-scores are thresholded at |Z| > 1.96. Note that if a variable lights

up then it was selected during at least half of the CV runs. ’Pos’ and ’Neg’ quantifiers

refer to the strength of the positive and negative connectedness that were separated in

the analysis. We do not visualize whether the classifier weights are negative or positive to

avoid clutter. Axial slices at the z-coordinate of the MNI stereotactic space of 15mm, 0mm

-15mm, and -30mm are shown. Complete maps are available in the NeuroVault service

http://neurovault.org/collections/MOYIOPDI/.
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Figure 5: Median magnitudes of variable importance Z scores among 10 CV runs with

COBRE data. The Z-scores are thresholded at |Z| > 1.96. Note that if a variable lights

up then it was selected during at least half of the CV runs. ’Pos’ and ’Neg’ quantifiers

refer to the strength of the positive and negative connectedness that were separated in

the analysis. We do not visualize whether the classifier weights are negative or positive to

avoid clutter. Axial slices at the z-coordinate of the MNI stereotactic space of 15mm, 0mm

-15mm, and -30mm are shown. Complete maps are available in the NeuroVault service

http://neurovault.org/collections/MOYIOPDI/.
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Figure 6: The classification accuracy and the number of selected variables across 10 CV

folds with COBRE data with and without FDR based multiple comparisons correction.

Whether FDR correction is included or not made no difference to the classification per-

formance of the methods.

final measure of variable importance is computed using a single core, as well600

as the hypothesis testing and the evaluation of the final SVM used to assess601

the performance of these methods. The baseline methods, SVM+perm and602

t-test+ NGB, were run using a single core.603

With respect to the computation time, the baseline methods SVM+perm604

and t-test+ NGB required between 1 and 5 seconds depending on the size605

of the dataset (number of samples and dimensionality) and on the number606

of selected important variables, as this last quantity determines the training607

time of the final classifier. However, the computational time of the SCB608

was in the range 5 to 6 minutes due to bagging. can be up to 2 hours609

in the case of the SCBconf, as each conformal analysis iteration involves a610

complete bagging and we carried out R = 20 of these iterations. Obviously,611

since bagging can be easily run in parallel these times could be substantially612

reduced by further parallelization.613
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6. Discussion614

In this paper, we have introduced and evaluated new variable importance615

measures based on sign consistency of classifier ensembles termed SCB and616

SCBconf. The measures are specially fitted in very high dimensional scenar-617

ios (with far more variables than samples) such as in neuroimaging, where618

many commonly used variable importance measures fail. The SCB variable619

importance measures extend and generalize ideas for the voxel selection we620

have introduced earlier in Parrado-Hernández et al. (2014). Additionally, we621

have derived a parametric hypothesis test that can be used to assign a p-value622

to the importance of the variable for a classification. We have shown that623

the variable selection using SCB importance measures leads to a more accu-624

rate classification than the variable selections based on a standard massively625

univariate hypothesis testing or a SVM-based parametric permutation test.626

These two were compared to the SCB methods because 1) they applicable to627

wide data and 2) come with a parametric hypothesis test to assign p-values628

to variable importance. We have also demonstrated that these new variable629

importance measures were robust and that they can lead to classification630

accuracies better than the state of art in schizophrenia classification based631

on resting state fMRI.632

The basic idea behind the SCB methods is to train several thousand linear633

SVMs, each based on different subsample of data and then study the sign-634

consistency of weights assigned to each variable. The weights having the same635

sign is a strong indication of the stability of the interpretation of the variable636

with respect to random subsampling of the data and, thus, a strong indication637

of the importance of the variable. Therefore, we can quantify the importance638
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of the variable by studying the frequency of sign of the classifier weights639

assigned to it. While the ideas of random subsampling and random relabeling640

are widely used for variable importance and selection, for example, in the out-641

of-bag variable importances of Random Forests (Breiman, 2001), the idea of642

sign consistency is much less exploited and novel in brain imaging. SCBconf643

refines variable importance by utilizing test data by assigning the test data644

random labels. This is essentially relabeling in the transductive setting and645

it is especially useful in situations where the the data is heterogeneous as we646

demonstrated using the COBRE resting-state fMRI sample.647

Our approach in this work has been to use uncorrected p-values to thresh-648

old the variable importance scores. There are two reasons for this. First, the649

variable importance scores might be interesting also for variables that do not650

pass stringent multiple comparisons corrected threshold. Second, retaining651

also variables that are borderline important could improve the generalization652

performance of the classifier. With the COBRE fMRI dataset, we have shown653

that ultimately this is a matter of preference and whether using corrected or654

uncorrected thresholds makes no difference to the generalization performance655

of the classifier. We also experimented this with synthetic data and observed656

a slight drop in the classification performance when using the FDR corrected657

thresholds. As Gaonkar and Davatzikos (2013) noted, the classifier weights658

of an SVM are not independent and thus FDR based multiple comparisons659

correction probably over-corrects. In a data-rich situation, cross-validation660

based estimate of the generalization error might be used to select the optimal661

α-threshold, however, one should keep in mind that cross-validation based662

error estimates have large variances (Dougherty et al., 2011) and this might663
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offset the potential gains of not setting the importance threshold a-priori664

(Tohka et al., 2016; Huttunen and Tohka, 2015; Varoquaux et al., 2017).665

The SCB method essentially has two parameters: the number of resam-666

pling iterations S and the subsampling rate γ. In our target applications,667

where the number of variables is larger than the number of samples, the668

parameter C for the SVMs can always be selected to be large enough (here669

C = 100) to ensure full separation. For the parameter S, the larger value is670

always better and we have found that S = 10.000 has been sufficient. We671

have selected the subsampling rate to be 0.5 and previously we have found672

that the method is not sensitive to this parameter; in fact, these parameter673

settings agree with those previously used in Parrado-Hernández et al. (2014).674

SCBconf has one extra parameter R (the number of random labelings of the675

test samples). We have here selected R = 20 and we do not expect gains by676

increasing this value.677
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