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Abstract:  

Signal diversity in communication systems plays an essential role in maintaining mating 

boundaries between closely related species. To preserve fitness, it has been hypothesized that 

signal-receptor coupling is maintained via strong purifying selection. However, because strong 

negative selection antagonizes diversity, how communication systems retain their potential for 

diversification is puzzling. We propose that one possible solution to this conundrum is receptor 

pleiotropy. Specifically, we demonstrate that Gr8a, a member of the gustatory receptor family in 

Drosophila, is a pleiotropic receptor that contributes to both the perception and production of 

inhibitory mating pheromones in the peripheral nervous system and pheromone producing 

oenocytes, respectively. Together, our data provide an elegant genetic solution to a long-standing 

evolutionary conundrum. 

 

One Sentence Summary: The Drosophila chemoreceptor Gr8a contributes to the maintenance 

of pheromonal signal-receptor coupling via its pleiotropic action in both the perception and 

production of mating pheromones.  

 

Main Text:  

Communication systems are essential for determining species mating boundaries via functionally 

coupled signal-receptor pairs (1-4). Because qualitative or quantitative changes in either signals 

or receptors could carry fitness costs, the coupling of signal-receptor pairs should be maintained 

via purifying selection (4-6). Yet, closely related species often utilize distinct communication 

signals (7-10). Therefore, it is puzzling how coupled pheromone production and perception can 
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be maintained by purifying selection; yet, retain the potential for signal diversification (4, 5, 11). 

Here we demonstrate that the perception and production of mating pheromones in Drosophila, 

two independent biological processes that reside in different tissues, are genetically coupled via 

the pleiotropic action of pheromone receptors in the peripheral nervous system and pheromone-

producing oenocytes. 

In Drosophila, cuticular hydrocarbons (CHCs) act as mating pheromones, which are essential for 

the integrity of reproductive boundaries between closely related species (12-18). The perception 

of CHCs, which are produced in the fat body and abdominal oenocytes (11, 13, 19), is mediated 

by specialized gustatory-like receptor neurons (GRNs) in appendages and the proboscis (20-24). 

We chose members of the Gustatory receptor (Gr) gene family as candidates for testing our 

hypothesis because several family members have already been implicated in the detection of 

excitatory and inhibitory pheromones (25-29). Since the expression of most Gr’s in gustatory 

receptor neurons (GRNs) has already been established (30, 31), we reasoned that candidate 

pleiotropic pheromone receptors should be also expressed in abdominal oenocytes (13). An RT-

PCR screen identified 24, out of the 59 Gr family members in the Drosophila genome, as 

chemoreceptors with abdominal-enriched expression (Table S1).  

Next, we focused our analyses on Gr8a, which was previously shown to contribute to the 

detection of the non-proteinogenic amino acid L-Canavanine (32). We found that Gr8a is 

expressed in 14-16 GRNs in the proboscis (Fig. 1A), and two paired GRNs in the foreleg 

pretarsus (Fig. 1B) of males and females. It is also expressed in abdominal oenocyte-like cells in 

males but not females (Fig. 1C). The sexually dimorphic expression pattern of Gr8a was further 

supported by qRT-PCR (Fig. 1D). We also found that Gr8a is co-expressed with the oenocyte 

marker Desat1 (13), as well as Desat1-negative cells with fat body-like morphology (Fig. 1E to 
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G). These data suggest that in addition to its chemosensory function in males and females, Gr8a 

also functions in pheromone production system in males.   

Therefore, we next investigated whether Gr8a, and the GRNs that express it, are required for 

sensory functions associated with mating decisions in males and females. We found that 

blocking neuronal transmission in Gr8a-expressing GRNs with the tetanus toxin (TNT) in 

females resulted in shorter copulation latency when courted by wild-type males (Fig. 2A). 

Similarly, homozygous (Fig. 2B) and hemizygous (Fig. 2C) Gr8a mutant females exhibited 

shorter copulation latency relative to wild-type controls, which could be rescued by the 

transgenic expression of a Gr8a cDNA in all Gr8a-expressing cells (Fig. 2D). In contrast, Gr8a 

and the neurons that express do not seem to contribute to male courtship latency or index 

towards wild-type virgin females (fig. S1). Since mating decisions in flies involve both 

excitatory and inhibitory signals (13, 33), a simple interpretation of these data is that in females, 

Gr8a contributes to the perception of male-emitted inhibitory mating signals.  

Because Gr8a expression is enriched in male oenocytes, and Gr8a mutant females seem to be 

unable to sense a copulation inhibitory signal emitted by males, we next tested the hypothesis 

that Gr8a mutant males are unable to produce or release the putative copulation inhibitory signal 

detected by virgin females. Indeed, we found that wild-type virgin females exhibited shorter 

copulation latency towards Gr8a mutant males, which suggest these males did not 

produce/release the inhibitory signal important for the copulation decision of virgin females (Fig. 

2E).  

As predicted by our behavioral data, the Gr8a mutation also has a significant effect on the 

overall CHC profile of males (Fig. 3A). Analyses of individual pheromonal components revealed 

a significant contribution of Gr8a to levels of specific components in males, including alkenes 
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and methyl-branched CHCs (Fig. 3B and Table S2), which have been implicated in mating 

decisions in several Drosophila species (13, 14, 17). Together, behavioral and pheromonal data 

indicate that Gr8a action contributes to mating decisions in females by co-regulating the female 

perception and male production of an inhibitory pheromone, which is consistent with Gr8a 

pleiotropy. 

Previous studies showed that male Drosophila increase their fitness by transferring inhibitory 

mating pheromones to females during copulation, which lowers their overall attractiveness (13, 

34-36). Therefore, we hypothesized that Gr8a mutant males would have less ability to 

produce/transfer inhibitory pheromones during copulation, and would not be able to detect 

inhibitory signals in mated females. Accordingly, we found that wild-type males fail to recognize 

mated status of wild-type females that previously mated with Gr8a mutant males, and Gr8a 

mutant males are not able to recognize the mated status of wild-type females that previously 

mated with wild-type males (Fig 3F). Together, these data indicate that Gr8a is required in 

males for the production/transfer, and subsequent detection, of an inhibitory mating signal in 

females. Therefore, Gr8a contributes to the regulation of both pre- and post-mating decisions in 

males and females by regulating the perception and production/release/transfer of inhibitory 

chemical mating signals. 

Here we demonstrated that a pleiotropic gene that encodes a putative pheromone receptor can 

simultaneously regulate the perception and production of pheromones important for mating 

decisions in Drosophila. Nevertheless, we still do not understand the exact mechanism by which 

Gr8a exerts its pleiotropic action. However, how a chemoreceptor like Gr8a contributes to CHC 

production in oenocytes is not obvious. We speculate that Gr8a could regulate the synthesis 

and/or secretion of specific CHCs by acting as an oenocyte-intrinsic receptor, which integrates 
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feedback information to the complex genetic network that regulates CHC synthesis (Fig 4). We 

also do not know yet the chemical identity of the ligand of Gr8a. Previous studies indicated cVA 

and CH503 as inhibitory mating pheromones that are transferred from male to females during 

copulation. However, these chemicals are not likely to function as Gr8a ligands because the 

volatile cVA acts primarily via the olfactory receptor Or67d (34, 35, 37), and CH503 has been 

reported to signal via Gr68a-expressing neurons, which are anatomically distinct from the Gr8a 

GRNs we describe here (36, 38).  

Although we do not know yet whether the pleiotropic action of Gr8a supported the rapid species 

diversification in Drosophila, phylogenetic analysis of Gr8a indicated that its protein sequence 

and sexually dimorphic expression pattern are conserved across Drosophila species (fig. S2A), 

and alignment of orthologous sequences revealed that at least one predicted extracellular region 

is hypervariable (fig. S2C and D). These data suggest that pleiotropic pheromone receptors may 

have played a role in maintaining the functional coupling of the production and perception of 

mating pheromones while still retaining the capacity for species diversification. 

Whether genetic coupling serves as an important mechanism for signal-receptor co-evolution in 

mating systems remains an open question (39, 40). Here we provide experimental data, which 

indicate that pleiotropic receptors can maintain signal-receptor coupling in a mating 

communication systems. We do not know yet whether pleiotropic chemoreceptor genes also 

contribute to pheromone-receptor coupling in other species or to communication systems that 

depend on other sensory modalities. Nevertheless, population genetics studies in crickets suggest 

that pleiotropy might be playing a role in auditory signal-receptor coupling as well (40, 41). 

While specific identities of the pleiotropic genes in these systems are mostly unknown, these 
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data suggest that the genetic coupling of signal-receptor pairs in communication systems might 

be more common than previously thought. 
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Figure legends: 

Fig. 1. Gr8a is a sexually dimorphic chemosensory receptor enriched in male oenocytes. (A) 

Gr8a promoter activity in proboscis, (B) forelegs, and (C) abdomens of males (top panels) and 

females (bottom panels). (D) Gr8a mRNA expression. Relative mRNA levels were measured by 

real-time quantitative RT-PCR. **, p<0.01 Mann Whitney Rank Sum Test. (E) Confocal z-stack 

image of Gr8a>EGFP in abdominal cells. (F) Confocal z-stack image of desat1>Luciferase in 

abdominal cells. (G) Co-expression of Gr8a and desat1. Green, Gr8a; Red, desat1; Blue, nuclear 

DAPI stain. Orange arrowhead, fat body cells; white arrowhead, oenocytes. Scale bar = 100µm. 

 

Fig. 2. Gr8a activity contributes to the perception and production of inhibitory signal 

associated with mating decision making in males and females. (A) Blocking neural activity in 

female Gr8a-expressing sensory neurons shortens copulation latency. Homozygous (B) or 

hemizygous (C) Gr8a null females show shortened copulation latency relative to wild-type 

controls. Df(1)BSC663 is a deficiency that covers the Gr8a locus. Df(1)BSC754 was used as a 

control. (D) Expression of Gr8a cDNA with Gr8a promoter rescues the copulation latency 

phenotype in Gr8a mutant females. (E) Wild-type females exhibit shorter copulation latency 

when courted by Gr8a mutant relative to wild-type males. (F) Gr8a mutant males do not 

recognize mating status of females, and have a reduced transfer of inhibitory mating pheromones 

during copulations. Female, female genotype; Sperm donor, genotype of males mated first with 

focal females; Focal male, genotypes of experimental males presented with mated females. 

Different letters above bars indicate statistically significant post hoc contrasts between groups 

(panels C,D, and F, ANOVA p<0.05). *, p<0.05, Mann Whitney Rank Sum Test. 
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Fig. 3. The Gr8a mutation affects the pheromone profiles of males and females. (A) 

Principle component analyses (PCA) of CHC profiles of wild-type and Gr8a mutant males. *, 

p<0.05, MANOVA. (B) The effect of the Gr8a mutation on levels of individual CHCs in males. 

Only affected CHCs shown. See Table S2 for the complete list. *, p<0.05, **, p<0.001, Mann 

Whitney Rank Sum Test. 

 

Fig. 4. Model for the pleiotropic action of Gr8a in the perception and production of 

pheromones. (A) Gr8a functions as a chemoreceptor for an inhibitory signal in pheromone-

sensing GRNs of males and females. (B) Gr8a also functions as a CHC autoreceptor in 

oenocytes, which regulates CHC secretion [1] or CHC synthesis [2] via signaling feedback loops 

[3].    
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