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ABSTRACT
Chapter 1 The rate at which unicellular micro-organisms

progress through the cell cycle is a major component of
their evolutionary fitness. Measuring fitness phenotypes in
a given environment or genetic background forms the basis
of most quantitative assays of drug sensitivity or genetic
interaction, including genome-wide assays. Growth rate is
typically measured in bulk cell populations, inoculated with
anything from hundreds to millions of cells sampled from
purified, isogenic colonies. High-throughput microscopy reveals
that striking levels of growth rate heterogeneity arise between
isogenic cell lineages (Levy et al., 2012). Using published
Saccharomyces cerevisiae data, I examine the implications for
interpreting bulk, population scale growth rate observations,
given observed levels of growth rate heterogeneity at the lineage
level. I demonstrate that selection between cell lineages with a
range of growth rates can give rise to an apparent lag phase at
the population level, even in the absence of evidence for a lag
phase at the lineage level. My simulations further predict that,
given observed levels of heterogeneity, final populations should
be dominated by one or a few lineages.

Chapter 2 In order to validate and further explore the
conclusions from Chapter 1, I re-analyzed high-throughput
microscopy experiments carried out on Quantitative Fitness
Analysis (QFA) S. cerevisiae cultures (Addinall et al., 2011), an
approach referred to as µQFA. To allow for precise observation
of purely clonal lineages including very fast-growing lineages
and non-dividing cells, I re-designed an existing image analysis
tool for µQFA, now available as an open source Python
package. Fast-growing outliers in particular influence the extent
of the lag phase apparent at the population level, making
the precision of growth rate estimation a key ingredient for
successfully simulating population observations. µQFA data
include population observations which I used to validate the
population simulations generated from individual lineage data. I
explored various options for modeling lineage growth curves and
for carrying out growth rate parameter inference, and included
the full workflow in an open source R package.
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CHAPTER 1: POPULATION-LEVEL OBSER-
VATIONS FAIL TO CAPTURE ISOGENIC
GROWTH RATE HETEROGENEITY

1 INTRODUCTION
Cell growth rate, a measure of how quickly cells progress
through the cell cycle, is an important component of
evolutionary fitness in unicellular micro-organisms and is
thus subject to great selective forces. In optimal conditions,
microbes with reduced growth rate are rapidly out-competed in
bulk populations, making growth rate the ultimate phenotypic
indicator of cell health. When modeling cell population
dynamics the growth rate parameter is typically measured by
making bulk observations at the population scale. Based on
the assumption that population growth is representative of
individual lineage growth rates, analyses done at the population
level are of technical convenience. Population observations,
however, ignore growth rate heterogeneity at the clonal lineage
level (Van Dijk et al., 2015; Kiviet et al., 2014).

Modern, automated microscopy and microfluidics offer
increasing evidence that, even among isogenic populations,
there is considerable heterogeneity in growth rates (Pin and
Baranyi, 2006; Schmidt et al., 2012; Levy et al., 2012).
The idea of phenotypic heterogeneity arising through non-
genetic differences, such as epigenetics (Bird, 2007) and cell
age (Ginovart et al., 2011), is beginning to receive much-
needed attention as it finds applications in modeling the
dynamics of microbial infections, food security assessments,
and tumorigenesis dynamics, to name a few. By analyzing the
effect of growth rate heterogeneity in clonal Saccharomyces
cerevisiae lineages, I aim to provide a tractable model for
precise measurement of unicellular eukaryote growth rate.

High-throughput, single lineage S. cerevisiae data allow
capturing of heterogeneity between growth rates in isogenic
lineages. By fitting simple growth models to single lineage
time-lapse data, I simulate population growth from clonal
growth rate distributions. I quantify the effects of lineage
selection to obtain new mechanistic insight into the early
phases of microbial population growth (Figure 1 (i, ii)). Typical
growth phases, including the lag and exponential phases of
growth, are commonly observed at the population level. Given
only population observations it is reasonable to assume that an
observed lag phase arises at the single lineage level also.
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Fig. 1: Textbook microbial growth curve: Typical population growth
is shown on the original scale (A) and on a logarithmic count (B).
Growth phases consist of a (i) lag phase, during which inoculated
cells adapt to their new environment, (ii) an exponential growth phase,
during which cells divide at a constant growth rate, (iii) a growth arrest
phase, during which cell population resources run out (iv) and a death
phase, during which viable cell counts are declining.

Observed lag phases are typically associated with the time
required for inoculated cells to adapt to their new environment
(Rolfe et al., 2011). Pirt (1975) however notes that an apparent
lag phase may arise as a result of a mixture of growing,
non-growing and dying cells in a population, whereby a
lag phase can appear in bacterial cultures for up to 20
generations. Defining an apparent lag phase as an observed
change from slow to fast growth purely at the population
level, I show that surprising levels of heterogeneity in the
growth rate distributions as observed in the published data
set by Levy et al. (2012) can give rise to an apparent lag
phase at the population level, without any lag phase at the
lineage level. I capture the evolutionary process of cell growth
by fitting simple population growth models to thousands
of their high-throughput, single lineage S. cerevisiae data
and by simulating population growth. Simulated population
observations confirm that population growth rates are, during
the exponential growth phase, often exclusively driven by the
fastest growing strains within a population. The effect of fast-
growing outliers masking underlying growth rate heterogeneity
is especially misleading when, upon induced stress, slow-
growing sub-populations provide a selective advantage and
subsequent population dynamics are drastically altered, as
has been shown to be the case in drug resistance and
chemotherapy evasions (Balaban et al., 2013; Marusyk et al.,
2012). Tabassum and Polyak (2015) mark the understanding of
the dynamics underlying isogenic, heterogeneous cell lineages
as a requirement for developing more effective cures in cancer
research.

2 DATA SETS & SOFTWARE
I re-analyzed previously published single lineage S. cervisiae
data from Levy et al. (2012) kindly provided by Sasha Levy
and Mark Siegal. Lineage data were generated by observing
cells inoculated in a layer of Concanavalin A at the bottom of
96-well plates at the single lineage level and using automated
microscopy to generate 10 h long time courses with images

taken every hour. Captured colony areas were used as a
surrogate for cell number. S. cerevisiae strains yme1∆, pet9∆,
yfr054c∆, yhr095w∆, snf6∆, rad50∆, not5∆, and htz1∆
were analyzed.

Some clonal lineages in the provided data contained
time courses with missing values. Time courses with few
observations can arise as a result of image analysis failures
(Levy et al., 2012) or fast-growing lineages (microcolonies are
tracked only until they touch a neighboring colony). In order
to eliminate experimental errors yet not to bias against fast-
growing lineages a time course length of three consecutive
observations starting from the first observed time point (t = 0)
was set as a minimum requirement. Growth curves which did
not fulfill the latter requirement were discarded from further
analyses.

Data analyses and subsequent simulations and visualizations
were carried out using R (version 3.3.2; R Core Team,
2016). All computational analyses have been packaged in the
detstocgrowth R package available at https://github.com/
lwlss/discstoch/tree/master/detstocgrowth.

3 METHODS
3.1 Capturing growth dynamics
All growth curves were checked for the existence of a lag phase
by assessing linear regression fits on the logarithmic scale. A
change in slope on the logarithmic scale marks a change in
colony growth rate. Logarithmic area estimates of each growth
curve were fed into the bcp R package (version 4.0.0; Erdman
et al., 2007) which assesses the probability of segmentation
in a straight line using a Bayesian approach. A break point
probability (bp) and its location (bl) are returned.

Growth curves with bp < 0.5 were modeled using an
exponential growth model on the logarithmic scale in the form
of a log-linear regression:

N = αA (1)

dN

dt
= rN ; N(0) = N0 (2)

N(t) = N0e
rt (3)

log(N) = log(N0) + rt. (4)

AreaA is proportional to the number of cellsN by a conversion
factor α. Exponential growth of an initial population size N0

over time t is captured by growth rate r.
Growth curves with bp ≥ 0.5 were modeled using a piece-

wise log-linear regression with the first segment corresponding
to the lag phase and the second segment corresponding to the
exponential phase. I used the segmented R package (version
1.4; Muggeon, 2003), which fits two continuous straight lines
with different slopes to the data. I assumed a single break point
with the initial guess being the break point location returned by
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the bcp output. Using

log(N) = log(N0) + rt; t < bl (5)

log(N) = log(M0) + st; t ≥ bl (6)

log(N) = log(N0) + bl(r − s) + st, (7)

growth rate estimates r for the first segment and s for
the second segment are obtained. M0 corresponds to the
population size at t = bl.

3.2 Parameter inference for single lineages
3.2.1 Inference using a deterministic model Individual
lineage growth curves show no significant evidence for
segmentation (bp < 0.5). Single cell lineages show exponential
growth for the duration of the observations and are thus
modeled using Equation 4 (mean R2 = 0.94). This differs
from most population observations where an observed change
in growth rate from the lag to exponential phase as shown in
Figure 1 would result in a piece-wise linear growth (Buchanan
et al., 1997; Baranyi, 2002). A log-normal measurement error
model was assumed. The estimated growth rate parameter thus
corresponds to the slope of the straight line fitted to the cell
density estimates measured in area on the logarithmic scale.
Growth rate estimates less than zero were set equal to zero
since negative microbial growth holds no biological meaning
in this context. I then generated growth rate distributions as
implemented in detstocgrowth summarizing the growth
rate estimates obtained for each strain.
3.2.2 Inference using a stochastic model In order to assess
how inter-lineage stochasticities affect lineage growth, growth
rates for the single lineage data were also inferred using
a stochastic, birth-only model. I made use of a newly-
developed (unpublished) implementation in Julia (version
0.4.6; Bezanson et al., 2012), kindly provided by Jeremy
Revell. Lineage growth is modeled using a Gillespie stochastic
simulation algorithm (Gillespie, 1977). Cell division is
captured by a single reaction C → 2C, with logistic growth
(Verhulst, 1845) propensities, h, such that hi = Ci(1 −
Ci
K

) for each cell C. The model was run for 1000 samples
with K = 1000000 and initial growth rate estimate r =
0.5. Parameter updates follow a cross-entropy method which
minimizes the distance between the probability distribution of
the data and that of the model (Rubenstein and Kroese, 2004).
Strain growth rate distributions were plotted using the obtained
parameters as before. Stochastic simulations were compared
to deterministic simulations for individual growth curves using
parameters inferred from the two models.

3.3 Population simulations using empirical data
Pirt (1975) characterized apparent population growth rate
by modeling a dividing and non-dividing population using
the dN

dt
= rFN growth equation where F refers to the

fraction of dividing cells. I modeled the full extent of isogenic
heterogeneity by simulating population growth as follows:

N(t) =

n∑
i=1

(N0e
rit), (8)

where ri refers to the growth rates of the n lineages in
a population. This equation no longer assumes an average
population growth rate; instead it captures the growth of each
individual lineage.

In order to simulate clonal bulk population growth, I
randomly sampled lineage growth rate parameters ri from
growth rate distributions obtained for each strain in the
parameter inference step. Individual growth curves were
generated according to Equation 3 with a starting population
of N0 = 1. Simulated growth curves of single lineages were
summed to give the population size at hourly time points
over four days using Equation 8 where N0 = 1 and integer
n ∈ [100, 10000]. A time course of four days was chosen
as it corresponds to the typical duration of a serial dilution
experiment capturing population growth such as Quantitative
Fitness Analysis (QFA) (Addinall et al., 2011). Optimal
growing conditions were assumed for the length of the time
course. For each strain, this process was iterated 100 times to
give mean estimates for population parameters.

As a result of selection, population simulations frequently
show a discrete change in growth rate (bp ≥ 0.5), resulting
in a piece-wise linear growth curve on the logarithmic
scale (Figure 2). Population growth was thus modeled using
Equation 7. Growth rates for both the slow (lag) and fast
(exponential) growing phases of the simulated population
growth curves were obtained and compared using a paired two-
sample Student’s t-test (Welch, 1947) with a confidence level
of 0.99. Apparent lag phase duration estimates corresponding
to the point of segmentation of the piece-wise regression were
obtained for 100 simulated population observations from which
the mean apparent lag phase and the 95% confidence interval
were calculated.

Fig. 2: Estimated population growth by fitting a piece-wise log-
linear regression: Population growth was simulated according to
Equation 8 for n = 100 and N0 = 1, using growth rates sampled
from the yfr054c∆ distribution. The estimated change point of the
fitted piece-wise log linear regression is shown as a red, dashed line.

The yfr054c∆ strain, which contains the fastest growing
lineage in the data set, and the snf6∆ strain, which displays
a uniquely wide and multimodal growth rate distribution, were
chosen as example case studies for assessing the implications
of clonal heterogeneity at the population level; calculations for
all remaining strains were performed as supporting evidence.

In order to quantify the rate at which lineages expand to
dominate bulk populations, percentage contributions of each
lineage to a population at a given time as well as the number
of strains contributing to more than 5% of the population were
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averaged for 1000 simulations with population start sizes n =
50, 100, 500, 1000, 5000, 10000. Sets of individual example
lineages which make up such a population were visualized
using the fishplot package (version 1.1; Miller, 2016)
providing two single-case examples for n = 10000 for the
yfr054c∆ strain.

3.4 Population simulations using synthetic data

Fig. 3: Synthetic unimodal and bimodal lineage growth rate
distributions: Three unimodal distributions (A) with different peak
heights, widths and tail-lengths and three bimodal distributions (B)
with one even and two uneven bimodalities were compared.

In order to further assess the implications of clonal growth
rate heterogeneity (captured in the form of distribution width,
tail length and multimodality) at the population level, six
synthetic lineage growth rate distributions were generated in
R, using the LambertW (version 0.6.4; Georg, 2016) package
(Figure 3):

1. N (0.3, 0.015)

2. N (0.3, 0.015)

3. t(0.3, 0.035, 100) with heavy-tail parameter δ = 0.08

4. 0.5 ∗ N (0.2, 0.03) + 0.5 ∗ N (0.4, 0.03)

5. 0.8 ∗ N (0.2, 0.03) + 0.2 ∗ N (0.4, 0.03)

6. 0.2 ∗ N (0.2, 0.03) + 0.8 ∗ N (0.4, 0.03)

Population growth was then simulated from all six synthetic
distributions as described in Section 3.3.

4 RESULTS
4.1 Population simulations show a piece-wise linear
fit on the logarithmic scale in the absence of a lag
phase in single lineages

Fig. 4: Quantifiable growth rate heterogeneity between isogenic S.
cervisiae lineages: Growth rate distributions for snf6∆ and yfr054c∆

(A) are overlayed on the growth rate distributions of all published
strains (B) in the data set. Distributions were obtained by fitting a
log-linear regression to all n single-lineage time courses of each strain.

Growth rate parameter inference shows that single lineage
growth rates within all strains show remarkable heterogeneity
(Figure 4), signified not only by the width of the distributions
but also their modality. While the snf6∆ strain shows a curious

Fig. 5: Population simulations from single lineage data show an apparent lag phase: Population simulations over a time course of 1-96 h using
Equation 8 for yfr054c∆ and snf6∆ where n = 100, 1000, 10000 growth rates ri were sampled from the distributions as respectively indicated on
the right are displayed. Mean simulation growth rates of the exponential phases of (A-F) are drawn on the distributions. Population simulations are
color-coded according to the fastest strain sampled; the color scale displayed on the left applies to all figures. Growth rate parameters were inferred
using the same method as in Figure 4. Break point locations for bp ≥ 0.5 are marked by vertical black lines. Mean growth rate values for the lag
(Rate 1) and exponential phase (Rate 2) are shown along with the significance values obtained from respective Student’s t-tests.
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Fig. 6: Population growth rate estimates and
reproducibility with increasing inoculation size:
Growth rates of yfr054c∆ (A) and snf6∆ (B)
populations inoculated with 1-1000 cells (grey) were
computed. The mean and variance of 100 iterations
of the two segments of a piece-wise linear regression
were calculated and averages for each population
start size are displayed (light green and blue for the
lag phase; dark green and purple for the exponential
phase). The mean lineage growth rates of the two
distributions shown as vertical histograms on the left
of each figure are marked in red. Histograms are on
the same growth rate scale as the main figure.

trimodality (A), a significant fraction of non-dividing and
outlying, fast-growing lineages can be found within all strains,
resulting in bimodal long-tailed distributions (B).

Figure 5 displays the effects of lineage heterogeneities at
the population level for yfr054c∆ and snf6∆ for inocula n =
100, 1000, 10000. Remarkably, although individual lineages
are simulated according to a linear fit on the logarithmic
scale, population growth curves obtained from Equation 8 are
characterized by piece-wise linear growth on the logarithmic
scale, a feature which is often assumed to be the result of cell
size expansion in preparation for growth (Rolfe et al., 2011).

Simulated population growth is significantly greater than
mean lineage growth rate and is driven by the fastest sampled
strain (Figure 5). The longer tail in the yfr054c∆ distribution
results in a faster population growth than that observed in
the snf6∆ simulations. Estimated break points for bp ≥
0.5 are marked as vertical lines dividing population growth
into a slow-growing (lag) and a fast-growing (exponential)
phase. Although the difference between mean lag and mean
exponential growth is greatest for yfr054c∆ (C), paired two-
sample Student’s t-tests reveal the differences between lag and
exponential growth to be most significant for snf6∆ (F). Break
point location is most variable for the yfr054c∆ strain which
has the widest-ranging growth rate distribution (Figure 4).
Population simulations for all strains display an average bp of
0.92 (minimum bp = 0.43) and, on average, show a significant
change in growth rate for integer n = [100, 10000] inocula
99% of the time. For all growth curves with bp ≥ 0.5, mean
growth rates of the slow-growing phase are significantly slower
than growth rates of the fast-growing phase (paired two-sample
Student’s t-test; p < 0.01).

4.2 Observed population growth rates increase with
inoculation size and significantly surpass average
observed growth rates of single lineages
As previously shown, observed population growth rates during
the fast-growing phase correspond to the right-hand tail of
the single lineage distributions (Figure 5). Figure 6 predicts a
sharp increase in observed growth rate with inoculation size
which then begins to level off. Growth rate averages for both
segments are significantly greater than the mean of the growth
rate distributions. The second segment of the piece-wise linear

regression levels off after a greater inoculation size than the
first segment, as it is more greatly affected by the variability
of sampling fast-growing lineages. The peculiar increase in
variance with inocula size is the result of discontinuities in
the tail of the growth rate distributions. As inoculum size
increases, the probability of sampling from the tail of the
distribution increases. Growth rates sampled from the right-
hand tail have the largest effect on variance. Figure 6 shows that
the number of fast simulations increases with inoculum size.
Variance increases are greater for yfr054c∆ whose growth rate
distribution contains more fast-growing lineages. Evidently, by
definition of the Central Limit Theorem (Rice, 1995), variance
will approach zero as inoculum size approaches infinity; this
however does not apply to the inocula sizes considered here,
where starting population sizes are smaller than the number of
observations in the distributions from which growth rates are
sampled.

4.3 The duration of the apparent lag phase of the
population simulations decreases with inoculation
size

Fig. 7: Break point estimates over time in simulations of yfr054c∆

and snf6∆: Apparent lag phase durations obtained by fitting Equation
7 to the population simulations generated using Equation 8. Mean
estimates along with their 95% confidence intervals (Conf. Int.) of 100
iterations are shown for integer population sizes n = [100, 10000] in
steps of 100.

Mean apparent lag phase duration predicts a negative
relationship between inoculation size and observed lag phase
(Figure 7). A longer tail in the growth rate distribution of
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yfr054c∆ is suspected to increase the effect of selection for fast
growers, resulting in an earlier onset of the exponential phase as
compared to snf6∆. For n = 100, samples from the right-hand
tail of the distributions are improbable; thus lag phase estimates
of yfr054c∆ and snf6∆ match closely, since the central peaks
of the growth rate distributions overlay (Figure 4).

4.4 The lag phase apparent at the population level is
the result of selection between lineages with
heterogeneous growth rates

Fig. 8: Lineage composition of population simulations highlight
an extensive selection process: Individual lineages which make up
two population simulations of yfr054c∆ shown in Figure 5 (C).
Each horizontal line corresponds to a single clonal lineage. Percentile
population compositions of clonal lineages from 1-96 h are shown.

Figures 5 and 6 suggest that a selection process acting on
heterogeneous isogenic lineages drives the observed population
growth rate to be significantly faster than the average growth
rate of single lineages. This is confirmed by looking at the
lineage compositions (Figure 8). Population simulations of
yfr054c∆ show how the fastest sampled strains dominate
the population over time and drive exponential population
growth rate. The lag phase apparent at the population
level is thus the direct result of strong lineage selection.

The distinction between (A) and (B) further highlights how
variability in population growth rate is affected by the sampling
of fast-growing lineages. Faster-growing lineages decrease the
duration of the apparent lag in population growth as they
dominate the population more quickly.

Mean dominance effects of single fast-growing lineages
within a population (Figure 9) confirm that, once they make
up a significant percentage of the population, individual fast-
growing lineages drive a change from slow to fast growth at
the population level. On average, less than five lineages make
up more than 5% of population each. Figure 9 predicts that
in yfr054c∆ populations simulations, the single fastest lineage
is, on average, slightly more dominant than those of snf6∆.
The length of the right-hand tail of the lineage growth rate
distributions thus determines the extent of selection and the
lag phase apparent at the population level. Increased inoculum
size results in greater dominance of fast-growing strains since
the probability of sampling fast-growing lineages is higher
(Figure 9).

4.5 Simulated selection between synthetic lineages
confirms that the width and tail-length of the growth
rate distribution influence the apparent population
behavior
Heterogeneity at the single lineage level influences observations
made at the population level. While Figures 4-9 are based on
true experimental data, the results shown in Figure 10 make
use of synthetic distributions in order to quantify how features
of heterogeneity at the single-lineage level, as captured by the
shape of the distribution, affect population level observations.
A sharp peak in the growth rate distribution results in some
evidence for an apparent lag phase (A); the observed change
in growth rate is significant (bp ≥ 0.5) in 96% of the
simulations. Widening the distribution increases the extent of
the apparent lag phase with all population simulations showing
a significant change in growth rate due to an increase in
average population growth rate during the exponential phase
(B). If the right-hand tail of the growth rate distribution is
widened, the variability in population simulations increases;

Fig. 9: Dynamics of population structure in simulated selection are affected by inoculum density: The mean number of simulated lineages
which make up more than 5% of the population over time (left) and the mean percentage with which the simulated lineages of the fastest
sampled growth rate make up the population independent of the number of times that particular growth rate was sampled (right) are shown.
All trials show the average of 1000 simulations for the yfr054c∆ and snf6∆ strains where populations are simulated using Equation 8 for
n = 50, 100, 500, 1000, 5000, 10000 from 1-96 h.
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Fig. 10: Population simulations obtained from synthetic lineage growth rate distributions: Population simulations as shown in Figure 5 based
on generated synthetic distributions (Figure 3) are shown. A miniature version of each growth rate distribution from which the respective population
simulations were generated is shown in the top left (A-F). Estimated break points (bp ≥ 0.5) are again marked by dashed, vertical lines. Predicted
lag phase durations for integer population start sizes n = [100, 10000] are displayed on the right, color-coded according the distributions shown in
(A-F).

this again emphasizes that population behavior is heavily
influenced by the fastest strain selected (C). Thus, greater
growth rate heterogeneity at the lineage level in the form
of a wide or long-tailed growth rate distribution increases
the extent (increased bp, greater difference in growth rate
between phases and decreased duration) of the apparent lag
phase. Figures 10 (D-F) show that modality per se has little
effect on the observed population behavior, implying that slow-
growing sub-populations and non-dividing cells are masked by
population level observations. However, increasing the number
of fast-growing lineages without lengthening the tail of the
distribution extends the apparent lag phase (D, F). A lower
number of fast-growing lineages increases the variability in
observed exponential growth rate (C, E). Even modality leads
to an increased variability in lag duration (D).

The summary of lag duration (G) shows that lag duration
decreases as the distance between lag and exponential growth
increases as a result of fast-growing outliers. An observed
decrease in lag duration as a result of increased number of
fast-growing lineages with increased inoculation size shown
in Figures 6 and 7 is confirmed for the first 1000 cells when
sampling from a long-tailed distribution (C). Continuity in the

distribution here causes the decrease in lag to level off faster
than observed in Figure 7. Similarly, as the sub-population of
fast-growing lineages becomes greater than the sub-population
of slow-growing lineages (F), lag duration is increased and
vice-versa (E). Increasing the fast-growing sub-population (F)
increases the probability of sampling fast-growing lineages and
thus increases the observed variability in lag duration (G).

4.6 Accounting for inter-lineage heterogeneities
affects individual growth rate estimates
When modeling lineage growth using a stochastic, birth-
only model, obtained growth rate parameters can differ from
those obtained when fitting a log-linear regression (Figure 11).
Strain distributions overlay closely; this suggests that inter-
lineage heterogeneities are marginal and have limited effect
on observed lineage growth rate within a strain. However,
when looking at individual lineages, growth rate parameters
obtained from the two models can differ by up to 0.27
h−1 (Figure 11 (A.ii)). Fast-growing outliers such as growth
curve 2057 in the yfr054c∆ data and growth curve 1901
in the snf6∆ data (Figure 11 (A.iii, B.iii)) have previously
been shown to significantly influence observed population

Fig. 11: Stochastic and deterministic models of single lineage growth predict slightly different growth rate parameters: Growth rate
distributions obtained from deterministic (orange) and stochastic (green) parameter inference for yfr054c∆ (A) and snf6∆ (B) are compared.
Growth curves observations associated with the minimum (i), the maximum (iii) and an estimate growth rate parameter sampled from the central
peak of the distribution (ii) obtained using the stochastic model are shown below. 10000 stochastic simulations (dark green) and the deterministic
solution (orange) to (Equation 8) with r set to the respective inferred growth rate parameter are overlayed. The mean of all shown stochastic
simulations is displayed in green.
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behavior (Figures 5, 6, 8, 9, 10). Precision in estimating fast-
growing outliers is thus of great significance. Figure 11 (B)
further suggests that the tri-modality observed in snf6∆ when
modeling lineage growth using Equation 4 is an artifact of
inter-lineage stochasticities. Also, the multi-modality resulting
from a significant number of non-dividing growth curves in
the distribution is less distinct for parameters inferred using
the stochastic model. This however is due to the fact that
the current stochastic implementation assumes growth to be
positive and is why population growth was simulated using the
parameters obtained from the deterministic model (Equation
(4)) as shown previously. The growth rate parameters for non-
dividing cells are merely approaching zero (Figure 11 (A.i,
B.i)) in the stochastic implementation.

5 DISCUSSION
Population measurements are the most common tool for
analyzing strain growth rate as a measure of fitness. I re-
interpreted previously observed growth rate heterogeneity
among isogenic S. cerevisiae populations to examine conseque-
nces at the population level. Apparent lag, which arises purely
as a result of clonal heterogeneity, is here distinguished from
true lag, defined as the time required for inoculated cells to
adapt to their new environment (Rolfe et al., 2011). While
the vast range of observed microbial lag phase patterns has
been attributed to many intracellular mechanisms (Rolfe et al.,
2011) and extracellular stresses (Baranyi, 1998; Fridman et al.,
2014), this is the first time that, using real data, single lineage
heterogeneities are explored as an underlying cause for an
observed change in growth rate behavior at the population level.

Population simulations of selection obtained from synthetic
distributions confirm a positive relation between significance
of apparent lag and lineage heterogeneity. Apparent lag
duration and the subsequent change in growth rate are
particularly sensitive to fast-growing outliers. This should be
kept in mind when removing apparent outliers from analyzed
data sets; unless these are confirmed experimental errors,
trimming outliers will significantly alter population inferences.
Simulations based on both real and synthetic data have shown
that informative growth rate phenotype characteristics such as
the number of non-dividing lineages available at the single
lineage level cannot be captured by population observations.
Indeed, clonal heterogeneity has in the recent literature led
to new insights on population evolution, particularly in cases
where slow-growing lineages provide a selective advantage
(Van Dijk et al., 2015; Ding et al., 2012; Levy et al., 2012).
Single-lineage growth rate heterogeneity should be considered
an integral part of a strain’s phenotype when using growth rate
as a measure of fitness.

Observed population behavior not only masks heterogeneity
but is also not representative of typical single cell behavior.
Having demonstrated how an apparent lag phase can arise
purely at the population level, my results provide a key
new mechanistic insight applicable to predictive microbiology
growth models. Robinson et al. (2001), for example, presume
that average single lineage lag must be greater than observed

population lag, since fast-growing lineage begin to divide
earlier. I however show that the apparent lag phase observed
at the population level does not translate down to the single
lineage level but instead corresponds to the time required for
the fastest-growing lineages to dominate the population, at
which point the population behavior switches from seemingly
slow to fast growth. During exponential growth, population
level observations are analyzing only the behavior of a small
proportion of lineages favored by selection, making the
observed population growth rate significantly faster than the
mean growth rate of clonal lineages, for example. I suggest
modality, modal width and tail-length of the growth rate
distributions as more informative measures to summarize strain
growth at the single-lineage level.

The selective dominance of a few fast-growing lineages
is most prominent in large population sizes and during the
exponential phase, agreeing with common biological practices
to sample from the exponential phase and to use large
starting populations to increase reproducibility (Greenwood,
2012; Jasmin and Zeyl, 2012). However, this only applies
for inocula sizes large enough to capture the full range of
lineage heterogeneity within a strain. Furthermore, increased
reproducibility comes at the cost of accurately describing the
whole population of single lineages. Both Van Dijk et al. (2015)
and Levy et al. (2012), for example, consider single-lineage
dynamics a necessary step in their analyses for assessing
how the competitive dynamics in a population change as a
result of induced stress. My findings agree with those of
Fridman et al. (2014) who show that for strains grown under
optimal growth conditions, no lag phase can be observed at
the single lineage level and that, at the single lineage level,
a lag phase arises as an adaptive response only to antibiotic
exposure. In accordance with my simulations, Ginovart et al.
(2011) observe a decrease in lag phase duration with increased
inoculation size up to 1000 S. cerevisae cells. An increase
in lag phase duration as a result of stress is also a common
observation in the literature (Augustin et al., 2000; Robinson
et al., 2001). Under induced stress, slow-growing lineages can
outperform fast-growing lineages within microbial populations
(Levy et al., 2012; Batchelor et al., 1997); thus, apparent lag
phase observations which arise as a result of selection purely
for fast-growing lineages may not apply.

The effect of how stress, including a nutrient and space
limiting induced carrying capacity, applied at the single lineage
level translates to the population level remains yet to be
addressed. Further model limitations include the assumption
that cell lineages grow independently. The general shape of
the growth rate distributions obtained using a deterministic,
exponential model on the log scale was validated using a
stochastic model. When comparing the distribution shapes,
evidence for inherent stochasticity exists to some extent. For
example, bimodalities observed in the center of lineage growth
rate distributions, as is the case for snf6∆, are suspected
the be the result of inter-lineage heterogeneities. Even though
inference of stochastic and deterministic models yields growth
rate distributions that match very closely, slight imprecision
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in growth rate estimates for fast-growing lineages can alter
simulated population growth significantly; thus, stochasticity
should at least be taken into consideration when estimating
single lineage growth rates of future data sets.

Lastly, further investigations are required to determine the
origin of heterogeneity. Jasmin and Zeyl (2012) confirm that
cells isolated from a population of S. cerevisiae over time
show a general increase in growth rate as a result of selection
for fast growers. However, given that fast-growing lineages
dominate population growth and individual cells are always
sampled from a population, when does heterogeneity arise?
Experiments tracking the heritability of growth rate are yet to
be conducted at the single lineage or the single cell level.

CHAPTER 2: µQFA: DIRECT COMPARISON
OF POPULATION SIMULATIONS BASED
ON SINGLE LINEAGE DATA WITH TRUE
POPULATION OBSERVATIONS

1 INTRODUCTION
Chapter 1 effectively outlines the implications of heterogeneity
between individual lineage growth rates by simulating bulk
cell populations. While the previous analyses were based
on published isogenic lineage area estimates over time, I
did not have access to the raw data, including colony
images. In order to test my population simulations against
true population observations, I re-analyzed high-throughput
microscopy experiments on Quantitative Fitness Analysis
(QFA) (Addinall et al., 2011) cultures in order to observe
single lineage growth, an approach I here refer to as
µQFA. I re-developed an existing image analysis tool, now
available as a Python package, for obtaining cell density
estimates. By observing multiple lineages derived from single
S. cerevisiae cells grown on solid agar plates using automated
microscopy, µQFA enables high-content insight into the

population observations of standard QFA. High-content insight
includes the number of non-dividing cells and the microscopic
observations for fast-growing outliers, which as shown in
Chapter 1 significantly influence population observations. A
single fast-growing lineage has been shown to dominate an
entire population (Figure 8 (B)).

The aim here is to more easily distinguish inherent
noise from experimental errors in order to obtain more
exact growth rate distributions and to validate previous
approaches. Population simulations from µQFA lineages are
compared to the true population growth observed for each
of the observations made under the microscope. This direct
comparison between simulated population observations based
on single lineage data and true population observations made
from the same data is used to test whether the newly obtained
high-throughput data of single cell yeast lineages is matched
with the appropriate level of mathematical complexity and
biological interpretation to model yeast cell growth. I again test
the fit of an exponential growth model against the data, and
compare growth rate parameters obtained using a frequentist
approach with a Bayesian approach. Bayesian inference allows
for incorporating biological constraints in the form of prior
distributions and returns a probability estimate rather than a
single point estimate (Christensen et al., 2011). Additionally,
I assess the practicality of doing Bayesian parameter inference
using a discrete stochastic growth model on a selection of
growth curves.

2 DATA SETS & SOFTWARE
Laboratory work was carried out in the Institute for Cell
and Molecular Biosciences at Newcastle University with the
support of Prof. Lydall’s research group. I implemented
an image analysis tool for the obtained microscopic
observations in Python (version 2.7.6; Van Rossum, 1995),
now available as an open source package called muqfatc
(https://github.com/lwlss/discstoch/tree/master/muqfatc). For
the subsequent analyses I again used the detstocgrowth

Fig. 12: Image analysis work flows for capturing colony growth over time: Upon image segmentation area estimates acting as surrogates for
colony density are captured by counting the number of white (yeast) pixels on a black background (agar) over time. Lineage growth rates are
estimated using an optical dilation and erosion process and subsequent circular contour detection (A). Colony masks obtained from the final time
point are tracked backwards through time to obtain a full time course. Population growth rates are estimated by capturing the total number of pixels
corresponding to yeast cells in each pin over time (B). A chosen gray-scale value is used to distinguish yeast from agar.
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package (https://github.com/lwlss/discstoch/tree/master/detstoc
growth) written for the analyses done in Chapter 1,
implementing additional features where required.

3 METHODS
3.1 µQFA
S. cerevisiae his3∆ and htz1∆ strains, grown on solid agar
plates as part of a library of the Stanford yeast knockout
collection, were picked and streaked for single colonies onto
solid agar in round Petri dishes. his3∆ acts as a wild-
type surrogate (it has the HIS3 gene inserted elsewhere
in its genome), and htz1∆ was chosen for comparison
since its growth rates have previously been observed to
be heterogeneous (Levy et al., 2012). Individual colonies
assumed to be derived from a single cell were picked using
sterile toothpicks and inoculated into 200 µl volumes in a
rectangular 96-well microtitre Nunc plate. Cells were grown
to saturation over 48 h and were transferred onto a solid agar
surface inside a rectangular plate following the manual QFA
procedure described by Banks et al. (2012), using a sterile
pin tool by V&P scientific. The plate was sealed off with
electrical insulation tape and placed under a Nikon Eclipse 50i
microscope mounted with a fully automated Prior Optiscan II
stage and a Jenoptik ProgRes MF scientific camera. Pin time
course images were captured by automated microscopy using
the µManager software (version 1.4.21; Edelstein et al., 2010)
so that each pin was captured every 20 min over 48 h.

3.2 Time Course Generation
Raw microscopic images were analyzed in Python using the
OpenCV package (version 3.0.0; Bradski and Kaehler, 2008).
Color images were converted to gray-scale. I then used a Canny
edge detection algorithm (Canny, 1986) to capture yeast colony
contours. Areas were estimated by counting the number of
pixels corresponding to yeast (white) on agar (black) at each
time interval using graphic erosion and dilation to smooth
edges (Figure 12). Area estimates are based on the assumption
that cell growth is two-dimensional; a valid assumption to make
at early time points.

Colony contours of non-merged colonies were tracked
individually for 6 h (20 observations) and checked for
circularity comparing the minimum enclosing area to the total
area of a colony at each time point to give dynamic, isogenic
lineage estimates. After checking growth rate distributions
for a range of time course lengths, I chose to set a time
course duration of 6 h since this maximizes the number of
obtained lineage observations without biasing against fast-
growing lineages.

Population estimates were made by segmenting the image
according to pixel intensity. Dark yeast colonies were observed
on a light agar surface; yeast area estimates correspond to gray-
scale values 110 or darker. Population area is estimated up
to 28 h for each time course, after which the lighting of the
microscopic observations is too dark to distinguish between
cells and agar.

3.3 Parameter Inference
Growth rate parameter inference approaches for single lineage
time courses are outlined in Figure 13. Full example parameter
inference work flows based on the original data are outlined on
https://github.com/lwlss/discstoch.

I carried out Bayesian inference for deterministic models
by Gibbs Sampling using the rjags package (version 4.1.0;
Plummer, 2016) along with an exponential growth model
implementation. Prior distributions for growth rate r, initial
area x0 and precision τ were specified as follows:

r ∼ U(0, 2); x0 ∼ U(4, 300); τ ∼ U(0, 1000)

These priors ensure that r accommodates a range of growth
rates wider than obtained from the deterministic model and
that x0 lies in between the range of areas observed for the
first time point. Given τ = 1

σ2 , the prior distribution for
τ accommodates for the minimum standard deviation, σ =
0.032, observed among lineage residuals when applying a
deterministic model. Resulting growth rate parameter estimates
are based on 1000000 iterations with a thinning of 10000.
For the implementation of the stochastic model, the smfsb

Fig. 13: Modeling and inference options assessed for their effectiveness in capturing µQFA single lineage growth rates: Frequentist
parameter inference options are displayed in green; Bayesian parameter inference approaches are marked in blue (deterministic modeling) and
purple (stochastic & deterministic modeling combined).
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R package (version 1.1; Wilkinson, 2013) was adapted to
simulate lineage growth according to a stochastic Gillespie,
birth-only model (Gillespie, 1977; Bailey, 1964) up to
1000 cells, at which point the variation between stochastic
simulations becomes negligible. Subsequent lineage growth
was then simulated according to the deterministic logistic
growth model (Verhulst, 1845) with a constant carrying
capacity K = 15000 and initial growth rate estimate
r = 0.3. (Figure 13). This stochastic/deterministic hybrid
implementation was validated using a deterministic (logistic)
implementation in rjags with prior distributions as outlined
above where identical growth rate estimates were obtained
using K ∈ [15000, 100000, 1000000]. For the stochastic
model I assumed a constant normal error measurement model
with σ = 20. A single chain was run for a minimum
of 1000000 iterations with a thinning of 1000. A tuning
parameter of 0.02 was used to update the Markov chain (MC)
as implemented in smfsb. In order to convert area estimates
into estimates of cell number I assumed

N = αA (9)

α =
N0

A0
; N0 = 1. (10)

Thus, the maximum likelihood of the distribution of pixel area
observed at t = 0 can be used as a reciprocal estimate for α,
such that α = 185

2
.

3.4 Population Simulations
The same procedure as outlined in Chapter 1 was applied,
with the time course length set to 48 h rather than 96 h to
match the length of this specific µQFA. Population simulations
obtained from the growth rates of lineages in the same pins
were compared to the total area estimates obtained for the
entire pin, allowing me to verify my predictions. Growth
curves of the pin population level observations were again
modeled using a piece-wise linear regression on the logarithmic
scale. Here, however, two break point estimates were used, as
the data shows both an apparent lag phase and an apparent
carrying capacity. Observations and simulations from row 5,
column 5 (counting from the top left-hand corner of the agar
plate), denoted as R05C05, are presented as an example in the
results; its microscopic images are well-focused, contain lots of
individual growth curves, and are unaffected by possible edge
effects which may occur at the side of the plate.

4 RESULTS
4.1 Growth rate estimates for clonal µQFA lineages
are most accurately inferred using an exponential
growth model on the original scale as compared to a
log-linear regression analysis
Small colony images are most difficult to capture precisely at
the image analysis stage, since blurry microscopic observations
display the greatest noise at early time points (Figure 14).

Subsequently, even though the log-linear model shows a
slightly better fit to the data, (maximum standard error, σ =

0.09, versus σ = 0.25 for the exponential model), the
log-linear model places, as highlighted in Figure 14, greater
emphasis on early time points which are associated with greater
uncertainty. Assuming that area estimates for larger colonies
are more precise, the log-linear model is likely to overestimate
growth rate. Applying a log-linear regression to the lineage area
estimates obtained from the µQFA data results in non-constant
residuals across lineage size (Figure 15 (C) and (D)), agreeing
with existing literature in that cell growth variability decreases
with post-inoculation time (Robinson et al., 2001). Figure
15 suggest that the assumption of a log-normal measurement
model is unjustified for the analyzed µQFA data.

Fig. 14: Example µQFA growth curve: Modeling the displayed
growth curve (A) of his3∆ gives the fastest growth rate estimate when
using the log-linear model. The corresponding (blurry) time course
image (B) as observed under the microscope and fed to the image
analysis tool is shown.

Fig. 15: Magnitude of residual values with increasing colony size:
Absolute residual size for his3∆ (A, C) and htz1∆ (B, D) for growth
rate estimates using the original exponential model applied using least
squares optimization and the log-linear regression model (Figure 13)
are plotted against the population size associated with each residual for
all µQFA growth curves.

I therefore chose to infer growth rate distributions using
the exponential model on the original scale with error also
measured on the original scale. Given that error size, even
on the original scale, is variable (Figure 15 (A, B)), I chose
to confirm inferred parameters with a Bayesian approach
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by which I can account for an appropriate range of noise
within the data using a precision parameter with a wide prior
distribution. Bayesian parameter inference carried out using
rjags (version 4.1.0; Plummer (2016)) confirmed the growth
rate densities obtained by frequentist methods (Figure 16).

Fig. 16: Frequentist versus Bayesian growth rate estimates:
Density plots of lineage growth rates of his3∆ (green) and htz1∆

(yellow) estimated by least squares optimization (Freq.) and Bayesian
inference using Gibbs’s sampling (Bayes.) of the exponential growth
model are shown.

For lineages with r ≥ 0.1, the frequentist point estimates
are in good agreement with the expected values of the Bayesian
posterior distributions. Frequentist parameter estimation for
noisy, non-dividing lineages occasionally resulted in negative
growth rates which I set to zero; for Bayesian inference,
however, the prior distribution for r sets an initial growth rate
constraint of r ≥ 0, causing slight discrepancies in growth rate
estimates between the two approaches for r < 0.1.

Given that the Bayesian approach returns a probability
distribution rather than a single point estimate, I used growth
rate estimates obtained from the Bayesian inference for the
population simulations presented in the next two sections. As
expected, the wild-type surrogate his3∆ grows faster, whereas
htz1∆ displays slightly more heterogeneity as indicated by the
slightly wider peak in the distribution (Figure 16).

4.2 Current Bayesian discrete stochastic, birth-only
inference techniques are unsuited for
high-throughput parameter estimation
Because a Bayesian approach was most successful when
modeling µQFA deterministically, I tried a Bayesian approach
for parameter inference using a discrete/stochastic hybrid
model (Figure 13). Several issues, however, keep this
implementation from being suitable for inference at a high
throughput level:

(i) Upon trying a range of tuning parameters for updating
sample estimates, I was unable to find a suitable tuning
parameter for doing inference on slow-growing growth curves
as parameter updates for values close to zero are always
attracted to zero. When testing tuning parameters between
0.001 and 1, the model did not converge to a sensible parameter
estimate within 40000000 iterations.

(ii) Convergence for growth curves with little to no noise
(σ < 5) cannot be achieved in a reasonable time frame (<
5 days on a commercially available laptop). With precision
approaching infinity, the probability of acceptance approaches
zero (Chen et al., 2010).

(iii) Noise values in the current implementation are constant.
No constant value applies to all µQFA growth curves. An
implementation where noise is estimated (Wilkinson, 2006)
should be considered in the future, but only once convergence
for different constant noise values can be achieved on a wide
range of growth curves including slow-growing lineages.

Nonetheless, for growth curves with a reasonable amount
of noise and growth rate r > 0.2, parameter values
converge to give a growth rate estimate. For example,
the growth rate parameter obtained from the Bayesian
discrete stochastic inference (which assumes a normal error
measurement model) shown in Figure 17 falls in between the
two deterministic parameter estimates (Figure 14) suggesting
that when considering inter-lineage stochasticities, a slightly
faster growth rate than the one I use in my simulations should
be adopted for this lineage.

Fig. 17: Bayesian stochastic parameter inference accounts for inter-lineage heterogeneities: Bayesian parameter inference outputs when using
a hybrid model (Figure 13) on a noisy growth curve (Figure 14) are displayed. Markov Chain Monte Carlo (MCMC) estimates show convergence
(A). Auto-correlation tests show limited similarity between subsequent samples (B). Normally distributed parameter estimates are obtained (C).
The obtained probability distribution for growth rate r, is compared to the deterministic (Det.) estimates (D). 10000 Bayesian stochastic posterior
predictives (dark green) are compared to 10000 Bayesian deterministic posterior predictives and the log-linear regression estimate (blue) (E).
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4.3 Untrimmed µQFA data confirm the existence of
an apparent lag phase at the population level
The µQFA data, which includes non-dividing lineages,
confirms the results of Chapter 1, in that all population
simulations show a piece-wise linear fit on the log scale.
However, population simulations for the µQFA data predict
an increase in apparent lag phase duration with increased
inoculation size (Figure 18). Growth rate distribution for both
his3∆ and htz1∆ are continuous and have shorter right-hand
tails than the distributions assessed in Chapter 1. Contrary to
Chapter 1, variability in observed growth rate decreases with
increased inoculation size (Figure 19). This confirms the earlier
conclusion that an increase in variability with population size
is the result of outlying, fast-growing lineages.

Fig. 18: Break point estimates over time in simulations of his3∆

and htz1∆: Apparent lag phase duration obtained by fitting Equation
7 to the population simulations generated using Equation 8. Mean
estimates along with their 95% confidence intervals (Conf. Int.) of 100
iterations are shown for integer population sizes n = [100, 10000] in
steps of 100.

4.4 µQFA population observations show a lag phase
even though single lineage lineage observations do
not

Fig. 20: Pin observations of µQFA confirm a lag phase at the
population level: Observed population growth for each of the spots
(pins) analyzed under the microscope is shown. Total area of cells,
counted in the form of dark pixels on a lighter agar background
as implemented in muqfatc, over time provide population growth
curves for each pin observed under the microscope. Estimated cell
densities over time are shown in red. Black lines indicate a piece-wise
line of best fit for each pin.

As predicted by my simulations, µQFA population observations
of each of the pins show a lag phase (Figure 20) even though the
corresponding single lineage data provides no evidence for any
lag phase. This validates the conclusion from Chapter 1 that an
apparent lag phase can arise at the population level as a result
of selection. Notably, apparent onset of stationary growth for

Fig. 19: Simulated population growth overestimates observed population growth: Simulated population growth depicted in gray, consisting
of 1 - 1000 lineages, is displayed. The mean and variance of 1000 iterations of the two segments of a piece-wise linear regression were calculated
and averages for each population start size are displayed in light green and blue for segment 1 (lag) and dark green and purple for segment 2
(exponential). The mean of the two distributions shown vertically on the left of each plot are marked in red. Growth rate distribution scales match
those of the main plots. Mean observed population growth for the lag and exponential phase as estimated from Figure 20 are shown in orange and
yellow and respectively. The latter estimates are based on mean pin inoculation sizes ranging from 150 to 650 cells.
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final observations in Figure 20 must be treated with caution as
area estimates are based on two-dimensional observations and
cells are likely to be piling on top of each other during final
observations resulting in apparent slow growth. Population
observations show shorter lag phase duration than predicted by
my simulations (Figure 19); this is likely due to small sample
sizes in pins which may not capture the full range of single-
lineage heterogeneity observed. Pins thus capture a different
selection process among single lineages.

4.5 Population simulations overestimate lag growth
rate
Population simulations predict slightly faster growth rates for
the exponential phase and predict significantly faster growth
rates than observed during the lag phase of the population data
(Figure 19). Nonetheless, both the simulated and observed
population estimates show a significant distinctions between
lag and exponential growth whereby exponential population
growth surpasses mean growth rates observed at the single
lineage level. This again confirms selection of fast-growing
lineages driving observed population growth rates.

Fig. 21: Observed and simulated population growth in pin
R05C05: Observed population growth up to 28 h obtained from htz1∆
cells inoculated on solid agar in row 5 column 5 (R05C05). The black
line shows a best-fit piece-wise linear regression with two break points.
1000 population simulations derived from the growth rate estimates
from pin R05C05 and simulated according to Equation 8 with the
starting population set to the number of single cells in the pin at
time point zero, are overlayed in cyan. Break point estimates for the
population simulations (blue) and the first break point in the observed
population data (red) are shown. Mean growth rates for all phases are
displayed on the right.

When sampling from lineage distributions associated
with a single pin and comparing the simulations to the
population observations, the two estimates match more closely
(Figure 21). Although less visible on this scale, simulated
lag and exponential growth are significantly different. The
predicted distinction in growth rate between the two phases is
clearly confirmed at the population level. A predicted lag phase
duration of 12.5 h for pinR05C05 is also confirmed by the true
population observations. However, population simulations still
significantly overestimate lag growth rates. Figure 19 suggests
that mean pin lag growth (orange) does not match the mean
growth rate (red) observed among single lineages but captures a

much greater number of non-growing or slow-growing lineages
possibly missed or discarded by the image analysis. Subsequent
exponential growth rates only differ by 0.02 h−1.

5 DISCUSSION
µQFA data, unlike the lineage data considered in Chapter
1, are best modeled using a normal error measurement
model rather than a log-normal one due to high uncertainty
in early time points. Choosing a model that accurately
captures the validity of the data is absolutely necessary
when doing simulations where single outliers significantly
influence simulated population growth. A Bayesian approach
to parameter inference is preferred since it returns a probability
distribution rather than a point estimate and provides greater
flexibility in model error measurement. Similar to Chapter
1, the discrete stochastic parameter inferences suggests
that considering inter-lineage stochasticities provides slightly
different parameter estimates. This could be particularly crucial
for estimating growth rates of fast-growing lineages and should
be taken into consideration once an implementation capable of
handling high-throughput single lineage growth data including
slow-growing and non-dividing growth curves is achieved.
While I here present a birth-only hybrid model for Bayesian
parameter inference in R (version 3.3.2; R Core Team,
2016), I propose re-writing the implementation in a compiled
programming language to increase computational speed as
parameter inference can currently take more than five days to
achieve convergence when run on a commercially available
laptop. An attempt to enhance the current implementation was
made using the Rcpp package (version 0.12.5; Eddelbuettel
and Francois, 2011) which allows for C++ code to be integrated
into R; however, this only increased computational speed by a
negligible amount. Functional programming techniques could
be used to run particle filters in parallel (Wilkinson, 2016); an
implementation in Scala (Odersky et al., 2006), for example,
could prove very useful.

Raw image data of µQFA allow for a verification of
simulated population growth with true observed population
growth for each pin on an agar plate. Observed population
growth confirms that a lag phase arises at the population
level, even when there is no evidence for a lag phase at
the single lineage level. To my knowledge, I present the
first attempt at capturing the implications of single lineage
growth rate heterogeneity and verifying these at the population
level, providing a new level of detail to existing predictive
microbiology approaches (Baranyi and Roberts, 1994). The
fact that my simulations overestimate lag growth rate at the
population level suggests that further work may need to be done
to estimate single lineage growth more precisely. However, pin
population observations consist of small sample sizes which
are unlikely to capture the full range of heterogeneity of
strain lineages; thus, to test population observations against
simulations, the entire plate as done in QFA (Addinall et al.,
2011) should be considered in the future. Furthermore, the
prediction that the lag phase lengthens with inoculation size
has yet to be confirmed for µQFA.
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The question of the origin of growth rate heterogeneity
addressed at the end of Chapter 1 remains open. Differences in
cell age have been shown to result in growth rate heterogeneity
at the single lineage level (Ginovart et al., 2011). The
current literature also suggests that heterogeneity in single
lineage growth rate frequently arises as a result of changing
environmental conditions and thus continues to persist in
populations (Levy et al., 2012; Cooper et al., 2001; Batchelor
et al., 1997). Recent work by Van Dijk et al. (2015) has shown
that even the response to stress is vastly heterogeneous among
isogenic lineages. Avraham et al. (2013) further show that low-
zinc conditions result in continued division of mother cells
and complete arrest of daughter cells, demonstrating extreme
differences in growth rate at the single cell level. It is thus
plausible that growth rate heterogeneity observed at the lineage
level translates down to the single cell level. Each reproducing
cell may produce offspring according to a given growth
rate distribution. While stochastic modeling captures inter-
lineage variability, quantifying selection among individual cells
within lineages would require that single cells be isolated and
observed at various growth stages, an experimental undertaking
which has yet to be done for S. cerevisiae.

As demonstrated, growth rate heterogeneity should
certainly be measured at a scale smaller than purely population
observations in order to fully capture growth rate as a strain
phenotype and assess slow-growing and non-dividing sub-
populations.
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