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Abstract  

Cancer drug screening in patient-derived cells holds great promise for personalized oncology 

and drug discovery but lacks standardization. Whether cells are cultured as conventional 

monolayer or advanced organoid cultures influences drug effects and thereby drug selection and 

clinical success. To precisely compare drug profiles in differently cultured primary cells, we 

developed DeathPro, an automated microscopy-based assay to resolve drug-induced cell death 

and proliferation inhibition. Using DeathPro, we screened cells from ovarian cancer patients in 

monolayer or organoid culture with clinically relevant drugs. Drug-induced growth arrest and 

efficacy of cytostatic drugs differed between the two culture systems. Interestingly, drug effects 

in organoids were more diverse and had lower therapeutic potential. Genomic analysis revealed 

novel links between drug sensitivity and DNA repair deficiency in organoids that were 

undetectable in monolayers. Thus, our results highlight the dependency of cytostatic drugs and 

pharmacogenomic associations on culture systems, and guide culture selection for drug tests. 

 

Introduction 

Cell-based assays are a key tool in basic research and drug discovery, and are increasingly 

used in personalized oncology. In the last years, numerous anticancer therapeutics developed 

from standard cell line screens in conventional 2D culture failed in clinical studies1. As a result, 

standard treatment and overall survival of advanced cancers like ovarian cancer (OC) has not 

changed for decades2. To allow personalized therapy and improve drug development, new 

patient-derived models such as organoids3–5 and patient-derived xenografts 6–8 that recapitulate 

the heterogeneity and intrinsic drug sensitivity of the original tumour have started to replace the 

popular cancer cell lines. Patient-derived organoids may be grown as 3D cultures on hydrogels 

like Matrigel that mimic the extracellular matrix. Compared to 2D cell cultures, they have 

emerged as near-physiological models reflecting the gene expression, differentiation and 

structure of the primary tissue9. Nevertheless, due to increased workload, higher costs and the 

current lack of 3D assay methods, most drug screens are still performed in less physiological 2D 

cultures10. Initial studies in ovarian and breast cancer showed that cells cultured as cell 

aggregates are less sensitive to drugs than in monolayer culture11,12. The culture format thus 

shapes cellular drug responses and defines the translational power of a drug assay. However, 

this dependency cannot be studied in detail with widely-used, unspecific viability assays that 

measure metabolic activity or cellular ATP as surrogate markers. Such assays show limited 

reproducibility and do not resolve actual drug effects of high therapeutic interest such as cell 
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death and growth arrest3,13. Instead, recent advances in automated microscopy enable more 

sophisticated assays that can de-convolve drug effects in different culture formats.  

Here, we systematically compare drug effects in organoid and standard 2D culture using 

DeathPro, a confocal microscopy based assay and image processing workflow to 

simultaneously study cell death and growth arrest in patient-derived material over time. Using 

DeathPro, we screened cells from nine high-grade serous OC patients with clinically relevant 

drugs and found that growth arrest and the efficacy of cytostatic drugs notably depends on the 

culture type. Remarkably, patient-specific genomic alterations correlated with drug effects 

observed in organoids, but not in 2D cell monolayers. Hence, combining refined assays like 

DeathPro with advanced models like cancer organoids could enhance drug screening in the 

context of personalized oncology and pharmacogenomics.  

 

Results  

De-convolving drug-induced cell death and proliferation inhibition 

To resolve drug effects in patient cells and organoids, we developed an automated live cell 

assay and quantification workflow, which de-convolves drug-induced death and proliferation 

inhibition over time (DeathPro) (Fig. 1). To this end, cells were stained with Hoechst and 

counterstained with propidium iodide (PI) for dead cells and analysed at consecutive time points 

by confocal microscopy. To accurately quantify cell growth for each condition14, cells were 

imaged at the start and end of the drug treatment at the same position. For high-throughput 

image analysis, we built an adaptable visual programming workflow that encompasses adaptive 

sequential thresholding and outlier filtering strategies to cope with heterogeneous cell 

morphologies and dye intensities. In the workflow, total areas covered by dead cells (PI-stained) 

and all cells (Hoechst or PI-stained) were determined from confocal images and used to 

calculate LD50 values and area under curve values for cell death (AUCd) and proliferation 

inhibition (AUCpi) (Fig. 1b).  

The DeathPro assay and workflow reliably resolved carboplatin-induced cell death and 

proliferation inhibition in OC patient-derived organoids (Fig. 1). In addition, we resolved drug 

effects in lung cancer organoids (Supplementary Fig. 1) to verify that the DeathPro workflow can 

be applied to patient cells from different cancer entities. 

By using live cell dyes, patient cells or organoids can be directly used for screening and do not 

have to be genetically modified to express fluorescent proteins. To exclude the possibility that 

either dye alters cell behaviour, we tested their effect on ovarian organoids. Hoechst and PI did 
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not affect organoid growth but increased cell death (Supplementary Fig. 2), which is accounted 

for in AUCd measurements by normalization to the untreated control (Fig. 1b). Imaging OC12 

organoids only at the end or additionally at the beginning of the drug treatment did not alter 

organoid growth or cell death (Supplementary Fig. 2).  

 

 

 

 

Figure 1: Drug-induced cell death and proliferation inhibition can be quantified from serial 

confocal images. (a) Schematic overview of drug testing in organoid culture with the DeathPro assay. 

Cells are grown on Matrigel for 4 days, stained with Hoechst (H) and Propidium iodide (PI) and imaged at 

day 4, day 7 and day 10. Image gallery exemplifies OC12 organoid growth and cell death at start (day 4) 

and end of carboplatin treatment (day 7) and after carboplatin removal (day 10) using eight carboplatin 

concentrations or drug-free medium (ctrl). Confocal images are reduced to maximum intensity projections 

and binary images of merged Hoechst (green) and PI (red) channel are shown. (b) Image analysis for the 

DeathPro assay is based on area measurements in Hoechst and PI channels, and calculation of LD50, 

AUCd and AUCpi values to describe cell death and growth arrest. Drug response curve fitting and AUC 

values are illustrated for OC12 at 0 h and 72 h time points depicted in (a). Grey and orange boxes in (a) 

correspond to the magnifications in (b). Scale bar is 200 µm. 
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Drug-induced growth arrest in ovarian cancer patient cells is culture-dependent 

To systematically assess culture-type influence on patient cell responses, we used the DeathPro 

assay to screen patient-derived OC cell lines (PDCLs) cultured in standard 2D culture or as 

cancer organoids. PDCLs were established from metastatic serous ovarian cancers (FIGO stage 

IIIc-IV, Supplementary Table 1, Fig. 2a). Additionally, we included Human Ovarian Surface 

Epithelial cells (HOSEpiC) to assess potential side-effects such as cytotoxicity in normal cells. 

Seeded on Matrigel, HOSEpiC and PDCLs developed into spheres or morphologically diverse 

‘cancer organoids’ (Fig. 2b), respectively, with the latter retaining expression of the tumour 

markers CA-125 and WT1 (Supplementary Fig. 3).  

OC organoids or 2D cultured PDCLs were screened twice for 22 drugs or drug combinations 

(Supplementary Table 2) currently used or under investigation for treatment of OC. LD50 and 

cell death (AUCd) values were highly reproducible across all drugs and patients in 2D and 

organoid culture (Pearson correlation 0.86-0.97, Supplementary Fig. 4a), whereas growth arrest 

(AUCpi) showed slightly lower correlation (Pearson correlation 0.67-0.76, Supplementary 

Fig. 4b).  

Based on the DeathPro results, we compared all drug effects determined in OC patient cells 

between 2D and 3D culture (Fig. 2c). In both screens, drugs induced more growth arrest than 

cell death (Fig. 2d). Due to low drug-induced cell death, LD50 values could not be determined in 

20-30% of all conditions (Supplementary Fig. 5a). After 72h drug treatment, cell death was 

slightly lower in organoids than in 2D cultures (Fig. 2c, Supplementary Fig. 5b). Surprisingly, 

death upon drug treatment strongly correlated in 2D and 3D culture whereas drug-induced 

growth-arrest varied greatly with culture type (Fig 2d, Pearson correlation 0.85 vs 0.475). Since 

drug-induced cell death was growth-dependent and organoids grew slowly compared to cells in 

2D culture (Supplementary Fig. 3c), we measured organoid responses a second time after drug 

removal in 3D (Fig 2e, Supplementary Fig. 6a). After wash out, drug effects were increased in 

most patient organoids (Supplementary Fig. 6a-c) but cytotoxicity levels still resembled those in 

2D culture (Fig. 2f, Pearson correlation 0.755). Likewise, LD50s measured in 3D culture before 

and after drug removal highly correlated with LD50s in 2D culture (Supplementary Fig. 5c, d, 

Pearson correlation 0.872, 0.822). In contrast, growth inhibition again differed after drug removal 

(Fig. 2f, Pearson correlation 0.525). Overall, growth arrest was the major drug effect in OC cells 

and was culture-type dependent, whereas cell death was similar between culture types. 
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Figure 2: Culture type shapes drug-induced growth arrest in ovarian cancer patient cells (a) 

Simplified overview of generation and cultivation of patient-derived ovarian cancer cell lines (PDCLs) from 

different sites (OC: primary tumour, Asc: ascites, PE: pleural effusion). Patient material was taken directly 

into 2D culture or amplified by xenografting into mice. PDCLs are cultured in 2D culture but can be grown 

as ovarian cancer organoids on Matrigel (b) Morphology of ovarian cancer organoids and normal ovarian 

epithelial cells (HOSEpiC) on Matrigel seven days after seeding. Green (Hoechst) and red (PI) channels 

are merged. (c) Drug responses (cell death: AUCd, growth arrest: AUCpi) measured with DeathPro assay 

after 72h drug treatment in patient cells cultured as monolayers (2D) or ovarian cancer organoids (3D). (d) 

Comparison of drug-induced cell death (AUCd) and growth arrest (AUCpi) in 2D vs 3D. (e) Drug 

responses measured in ovarian cancer organoids (3D) after 72h drug treatment followed by 72h drug 

removal. (f) Comparison of drug-induced cell death and growth arrest in 2D vs 3D after drug removal. All 

values shown are means of two independent biological replicates. HOSE=HOSEpiC, Rp = Pearsons 

correlation coefficient. C+P = Carboplatin + Paclitaxel 
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Efficacy of cytostatic drugs depends on culture type 

As the culture type affected growth arrest, the efficacy of cytostatic drugs that do not induce cell 

death should be culture-type dependent as well. Thus, we compared the efficacy of drugs in our 

panel by summarizing drug response parameters (LD50, AUCd and AUCpi) into a single efficacy 

measure, and clustering drugs on this basis. In 2D and 3D culture, three clusters arose based 

on differential cytotoxicity: (i) drugs effectively inducing cell death and growth inhibition (red 

cluster), (ii) medium cytotoxic drugs (yellow cluster) and (iii) ineffective drugs (blue cluster, 

Fig. 3a, b). Clustering revealed that the most effective treatments (red cluster, Fig. 3a, b) in both 

screens comprised belinostat, BKM120, the first-line therapeutic carboplatin and all 

combinations thereof. Paclitaxel, which forms part of the current first-line therapy for OC, was 

not among the most effective treatments tested due to its low toxicity in most patient cells (Fig. 

2c, e). Moreover, its combination with carboplatin performed no better than carboplatin alone in 

2D and 3D (Supplementary Fig. 6c, d).  

A fourth drug efficacy cluster appearing in 3D, but not in 2D culture, included four drugs that 

induced strong growth arrest but low cell death (green cluster, Fig. 3a, b). All four drugs, ICG-

001, temsirolismus, AZD5363 and AZD2014, targeted proliferation pathways and were more 

effective in 3D culture. To differentiate between these and other drugs, we divided our panel into 

‘cytostatic drugs’ inhibiting kinases or other effectors of proliferation pathways and ‘cytotoxic 

drugs’ causing DNA damage, DNA methylation changes or mitotic failure. 

The effects of four specific drugs and one drug combination were significantly altered in 3D 

compared to 2D before and after drug removal (Fig. 3c, d): Sarcoma (SRC) kinase inhibitor 

dasatinib induced significantly lower cell death and growth arrest in OC organoids than in 

monolayer patient cells (Fig. 3e). In combination with carboplatin and paclitaxel, growth arrest in 

organoids was still lower than in 2D. In contrast to dasatinib, the mTOR inhibitors temsirolismus 

and AZD2014 inhibited cell growth in organoids more strongly than in 2D culture. Azacytidine 

was the only cytotoxic drug that induced lower growth arrest in organoids than in cells in 2D. As 

azacytidine induced comparable cell death in 2D and 3D (Fig. 2c, e), its overall efficacy was 

similar in 2D and 3D culture (yellow, medium cytotoxic cluster Fig. 3a). In both screens we found 

that belinostat, BKM120 and carboplatin were the most potent drugs and that the efficacy of the 

cytostatic drugs dasatinib, temsirolismus and AZD2014 depended on culture type. 
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Figure 3: Culture type determines effectivity of targeted drugs like SRC inhibitor dasatinib and 

mTOR inhibitors AZD2014 and temsirolismus (a) Hierarchical clustering of drug effects determined in 

ovarian cancer DeathPro screens in 2D and 3D culture. Dendrograms derived from hierarchical clustering 

of drug effects averaged over all 10 patient cell lines (AUCd=cell death, AUCpi=growth arrest, 

LD50=lognorm LD50, scaled to 1 for minimum and 0 for maximum dose). Subclusters are differently 

coloured. (b) 3D visualization of dendrograms shown in (a). Drug effects are averaged over all 10 patient 

cell lines. Drug groups derived from clustering are coloured similarly as in (a) (c) Differences of drug 

effects in patient cell lines measured with DeathPro assay in 2D or 3D culture after 72h (dell death - 

AUCd, growth arrest - AUCpi). Blue heat map colour indicates a higher drug response in 3D culture, red 

colour a stronger effect in 2D culture. (d) Differences of drug effects in patient cell lines cultured in 2D or 

3D. Effects were measured with DeathPro assay directly after 72h drug treatment in 2D or after 72h 

treatment and 72h drug removal in 3D culture. Black boxes in (c) and (d) mark drugs whose effects are 

significantly altered in cancer organoids compared to 2D cultured cells. (e) Drugs whose efficiency in 

inducing cell death or growth arrest is significantly changed when not applied in 2D but 3D culture. Effects 

of drugs marked in (c, d). Dasatinib, AZD2014 and temsirolismus target proliferation pathways (cytostatic 

drugs), Azacytidine induced cell death (cytotoxic drug). HOSE=HOSEpiC, C+P = Carboplatin + Paclitaxel, 

*=p<0.05 

 

 

Drug responses in patient organoids are more diverse and of lower therapeutic potential 

Having compared drug effects generally and separately, we inspected differences and 

similarities of patient cell responses in 2D and 3D culture by hierarchical clustering. Interestingly, 

drug response profiles tended to cluster based on the patients as well as the culture format (Fig. 

4a), indicating that culture type can influence patient cell responses to the same extent as 

intrinsic tumour heterogeneity. Most 2D patient profiles clustered together homogenously, with 

the exception of OC12 and OC18 which showed comparable response profiles in 2D and 3D. In 

total, we found 2D drug profiles in 4 subclusters while 3D drug profiles occurred in 8 subclusters, 

demonstrating once more that drug profiles appear more diverse in organoids. Normal HOSEpiC 

cells clustered separately from patient cells in 3D but showed a drug response similar to OC19 

in 2D, suggesting that the culture format can conceal differences in genomic aberrations and 

gene expression.  

In our screens, we included ovarian epithelial cells (HOSEpiC) to examine cytotoxicity induced in 

noncancerous cells. To normalize drug efficacy in PDCLs to HOSEpiC, we calculated the 

therapeutic index (TI) as the ratio of LD50 values from PDCL and HOSEpiC in both cultures 

(Fig. 4b). TI patterns in cancer organoids were less favourable overall than in 2D culture (blue 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 6, 2017. ; https://doi.org/10.1101/124446doi: bioRxiv preprint 

https://doi.org/10.1101/124446


 
 
 

10 
 
 

colour, Fig. 4b). The most effective candidates, carboplatin and belinostat, had positive TIs and 

low toxicity, while low TIs for BKM120 reflected high toxicity in normal cells. To identify patient-

specific treatment options, the drug with the highest TI can be selected for each individual, e.g. 

MK5108 for OC12. For some patient cells, e.g. Asc14, belinostat would be suggested from 

organoid testing but not from 2D cell testing where cell death was too low to determine an LD50. 

Even if drug-induced cytotoxicity differed only minimally between 2D and 3D cultured patient 

cells (Fig. 2, Supplementary Fig. 5), therapeutic potentials in OC patient organoids were altered 

distinctively. By taking into account the heterogeneity in drug responses, our DeathPro assay 

allows the systematic deduction of patient-specific treatment options across cell cultures and 

patient cell lines. 

 

 

 

 

Figure 4: Patient organoids respond more diverse to drugs and with lower therapeutic potential 

than 2D cultured patient cells (a) Hierarchical clustering of drug response profiles determined in ovarian 

cancer organoids or 2D cultured patient cells of the same origin. The dashed vertical line cuts the 

dendrogram arbitrarily at the height of the 2D sub cluster (grey). (b) Therapeutic indices determined from 

LD50 values derived from ovarian cancer (OC) drug screens in 2D culture or 3D culture. Green heat map 

colour indicates drug effectivity in cancer cells and low toxicity in normal cells, blue colour high toxicity in 

normal cells and low effectivity in cancer cells. nd = not determined, i.e. no fitting performed due to low 

response.  
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Patient cells harbour numerous copy number alterations not linked to drug-induced cell 

death  

To predict or functionally link drug sensitivities to genetic alterations, several studies have 

integrated drug sensitivity data from viability assays of patient cells or cell lines with genome 

sequencing data3,4,15. Here, we performed whole genome sequencing (WGS) to associate OC 

genotypes with drug sensitivity data. First, we confirmed that genetic alterations in our PDCL set 

matched those observed in tumours: We found multiple copy number alterations (CNA) in all 

PDCLs (Fig. 5a), as previously reported for serous OC16. In a set of OC-relevant genes selected 

from literature17–19 and databases20,21, few deletion/insertion polymorphisms (indels) or mutations 

were detected, except for TP53, which was mutated with a similar frequency as in the COSMIC 

cohort (Fig. 5b). Likewise, genes frequently amplified (MYC, PIK3CA and AURKA) or lost (RB1, 

PTEN) in ovarian tumours19 were also commonly multiplied or lost in our set of patient cells (Fig. 

5b). Since drug sensitivity frequently correlates with alterations in the corresponding drug 

target15, we associated target genes commonly affected by CNAs with cell death (AUCd) 

induced by the respective inhibitor. Amplifications of AURKA and PI3KCA did not alter 

cytotoxicity induced by AURKA inhibitor MK5108 or PI3K inhibitor BKM120, respectively (Fig. 5 

c, d). Moreover, loss of BRCA1/2, a putative marker for impaired DNA repair capacity22, did not 

affect sensitivity towards the DNA damage related drugs carboplatin and olaparib (Fig. 5e, f).  
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Figure 5: Ovarian cancer cells harbour numerous copy number alterations unlinked to drug-

induced cell death. (a) Copy number alterations (CNAs) in primary ovarian cancer (OC) cell lines used 

for DeathPro drug screening.  CNAs were determined from whole genome sequencing data. Losses are 

shown in blue, gains in red. (b) Panel of 29 OC-relevant genes depicting patient cell line-specific gains, 

losses including loss of heterozygosity, indels and somatic nucleotide variations (SNVs) in coding regions. 

Genes were selected from COSMIC and ICGC databases. (c-f) Association of copy number changes in 

drug target genes with drug sensitivities. (c) Cytotoxicity of Aurora Kinase A inhibitor MK5108 in patients 

with or without (WT) AURKA amplification. (d) Cytotoxicity of PI3K inhibitor BKM120 in patients with or 

without (WT) PI3KCA gain. (e, f) Cytotoxicity induced by carboplatin (e) or olaparib (f) in patients with or 

without (WT) BRCA1 or BRCA2 loss. 

 

 

Homologous recombination deficiency scores correlate with drug effects in organoids 

To incorporate the complex genomic aberrations in OC, we focused on the genome structure 

altered by DNA repair deficiencies. Loss of heterozygosity regions can be counted and added up 

to the homologous recombination deficiency (HRD) score (Fig. 6a) which is linked to cellular HR 

repair capacity22. HRD scores in our OC set varied between 3 and 22 (Fig. 6b). We 

systematically associated HRD scores and OC drug responses in different culture systems and 

found 20 statistically significant correlations (Rsquare >0.61, false discovery rate <0.1, Fig. 6c). 

Remarkably, 90% (18/20) of these potentially relevant associations were observed with 3D 

culture derived data. HRD scores correlated not only with cytotoxic responses to carboplatin and 

all its combinations (Fig. 6c, d) but also with paclitaxel, azacytidine and decitabine responses 

although these drugs did not directly affect DNA structure or repair (Fig. 6e, f, g). Moreover, 

HRD scores were linked to growth arrest induced by temsirolismus (Fig. 6d). Stratification based 

on high (>=10) or low (<10) HRD scores divided OC cells into responders (OC12, OC18 and 

PE20) and non-responders to carboplatin, olaparib or azacytidine (Fig. 6d, f, Supplementary 

Fig. 7a). The OC responders grew faster than non-responders in organoid but not in 2D culture 

(Fig. 2c, d, Supplementary Fig. 7 b, c). Thus, high HRD scores co-occurred not only with high 

drug-induced cytotoxicity but also with fast growth in organoids. Altogether, the strong 

correlation of growth and HRD scores with drug response in cancer organoids supports our view 

that organoids are a better model to assess patient specific drug response in vitro. 
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Figure 6: Homologous recombination deficiency scores correlate with drug-induced cell death in 

primary ovarian cancer cells. (a) Visualization of homologous recombination deficiency (HRD) score 

determination by counting lost chromosome regions. Total copy number (TCN) and biallelic allele 

frequency (BAF) plots derived from Asc15 whole genome sequencing data are shown. Black squares 

illustrate chromosome regions summarized as HRD score. (b) HRD score of patient-derived ovarian 

cancer cell lines used for DeathPro drug screening. (c) Heat map of correlation coefficients (R square) 

and estimated false discovery rates (FDR) determined from systematic association of drug responses 

(AUCd- cell death, AUCpi-growth arrest) with HRD scores. FDR was estimated by random sampling. (d-h) 

Drug-induced cell death (AUCd) or growth arrest (AUCpi) of all nine primary OC cell lines divided into two 

groups with low (<10) or high (>=10) homologous repair deficiency (HRD) score. Cytotoxicity induced by 

carboplatin (d), paclitaxel (e), azacytidine (f) and decitabine (g) correlates with HRD score. Growth arrest 

induced by temsirolismus (h) is reduced in HR deficient cells. *=p<0.05 

 

Discussion 

In this study, we systematically compared drug responses between 2D and organoid cultures of 

patient cells and their association to genomic alterations. For this purpose we developed 

DeathPro, an automated microscopy-based workflow that simultaneously discriminates cytotoxic 

and cytostatic drug effects over time. Previous microscopy-based drug assays in 3D cell cultures 

or organoids focused on morphological changes23,24, metabolic parameters25 or required specific 

instrumentation to resolve cell death and growth25,26. Tested in a small number of cell models 
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and not in parallel in 2D cultures, the usability and scalability of these assays is limited24–26. We 

have demonstrated the versatility and robustness of DeathPro in drug screens of heterogeneous 

OC cells in monolayer and organoid culture and in lung cancer as a second cancer entity. Unlike 

most image-based viability assays, which detect viable cells by cytoplasmic staining with 

Calcein AM24,27, DeathPro directly compares the area of nuclei of dead and live cells and 

generates drug efficacy measures over time independent of cellular morphology and cytoplasmic 

stains. Counting dead and live cells as an alternative to area measurements would require 

detailed, time-consuming imaging of organoids unfeasible in high-throughput drug screens. To 

the other end, subtle changes in nuclear size due to mitosis defects and apoptosis might be 

neglected. Even though we here presented drug screens based on Hoechst for staining live 

cells, the DeathPro image analysis workflow provided can be readily adapted to other nuclear 

stains or markers.  

 

Resolving drug effects in OC patient cells, we found that drug-induced cell death was similar in 

both culture types whereas growth arrest varied. Accordingly, the efficacy of cytostatic drugs like 

dasatinib, temsirolismus or AZD2014 was culture type-dependent. Since most newly developed 

drugs are cytostatic28, our results highlight the importance of choosing the right model system to 

evaluate drug efficacy e.g. in preclinical studies. In particular, our results reveal diverse drug 

responses in organoids and suggest that specific drug response phenotypes are visible in 

organoids but not in monolayer culture. We observed less cell death in 3D compared to 2D 

cultures after 72h but higher death after drug removal (114h), which may lead to an 

underestimation of drug effects in 3D after a 72h standard treatment interval. The previously 

reported findings that standard cell lines in 3D culture are more chemoresistant than in 2D 

culture10,29 may therefore in part reflect altered cell death kinetics, which should be accounted for 

in future screens. Interestingly, the observed drug effects in OC patient cells mirrored findings 

from clinical trials. The combination of carboplatin and paclitaxel did not perform better than 

carboplatin alone, consistent with the ICON 3 trial30. Paclitaxel killed only 2 of 9 patient cancer 

organoids, similar to taxol monotherapy studies in metastatic or refractory OC that reported 20% 

responders31,32. Dasatinib, which failed at clinical phase II for recurrent OC and primary 

peritoneal carcinoma33, was effective in 2D but ineffective in 3D culture in our screen. From the 

drugs included in our panel, no candidate surpassed the first-line therapeutic carboplatin with 

regard to (i) efficacy in the whole patient set and (ii) limited toxicity in normal epithelial cells. Still, 

initial cytotoxicity profiles determined with DeathPro readily suggested patient-specific 
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alternatives to carboplatin, such as Aurora kinase A inhibitor MK5108 for chemosensitive patient 

OC12 or belinostat for chemoresistant Asc14.  

 

By associating resolved drug responses in OC patient cells with HRD scores from WGS data, 

we found a set of relevant correlations which would not be detected with proliferation-based 

assays in 2D. As expected based on a study that linked higher platinum sensitivities to HR 

deficiency34, carboplatin-induced cytotoxicity correlated with HRD scores in OC patients. 

Moreover, we detected correlations of DNA demethylating drug effects with HRD scores, 

suggesting a link between deficient DNA homologous recombination repair and DNA 

demethylation. While only  decitabine sensitivity has been linked to KRAS status so far35, there 

is increasing evidence that both azacytidine and decitabine induce reactive oxygen species 

which cause DNA damage and finally apoptosis in cancer cells36–38. For all drugs whose effects 

correlated with HRD score, we observed a stronger correlation in OC cancer organoids than in 

monolayer culture. Interestingly, cell growth, HRD score and drug-induced cytotoxicity were 

linked in organoids but not in 2D cell culture. Similar to drug efficacy, this suggests that 

genotype-drug sensitivity correlations are more pronounced in 3D cultures, which is particularly 

important since comprehensive studies so far have focused on 2D culture data15,39.  

Taken together, we developed and provide the DeathPro assay as a tool for refined drug 

screening and for deciphering genotype-drug sensitivity associations, and found that culture type 

was a key determinant of the efficacy of cytostatic drugs. In our hands, drug sensitivity was not 

generally decreased in organoids as previous studies suggested; instead, drug responses were 

more diverse and correlated better with genomic alterations in 3D compared to 2D culture. 

Overall, these results could provide a rationale to select the appropriate culture format for drug 

sensitivity assays in basic and future translational research. 

 

Materials and Methods     

Patient-derived cell lines and drugs 

Tumour material from serous ovarian cancer patients was collected at the Departments of 

Gynaecology and Obstetrics, at the University Medical Centres Mannheim and Heidelberg. The 

study was approved by the ethical committees of the Universities of Mannheim and Heidelberg 

(case number 2011-380N-MA and S-008/2009) and conducted in accordance with the Helsinki 

Declaration; written informed consent was obtained from all patients. Primary serous ovarian 

carcinoma cell lines were established by transplantation of primary tumour specimen or tumour 
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cells as previously described 40,41. Defined-serum-free culture medium was used as previously 

described 41 with the addition of 36 ng/ml hydrocortisone, 5 µg/ml insulin and 0.5 ng/ml beta-

estradiol. HOSEpiC cells were obtained from ScienCell Research. PDCLs were checked for 

cross-contamination with standard OC cell lines and tested for mycoplasma contamination using 

the commercial Multiplex Cell Line Authentication and Mycoplasma Test Services (Multiplexion, 

Heidelberg, Germany). OC22 WGS data contained ~30% reads mapping to the mouse genome 

due to irremovable, immortalized mouse fibroblasts potentially derived from the mouse 

xenograft. We used the 70% human sequences for further analysis. WGS data of all other 

PDCLs and HOSEpiC contained only human DNA sequences. All OC cells were cultured in 

Primaria flasks, subcultured using StemPro Accutase (ThermoFischer) and used at passages 

below 20 (PDCLs) or 6 (HOSEpiC). The cell lines LN2106 and T2427 were generated from 

human squamous cell carcinomas as described previously42. Their use for research was 

approved by the ethical committee of the University of Heidelberg (S-270/2001). LN2106 and 

T2427 cells were cultivated in DMEM/Ham’s F-12 (ThermoFischer) with 10% fetal calf serum 

(ThermoFischer) for not more than 20 passages. Drugs were dissolved in DMSO, water, PBS or 

ethanol and stored as single-use aliquots at -80 °C (table S2). Drug dilution series (1:3) were 

prepared using culture medium.  

 

DeathPro microscopy-based drug screen 

Drug concentrations, treatment intervals and endpoints were chosen according to published 

studies or determined in pilot experiments. All image data were used and analysed. To assess 

reproducibility, the drug screens in OC cells and organoids were performed twice independently 

with different cell passage numbers and different drug plate layouts. Lung cancer organoids 

were screened once. Biological variability in all tested conditions was assessed by imaging two 

positions per well and no other technical replicates were included. Drug screening was 

performed in 96-well Angiogenesis µ-Plates from ibidi. Cells were seeded directly onto the plate 

for 2D culture or on growth-factor reduced, phenol red-free Matrigel (Corning, >9 mg/ml protein). 

Medium for drug treatment contained 1 µg/ml Hoechst (Invitrogen) and 1 µg/ml PI (Sigma) and 

was added one day (2D) or four days (3D) after cell seeding and substituted after 72 h by drug-

free medium in 3D. Cells were exposed maximally to 1% DMSO or 1% ethanol in the highest 

drug concentrations and corresponding controls were included in the assay. Cells were imaged 

at similar positions after 0 h, 72 h and 144 h (only 3D) after start of drug treatment using a Zeiss 

LSM780 confocal microscope, 10x objective (EC Plan-Neofluar 10x/0.30 M27) and 405 nm and 

561 nm diode lasers in simultaneous mode. Imaging was performed in an incubation chamber at 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 6, 2017. ; https://doi.org/10.1101/124446doi: bioRxiv preprint 

https://doi.org/10.1101/124446


 
 
 

17 
 
 

37 °C, 5% CO2 and 50-60% humidity using the Visual Basic for Applications macro 

'AutofocusScreen' 43.  

 

Image processing and drug response analysis  

Image stacks were processed to maximum intensity projections (MIPs) with a custom-built 

macro in Fiji 2.0.0-rc-19/1.49m44. MIPs were uploaded and processed in our ‘DeathPro’ workflow 

in KNIME 3.1 (Konstanz Information Miner- 47). Images were annotated with drugs and 

concentrations used and signals were extracted by thresholding. For the calculation, 

summarizing, clustering and plotting of values R version 3.3.246 including packages drc47, stringr, 

ComplexHeatmap48, ggplot249, reshape50 and RColorBrewer51 were used.  

Hierarchical clustering with Euclidian distance and complete linkage was applied to compare 

PDCL-specific drug response profiles consisting of cell death (AUCd) and growth arrest (AUCpi) 

values measured over all drugs tested. Average linkage was used for drug response parameters 

averaged over all PDCLs.  

 

Whole Genome Sequencing and Analysis 

Genomic DNA from 1x106 primary cells was extracted using the DNeasy Blood & Tissue Kit 

(Qiagen), prepared with the TruSeq PCR free library kit (Illumina) and sequenced on a HiSeq X 

Ten (Illumina). Sequences were mapped to the human reference genome (build hg19, version 

hs37d5)52 using bwa-mem 0.7.8-r45553. The OC22 sample contained ~30% mouse gDNA and 

thus had to be aligned to the hs37d5-mm10 hybrid reference sequence. Only reads mapped 

against hs37d5 were used for further analysis. Duplicates were marked with Picard 1.125 

(https://broadinstitute.github.io/picard/). Somatic nucleotide variations and indels were called 

without matched control using our in-house workflow54,  filtered55 and annotated with Annovar56. 

Copy number variations and loss of heterozygosity regions were determined by dedicated 

workflows and gains and losses were classified based on estimated ploidies. Homologous 

recombination deficiency scores were determined as previously described22. Sequence data has 

been deposited at the European Genome-phenome Archive (http://www.ebi.ac.uk/ega/), which is 

hosted by the EBI, under accession number EGAS00001002239. 

 

Statistical Analysis 

Independent replicates refer to independent cell samples seeded, treated and imaged on 

different days. Differences between effects of drug combinations and single drugs were tested 

for statistical significance using a paired Student’s t-test. Differences between responses of 
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different groups to one drug were assessed with a two-sided Welch’s t-test. P values <0.05 were 

considered statistically significant and indicated with asterisks. Pearson’s correlation coefficient 

(Rp) was used to describe the strength of correlation between biological replicates. Coefficient of 

determination (R2) was used to denote strength of linear relationships between area under curve 

values and HRD scores. False discovery rate for R2 was determined by random sampling.  
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Supplementary Materials 

 

 

Supplementary Figure 1: DeathPro Screen in primary cells derived from lung cancer patients. (a) 

Lung cancer cells lines derived from lymph node (LN2106) or lung tumour (T2427) were cultured on 

Matrigel for 7 days and stained with Hoechst (H, green) and propidium iodide (PI, red). Scale bar is 100 

µm. (b) Overview of drug screen schedule. (c) Drug responses and cell growth measured after 72 h or 

144 h for drugs as indicated. For better visualization, logarithmic LD50 values were normalized so that 1 

and 0 correspond to minimum and maximum dose, respectively. 

 

 

Supplementary Figure 2: Effect of imaging conditions and dyes on cell growth and cell death. 

OC12 cells stained with Hoechst and PI at day 4 or day 7 after seeding and imaged once (day7) or twice 

(day 4+7). Values derive from one experiment, 8 images were acquired in two different wells (technical 

replicates). n.s.= not significant, *p-value<0.05 
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Supplementary Figure 3: Cancer organoids from patient derived OC cells retain tumour markers 

CA-125 and WT1. Immunohistochemistry for CA-125 and WT1 was performed with OC12, Asc15 and 

Asc14 cells grown for 8 days on Matrigel. Scale bar is 200 µm. 
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Supplementary Figure 4: Reproducibility of DeathPro drug screens. (a, b) Scatterplots of AUCd, 

logLD50 and AUCpi values of biological replicates determined in 2D and 3D culture screens of patient-

derived ovarian cancer cell lines and HOSEpiC (220 measurements per time point: 22 drug dilution series 

on 10 cell lines) with corresponding Pearson correlation coefficients (Rp). The black line (x=y) is depicted 

as reference for perfect correlation. (c)  Growth of patient-derived ovarian cancer cell lines and HOSEpiC 

on Matrigel within 72 h or 144 h from day 4 on (3D) or as cell monolayers (2D) from day 1 to day 4 after 

seeding. 

 

 

 

Supplementary Figure 5: Drug sensitivity described by LD50 is similar in cells cultured in 2D or as 

organoids (a) LD50 values determined in after 72 h drug exposure, or 72 h drug removal in OC patient 

derived cells cultured in 2D or as organoids. For better visualization, LD50s have been rescaled to values 

between 0 and 1, representing maximum and minimum dose. (b) Sum of all responses across all drugs 

and combinations and OC cells tested in 2D and 3D culture. (c) Comparison of LD50s in 2D vs 3D. (d) 

Comparison of LD50s in 2D vs 3D after drug removal. All values shown are means of two independent 

biological replicates. Rp = Pearsons correlation coefficient. C+P = Carboplatin + Paclitaxel. 
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Supplementary Figure 6: Drug-induced growth arrest and cell death increase in ovarian cancer 

organoids with time (a) Schematic overview of drug testing in organoid culture with the DeathPro assay. 

(b) Differences of drug effects in DeathPro screens in OC cells over time. Cell death and growth arrest 

were determined after 72 h or 144 h and subtracted from each other. Blue heat map color indicates 

stronger effect after 144 h, red color stronger effect after 72 h. (c) Cell death (AUCd) induced by 

Carboplatin (C) or Carboplatin and Paclitaxel (C+P) in OC cells and HOSEpiC grown in 2D or 3D culture. 

(d) Growth arrest (AUCpi) induced by Carboplatin (C) or Carboplatin and Paclitaxel (C+P) in OC cells and 

HOSEpiC. 

 

 

Supplementary Figure 7: Homologous recombination deficiency scores and cell growth. (a) Drug-

induced cell death (AUCd) of all nine primary OC cell lines divided into two groups with low (<10) or high 

(>=10) homologous repair deficiency (HRD) score. Cytotoxicity induced by olaparib (a) is higher in HR 

deficient cells. (b) Growth in untreated patient-derived OC cells correlates with HRD score in 3D culture 

but not in 2D culture. *=p<0.05 

  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 6, 2017. ; https://doi.org/10.1101/124446doi: bioRxiv preprint 

https://doi.org/10.1101/124446


 
 
 

27 
 
 

Supplementary Table 1: Classification of OC patient samples used for serous OC cell lines.                       

PDCL origin FIGO grade TNM Pathological disease treatment 
OC12 tumour IIIc G3 TN1M1 serous adenocarcinoma not treated 
OC18 tumour IIIc G3 TN1M1 serous adenocarcinoma not treated 
OC19 tumour IIIc G3 TN1M1 serous adenocarcinoma not treated 
OC22 tumour IIIc nd  nd serous adenocarcinoma not treated 

Asc211 ascites IIIC G3 
pT3c 
pN1 serous adenocarcinoma 

1st line, 2nd line, 3rd 
line 

Asc14 ascites IV G3 TN1M1 serous adenocarcinoma 1st, 2nd, 3rd line 
Asc15 ascites IIIc G3 TN1M1 serous adenocarcinoma 1st, 2nd line 

PE306 
pleural 
effusion IV G2 T3 serous adenocarcinoma 

1st line 

PE20 
pleural 
effusion IIIc G3 TN1M1 serous adenocarcinoma 

1st, 2nd line: Morab 
study 

 

Supplementary Table 2: Inhibitors used for the DeathPro screens 

Inhibitors 
Status in 
OC 
therapy 

producer Lot # 
stock 
conc. 
[mM] 

starting 
conc. 
[µM] 

solvent 

paclitaxel 1st line Selleckchem 9 10 1 DMSO 
carboplatin 1st line  Cayman Chemical 0453486-12 20 2,000 water 

doxorubicin 2nd line 
StressMarq 
Biosciences 

150120 1 
10 

PBS 

olaparib 4th line Cayman Chemical 0461572-5 10 100 DMSO 
BKM120 phase I Selleckchem S224704 50 100 DMSO 
MK-5108  phase I Selleckchem S277001 10 100 DMSO 
belinostat phase II BioVision 9C242480 50 100 DMSO 
AZD2014 phase II Selleckchem 1 50 5 DMSO 
AZD5363 phase II Selleckchem S801901 50 500 DMSO 
temsirolismus phase II Sigma 110M4716V 10 40 DMSO 
azacytidine  phase II Sigma MKBR7212 50 100 DMSO 
decitabine  phase II Sigma MKBR6437V 10 500 water 
dasatinib phase II LC Laboratories BDS109 100 10 DMSO 
cyclopamine  preclinical Adipogen A00152 4.5 45 ethanol 
DAPT preclinical Sigma 014M4609V 25 100 DMSO 
NSC23766 preclinical Sigma 044M4761V 10 1,000 water 
ICG-001 preclinical Sellekchem 2 50 100 DMSO 
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