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Abstract 

Microbial communities are often studied by sequencing marker genes such as 16S 

ribosomal RNA. Marker gene sequences can be used to assess diversity and taxonomy, but 

do not directly measure functions arising from other genes in the community metagenome. 

Such functions can be predicted by algorithms that associate marker genes with 

experimentally determined traits in well-studied species. Typically, such methods use 

ancestral state reconstruction. Here I describe SINAPS, a new algorithm that predicts traits 

for marker gene sequences using a fast, simple word-counting algorithm that does not 

require alignments or trees. A measure of prediction confidence is obtained by 

bootstrapping. I tested SINAPS predictions from 16S V4 query sequences for traits 

including energy metabolism, Gram-positive staining, presence of a flagellum, V4 primer 

mismatches, and 16S copy number. Accuracy was >90% except for copy number, where a 

large majority of predictions were within +/–2 of the true value. 

Introduction 

Next-generation sequencing has revolutionized the study of microbial communities in 

environments ranging from the human body (Cho & Blaser 2012; Pflughoeft & Versalovic 

2012) to oceans (Moran 2015) and soils (Hartmann et al. 2014). There are two main 

approaches in such studies: marker gene metagenomics, in which a single gene such as 16S 
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ribosomal RNA is amplified, and shotgun metagenomics in which DNA from a sample 

containing microbes is cleaved into random fragments. Shotgun metagenomics could, in 

principle, reconstruct the complete genome of all species in a sample, but in practice is 

limited to assembling at most a few of the most abundant species. Lower-abundance 

genomes are represented by short fragments which often cannot be reliably assigned a 

taxonomy or function. Amplifying marker genes enables consistent detection of low-

abundance species, providing a more complete characterization of the taxonomic content 

of the community without giving a direct indication of functions represented by other 

genes in the community metagenome. This motivates the development of methods for 

predicting functional traits from marker gene sequences. The central challenge confronting 

such methods is that only a few thousand complete microbial genomes are currently 

available, necessitating extrapolation of functional annotations to the large majority of 

species known only by their marker gene sequences. A natural strategy for extrapolation is 

ancestral state reconstruction, which examines a tree for the marker gene in which leaf 

nodes with known traits are annotated. If a trait is seen to be conserved within the known 

leaves of a subtree, then other species in that subtree are inferred to have the same trait. 

One method that uses ancestral state reconstruction is PICRUSt (Langille et al. 2013) which 

infers genes and pathways classified by the COGS (Tatusov et al. 1997) and KEGG (Ogata et 

al. 1999) databases, respectively. A similar approach has been used to predict 16S copy 

number (Kembel et al. 2012). Ancestral state reconstruction is intuitively appealing, but is 

complicated to implement and can be computationally expensive. Also, a given 

implementation may introduce undesirable limitations; for example, PICRUSt uses "closed-

reference" OTU clustering which discards reads having <97% identity with the subset of 

Greengenes that is used as a reference, potentially losing many or even most species in a 

community with many novel taxa.  

 

Taxonomy prediction methods can be interpreted as extrapolation algorithms where the 

trait is membership of a given named clade. From this perspective, the taxonomy 

assignment methods (McDonald et al. 2012; Yilmaz et al. 2014) of Greengenes (DeSantis et 

al. 2006) and SILVA (Pruesse et al. 2007) respectively use ancestral state reconstruction, 

while the RDP Classifier (Wang et al. 2007) and SINTAX (Edgar 2016) use simpler and 
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faster word-counting strategies. With these considerations in mind, I designed SINAPS 

(Simple Non-Bayesian Attribute Prediction Software) to predict traits from a marker gene 

sequence. From an abstract perspective, SINAPS is essentially the same algorithm as 

SINTAX. A reference database is provided in which each marker gene sequence is 

annotated with the trait to be predicted. A random subset of words is extracted from the 

query sequence and used to find the reference database sequence (top hit) with most 

words in common. This process is repeated 100 times and the most frequently occurring 

top-hit trait is reported as the predicted trait for the query. The number of iterations in 

which that trait was the top hit is reported as the bootstrap confidence value. 

 

Measuring accuracy of trait prediction presents similar challenges to assessment of 

taxonomy prediction. Leave-one-out validation as used by the RDP Classifier unrealistically 

assumes that a typical query has high identity with the reference database  and therefore 

reports a misleadingly high accuracy (Edgar 2016). A more realistic validation should 

reflect the fact that most species in a typical sample are known only from their 16S 

sequences, many of which will have low identities with the closest sequence for a species 

having an experimentally verified trait (Fig. 1). For this work, I therefore used a variant of 

two-fold cross-validation in which the reference database is divided into two subsets 

having a given maximum pair-wise identity (t) with each other, modeling a scenario where 

the closest reference sequence to each query sequence has identity t. I used t = 97%, 95%, 

90% and 85% as representative identities encountered in practice. These identities 

correspond, very roughly, to species, genus, order and phylum (Yarza et al. 2014). If the 

query identity is 85%, accurate prediction thus requires that the trait is well conserved 

within a phylum. As a rough guideline, 85% identity is therefore the low end of a "twilight 

zone" (Rost 1999) where we should expect trait prediction to become ineffective in 

practice. For testing, I selected a variety of quite different traits including energy 

metabolism, Gram positive staining, presence of a flagellum, 16S copy number, and number 

of V4 primer mismatches. 
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Methods 

SINAPS algorithm 

Given a query sequence Q and reference database R annotated with an experimentally 

determined trait, the SINAPS algorithm proceeds as follows. Let W(Q) be the set of k-mers 

in Q where k = 8 by default. In one iteration, a random sub-sample ws(Q) of size s is 

extracted from W(Q) where s = 32 by default. Sub-sampling is performed with replacement. 

For each reference sequence r ∈ R, the number of words in common is Usubset(r) = |ws(Q) ⋂ 

W(r)|. The top hit T by k-mer similarity is identified as T = argmax(r) Usubset(r) and the trait 

is taken from the annotation of T. If there is more than one top hit, T is selected at random 

to avoid the bias that would occur with a systematic rule such as selecting the first in 

database order, which would give higher confidence to traits found earlier in the database. 

By default, 100 iterations are performed. The trait that occurs most often is reported as the 

prediction and its frequency is reported as its bootstrap confidence. 

D16S dataset  

To create a reference database of full-length 16S sequences with reliably assigned NCBI 

taxonomies, I ran the SEARCH_16S algorithm (Edgar 2017) on the 6,487 prokaryotic 

assemblies in Genbank that were annotated as "Complete genome" as of 15th Jan. 2017, 

giving a set (D16S) of 22,899 unique sequences. 

16S copy number 

Prokaryotic genomes contain from one to ten or more copies of the 16S gene (Pei et al. 

2010), causing bias of an order of magnitude in abundances measured from amplicon reads 

(Kembel et al. 2012; Edgar 2017). I annotated each D16S sequence with the total number of 

16S sequences found by SEARCH_16S in its genome, giving a copy number reference 

database (D16S-CN). 

V4 primer mismatches 

The 16S gene is typically amplified using so-called universal primers that in fact match 

most, but not all species. Mismatched positions can degrade amplification efficiency by a 
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large factor and are thus another substantial source of amplification bias (Sipos et al. 2007; 

Edgar 2017). To create a reference database for mismatches to a given primer, it suffices to 

have full-length sequences, or a partial sequence that covers the segment targeted by the 

primer. All sequences in a large 16S database such as SILVA or Greengenes could therefore 

be used to create a reference. For this work, I used the D16S set for simplicity and 

consistency with other tests as I considered it to be large enough for robust validation. I 

measured the total number of differences with the currently popular primer pair V4F 

(GTGCCAGCMGCCGCGGTAA) and V4R (GGACTACHVGGGTWTCTAAT), giving reference set 

D16S-V4d. 

Energy metabolism 

To obtain annotations of energy metabolisms I used the PROTRAITS database (Brbić et al. 

2016), selecting the species also found in D16S having integrated metabolism annotations 

with at least 95% confidence, giving reference set D16S-Energy. PROTRAITS uses the 

following categories (with corresponding numbers of sequences in D16S-Energy): 

chemoorganotroph (10,786), heterotroph (1,480), lithotroph (67), methylotroph (24), 

photoautotroph (5), photosynthetic (36), and phototroph (11). 

Gram-positive staining and presence of flagellum 

Gram-positive staining and the presence of a flagellum are binary traits which I again 

obtained by selecting species present in D16S having integrated PROTRAITS predictions 

with at least 95% confidence. This gave reference sets D16S-Gram (15,537 sequences) and 

D16S-Flag (7,705 sequences), respectively. 

Two-fold cross-validation 

For each reference set D16S-CN, D16S-V4d, D16S-Energy, D16S-Gram and D16S-Flag I 

performed two-fold cross-validation as follows. First, a reference set was divided into two 

subsets Xt and Yt such that the most similar sequence in the opposite subset has a given 

identity t, discarding sequences as needed to satisfy this constraint. For example, with t = 

95%, subsets X95 and Y95 were constructed so that each sequence in X95 has a top hit with 

identity 95% in Y95, and similarly the top hit in X95 for every sequence in Y95 has identity 
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95%. I created Xt, Yt pairs for t = 97%, 95%, 90% and 85% to reflect typical query-reference 

identities encountered in practice. For each t, I measured accuracy for full-length queries 

by using Xt as a query and Yt as a reference, and vice versa. To assess the use of short tags as 

query sequences, I extracted the V4 regions from each pair using the primers specified 

above, giving XV4t and Y V4t. I then used XV4t as a query against the full-length Yt as a 

reference and YV4t as a query against full-length Xt. 

Results 

Two-fold cross-validation results are summarized in Table 1. Accuracy is defined as the 

fraction of predictions which are correct. Accuracy is >95% for most traits at most tested 

identities except for 16S copy number, where the highest measured accuracy is 72.7% (t = 

97%, ≥90% bootstrap). This reflects that copy number is not well conserved, especially at 

lower identities. However, an incorrect prediction that is close to the correct value could 

still be useful, for example in correcting for amplification bias (Edgar 2017). I therefore also 

measured the distribution of (predicted copy number) – (true copy number) (Fig. 2). These 

results show that a large majority of predictions are within +/–2 of the correct value, even 

at t = 85%. 
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Figures and Tables 

 

Fig. 1. 16S sequence identity between OTUs and finished genomes. The histograms 

show identity distribution for OTUs from human gut, mouse gut and soil samples in a 

recent study (Kozich et al. 2013) with 16S sequences in the 6,487 currently available 

finished genomes (left) and the 711 genomes in the Dec. 2014 release of COGS (right). 
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Fig 2. Predicted vs. actual 16S copy number. The histograms show the distribution of 

(predicted copy number) – (true copy number) for query-reference identity (t) 97%, 95% 

and 85%. The lower-right panel shows the distribution when the predictions are 

randomized by shuffling, which preserves the frequency of each copy number. This shows 

that even at 85% identity, predictions are much closer to the correct values than a random 

guess based on the observed frequencies. Thus, copy number is well-enough conserved at 

85% identity (approximately phylum level) to enable useful prediction. 
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Metabolism Full-length V4 

Identity Cov (90) Acc (90) Acc (all) Cov (90) Acc (90) Acc (all) 

85% 90.0 99.4 96.2 91.4 97.1 92.3 

90% 89.9 99.1 97.9 89.7 99.3 92.1 

95% 99.0 99.3 99.1 98.6 98.8 98.7 

97% 94.9 99.2 98.4 98.1 97.8 97.7 

 

Copy nr. Full-length V4 

Identity Cov (90) Acc (90) Acc (all) Cov (90) Acc (90) Acc (all) 

85% 19.7 65.2 38.0 24.7 60.6 37.0 

90% 34.5 62.2 43.3 41.2 53.6 42.6 

95% 55.3 70.7 57.4 61.6 62.1 53.4 

97% 71.9 70.7 65.0 71.8 72.7 62.9 

 

V4 pr. mm. Full-length V4 

Identity Cov (90) Acc (90) Acc (all) Cov (90) Acc (90) Acc (all) 

85% 89.9 94.2 94.2 90.7 96.7 94.7 

90% 96.1 97.6 97.0 95.8 97.8 96.9 

95% 97.5 98.9 98.4 98.7 98.7 98.5 

97% 98.4 98.4 98.8 98.8 98.9 98.6 

 

Flagellum Full-length V4 

Identity Cov (90) Acc (90) Acc (all) Cov (90) Acc (90) Acc (all) 

85% 76.1 71.4 73.9 73.6 75.7 73.7 

90% 72.8 90.6 70.6 68.6 94.3 75.3 

95% 97.1 99.5 98.4 97.0 98.9 98.5 

97% 97.6 99.4 98.2 98.5 97.0 96.5 

 

Gram-pos. Full-length V4 

Identity Cov (90) Acc (90) Acc (all) Cov (90) Acc (90) Acc (all) 

85% 94.5 99.2 98.1 91.3 99.1 97.3 

90% 98.9 99.6 99.2 97.9 99.4 99.3 

95% 99.8 99.8 99.4 99.2 99.8 99.1 

97% 99.5 99.5 99.5 99.6 99.5 99.3 

 

Table 1. Two-fold cross-validation results. Accuracy is the fraction of predictions that 

are correct. Identity is the value of t, i.e. the top-hit identity between the query and 

reference database; Cov (90) is the fraction of predictions having ≥90% bootstrap; Acc (90) 

is the accuracy of predictions with ≥90% bootstrap; Acc (all) is accuracy of all predictions. 

Accuracies are color coded: dark green >95%, light green >90%, light orange >50%, dark 

orange <50%. Predictions are >90% accurate for all tested traits except for copy number. 

See Fig. 2 for further analysis of the copy number predictions. 
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