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ABSTRACT 30 

Different methods are available to calculate multi-population genomic relationship 31 

matrices. Since those matrices differ in base population, it is anticipated that the method used 32 

to calculate the genomic relationship matrix affect the estimate of genetic variances, 33 

covariances and correlations. The aim of this paper is to define a multi-population genomic 34 

relationship matrix to estimate current genetic variances within and genetic correlations 35 

between populations. The genomic relationship matrix containing two populations consists of 36 

four blocks, one block for population 1, one block for population 2, and two blocks for 37 

relationships between the populations. It is known, based on literature, that current genetic 38 

variances are estimated when the current population is used as base population of the 39 

relationship matrix. In this paper, we theoretically derived the properties of the genomic 40 

relationship matrix to estimate genetic correlations and validated it using simulations. When 41 

the scaling factors of the genomic relationship matrix fulfill the property 2112 kkk  , the 42 

genetic correlation is estimated even though estimated variance components are not 43 

necessarily related to the current population. When this property is not met, the correlation 44 

based on estimated variance components should be multiplied by 
12

21

k

kk
 to rescale the 45 

genetic correlation. In this study we present a genomic relationship matrix which directly 46 

results in current genetic variances as well as genetic correlations between populations.  47 

 48 
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INTRODUCTION 50 

When estimating additive genetic values of individuals, the relationships between 51 

individuals are used to describe the covariance between additive genetic values for a specific 52 

trait. Those covariances between individuals are best represented by the relationships at causal 53 

loci. Since causal loci are generally unknown, different approaches have been developed to 54 

estimate relationships from genomic marker data (e.g., VanRaden 2008; Powell et al. 2010; 55 

Yang et al. 2010). As long as causal loci and genomic markers have the same properties, such 56 

as allele frequency distribution, relationships at the markers are observed to be an unbiased 57 

estimate of relationships at the causal loci (Yang et al. 2010; Yang et al. 2015).   58 

Relationships are expressed relative to a base population, consisting of unrelated 59 

individuals that have average self-relationships of one, for which the additive genetic variance 60 

is estimated. The base population of a genomic relationship matrix depends on the method 61 

used to calculate the relationship matrix, therefore estimated variances differ across methods 62 

(Speed and Balding 2015; Legarra 2016). By using the current allele frequencies to calculate 63 

the genomic relationship matrix, the current population is the base population for which 64 

additive genetic variances are estimated (Hayes et al. 2009). 65 

Genomic relationships can also be calculated between distantly related individuals, for 66 

example between individuals from different populations. Those relationships can be used to 67 

estimate genetic correlations between populations using a multi-trait model (Karoui et al. 68 

2012), where the same trait in each population is modelled as a different trait. Due to 69 

differences in environments and allele frequencies, in combination with non-additive effects, 70 

the allele substitution effects of causal loci can differ between populations (e.g., Fisher 1918; 71 

Fisher 1930; Falconer 1952). Moreover, some causal loci might only segregate in one of the 72 

populations. Therefore, the genetic correlation between populations can differ from 1.  73 
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The genetic correlation between populations is an important parameter, since it is used to 74 

understand the genetic architecture and evolution of complex traits, such as disease traits in 75 

humans (De Candia et al. 2013; Brown et al. 2016). Moreover, the genetic correlation 76 

determines whether information can be shared across populations as done in multi-population 77 

genomic prediction (Wientjes et al. 2015; Wientjes et al. 2016), which is of importance for 78 

animals (e.g., Karoui et al. 2012; Olson et al. 2012), plants (e.g., Lehermeier et al. 2015) and 79 

humans (e.g., De Candia et al. 2013).   80 

Different methods are available to calculate multi-population genomic relationship 81 

matrices (Harris and Johnson 2010; Erbe et al. 2012; Chen et al. 2013; Makgahlela et al. 82 

2013). The two most important differences between the methods are: 1) the assumed relation 83 

between effect size and allele frequency of markers; namely assuming effect size and allele 84 

frequency are independent (e.g., method 1 of VanRaden (2008)) or assuming that markers 85 

with a lower allele frequency have a larger effect (e.g., method 2 of VanRaden (2008) and 86 

Yang (2010)), and 2) the allele frequency that is used; namely allele frequencies specific to 87 

each population, the average allele frequency across the populations, or the estimated allele 88 

frequency when the populations separated. Since relationships between individuals differ 89 

across those methods, it is anticipated that the method used to calculate the genomic 90 

relationship matrix affects the estimate of the genetic correlation.  91 

Therefore, the aim of this paper is to define a multi-population genomic relationship matrix 92 

to estimate current genetic variances within and genetic correlations between populations. We 93 

theoretically derive a relationship matrix with this property and validate it with simulations. 94 

To rule out the effect of differences in linkage disequilibrium between markers and causal 95 

loci, we will focus in the entire paper on a situation where causal loci are used to calculate the 96 

relationships.  97 
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MATERIALS AND METHODS 98 

Theory 99 

The additive genetic correlation, rg, is the correlation between additive genetic values (A) 100 

for two traits of the same individual (Bohren et al. 1966; Falconer and Mackay 1996). In an 101 

additive model and under the assumptions that the correlation originates from pleiotropy, 102 

genetic values are independent between loci, and allele substitution effects are independent 103 

from allele frequency, rg is equal to the average correlation between allele substitution effects 104 

of the two traits, denoted as trait 1 and 2, at causal loci. This equality can be shown for 105 

individual i by considering both genotypes (z) and allele substitution effects () at all nc 106 

causal loci as random: 107 

     

   jjijijc

j

jjijij

l

lil

j

jij

j

jiji

EzzEn

EzzEzzEzVarAVar

11

111111
























































 

 108 

     jjijijci EzzEnAVar 222   109 

     

   jjijijc

j

jjijij

l

jij

j

jij

l

lil

j

jijii

EzzEn

EzzEzzEzzCovAACov

21

21212121 ,,
























































 

110 

   

   

       
 

   


















r
EE

E

EzzEnEzzEn

EzzEn

AVarAVar

AACov
r

jjjj

jj

jjijijcjjijijc

jjijijc

ii

ii
g





22

2211

21

2211

21

21

21

21

12

),(

  (1) 111 

where j and l denote the different causal loci. Genotypes are represented by allele counts 112 

coded as 0, 1 and 2 that are centered by subtracting 2p, where p is the allele frequency for the 113 

counted allele. 114 

Similar to genetic correlations between traits in one population, the genetic correlation (rg) 115 

between populations can be estimated in a multi-trait model using a relationship matrix and 116 
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REML by modelling the phenotypes of two populations as different traits (Karoui et al. 117 

2012). This approach is also known as multi-trait GREML. In the following, we will refer to 118 

trait 1 as the trait expressed in population 1 and to trait 2 as the trait expressed in population 2. 119 

When considering performance in different populations as different traits, individuals have a 120 

phenotype for only one trait. Therefore, the (co)variance structure of the additive genetic 121 

values can be written as (Visscher et al. 2014):    122 
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where a1 is the vector with additive genetic values for individuals from population 1 for trait 124 

1, a2 is the analogous vector for individuals from population 2 for trait 2, 2

1  and 2

2  are 125 

genetic variances for the two traits, 12  is the genetic covariance between the traits, G11 is a 126 

matrix with genomic relationships within population 1, G22 is a matrix with genomic 127 

relationships within population 2, and G12 and G21(= 
'

12G ) are matrices with genomic 128 

relationships between population 1 and 2.  129 

To derive the definition of the genomic relationships in Equation 2, we derive the 130 

variances and covariance of the additive genetic values for the two traits. Naturally, this will 131 

result in an equation to calculate the genomic relationship matrix (G) across populations to 132 

estimate (co)variances in the current populations.  133 

When both populations are in Hardy-Weinberg equilibrium, allele substitution effects are 134 

independent from allele frequency, and effects of causal loci are independent from each other, 135 

the genetic variance for trait 1 can be written as 
2

11

2

1 1
)1(2    jj pp , where p1j is the 136 

allele frequency at locus j in population 1 (Falconer and Mackay 1996). Hence, the variance 137 

of a1 is: 138 
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where Z1 is a n1 x nc matrix of centered genotypes for all individuals from population 1 (n1) 140 

for all causal loci, and α1 is a vector of length nc with allele substitution effects at causal loci 141 

for trait 1.  142 

Similarly,  143 
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The genetic covariance between the two traits is:  145 

  2

22

2

11

2

2

2

112 21
)1(2)1(2   jjjjgg pppprr  146 

  )1(2)1(2 221112 jjjj pppp .                                    (5) 147 

Therefore, the covariance between genetic values of population 1 and 2 is: 148 
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From Equation 3, 4 and 6, it follows that the genomic relationship matrix (G) is: 150 
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When allele frequencies from the current population are used, G from Equation 7 estimates 153 

current genetic (co)variances. Lourenco et al. (2016) presented a comparable G matrix for 154 

combining purebred and crossbred animals. Note that the covariance of the genotypes 155 

between the populations, '

12ZZ , is divided by the standard deviations of the genotypes in each 156 

population,   )1(2 11 jj pp  and   )1(2 22 jj pp . Therefore, the relationships in this G 157 

matrix are defined as correlations between the individuals. 158 
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By interpreting   )1(2 11 jj pp ,   )1(2 22 jj pp  and   )1(2)1(2 2211 jjjj pppp  159 

as scaling factors (i.e. k1, k2, and k12) of G, the variance-covariance matrix in Equation 2 160 

becomes:   161 
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Equation 8 shows that the scaling factors of G and the variance components are completely 163 

confounded. Therefore, other scaling factors of G can be used to estimate the genetic 164 

correlation as: 165 
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Equation 9 shows that the genetic correlation is directly estimated from the variance 167 

components when the scaling factors of G fulfil the property 2112 kkk  . When 168 

2112 kkk  , the correlation based on variance components should be multiplied by 169 















12

21

k

kk
 to correct the estimated genetic correlation. By changing the scaling factors, the 170 

genetic variances change as well. When genetic variances of the current population are of 171 

interest, the within-population blocks in G should be scaled as in Equation 7 (Legarra 2016).  172 

Equation 8 and 9 show that the genetic correlation is estimated when the scaling factors in 173 

G are the same for all blocks. When all scaling factors are equal to 1, so effectively no scaling 174 

factor is used, the (co)variances represent the (co)variances of the causal effects i.e., 
2

1
 , 

2

2
175 

, and 
12 . A disadvantage of this scaling is that elements of G can become very large, which 176 

can result in very small variance components that may be flagged as too small in statistical 177 
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software. This might be prevented by either scaling up the phenotypic variance by multiplying 178 

all phenotypes by a constant, or by scaling down the elements in G by dividing all elements 179 

by the same constant. Both scaling approaches have no influence on the genetic correlation, 180 

but do affect the genetic (co)variances.  181 

 182 

Simulations 183 

Simulations were used to validate the results above. Two populations of 2500 individuals 184 

each with phenotypes for a trait influenced by the same 15 000 loci were simulated. Allele 185 

frequencies of the loci were sampled from a U-shape distribution, independently in both 186 

populations. Genotypes were allocated to individuals according to Hardy-Weinberg 187 

equilibrium, assuming that loci were segregating independently. Therefore, genetic 188 

correlations between populations were only affected by pleiotropy and not by linkage 189 

disequilibrium.  190 

Allele substitution effects were sampled from a bi-variate normal distribution with means 191 

zero and variances 1, and a correlation of 0.5 between allele substitution effects in both 192 

populations. The allele substitution effects were multiplied with the corresponding genotypes 193 

to calculate additive genetic values for individuals, assuming additive gene action. 194 

Environmental effects were sampled from a normal distribution with variance (
2

1

h
-1) times 195 

the genetic variance, where the genetic variance was calculated across all individuals in both 196 

populations. The heritability was set to 0.9, to ensure that there was sufficient power in the 197 

data to estimate the (co)variances. Phenotypes were the sum of additive genetic and 198 

environmental effects, and were standardized to an average of 0 and a standard deviation of 199 

100. Simulations were replicated 100 times.    200 

Phenotypes were analyzed in a two-trait model, using four different G matrices; two G 201 

matrices derived above, and two commonly used G matrices for multiple populations (Chen 202 
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et al. 2013; Makgahlela et al. 2013). In all four methods, genotypes at causal loci were used to 203 

calculate G. The methods differed in scaling factors as well as in centering of genotypes, 204 

being performed either within or across populations.  205 

In the first three methods, the genotypes in Z were centered within population as 206 

jmijm pg 2 , where gijm is the allele count of individual i from population m at locus j and pjm 207 

is the allele frequency at locus j in population m. The first method, G_New, scaled G 208 

following Equation 9: 209 
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In the second method, G_1, scaling factors were equal to 1: 211 
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The third method, G_Chen, calculated G according to Chen et al. (2013): 213 
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The fourth method, G_Across, used the average allele frequency across both populations 215 

instead of population-specific allele frequencies to center the genotypes (e.g., Makgahlela et 216 

al. 2013). Thus, the matrix of genotypes, denoted Z*, had elements jijm pg 2 , where jp  is 217 

the average allele frequency across both populations at locus j. The scaling factor was the 218 

same for all blocks:  219 
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G_New, G_1 and G_Across fulfilled the property 2112 kkk   to directly estimate the 221 

genetic correlation. In G_Chen, 2112 kkk  when allele frequencies in the two populations 222 

were different. Therefore, the genetic correlation estimated with G_Chen was multiplied by 223 
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kk
 to correct the estimate. Moreover, the current 224 

populations were the base population for the within-population blocks of G_New and 225 

G_Chen, so those G matrices estimated the genetic variances within the current populations 226 

(Speed and Balding 2015; Legarra 2016). As explained before, the variances of G_1 227 

represented the variances of the causal effects. For G_Across, the base population was not 228 

clearly defined, so the interpretation of the estimated genetic variances is unclear. See 229 

supporting information for the R-script and seeds used to simulate genotypes and phenotypes 230 

and to calculate the different G matrices.  231 
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RESULTS 232 

Variance components 233 

In Figure 1, the estimated genetic variance using G_New is plotted against the simulated 234 

genetic variance. This figure shows that the estimates varied only slightly around the 235 

simulated values. This shows that G_New unbiasedly estimated the genetic variance in the 236 

current populations. 237 

As expected, G_New and G_Chen estimated the same genetic variances (Figure 2 and 3). 238 

The variances of G_1 represented the variances of the causal effects. By multiplying those 239 

variances by    jmjm pp 12  for population m, genetic variances identical to G_New and 240 

G_Chen were obtained. The genetic variance estimated with G_Across was approximately a 241 

factor 1.5 higher than the genetic variance estimated with G_New and G_Chen. Also the 242 

scaling factors k1 and k2 were approximately a factor 1.5 higher. Hence, when multiplying the 243 

variances estimated with G_Across by the ratio in scaling factors, estimates became identical 244 

to those with G_New and G_Chen. So, the difference in estimated variances between 245 

methods was completely explained by the difference in scaling factors, while centering 246 

genotypes within or across populations had no effect on estimated variances. Estimated 247 

residual variances were exactly the same for the four different G matrices.  248 

 249 

Genetic correlation 250 

Despite differences in (co)variance estimates, G_New, G_1, and G_Across yielded the 251 

same estimated genetic correlation (Figure 4) which was an unbiased estimate of the 252 

simulated genetic correlation (Figure 5). This is because differences in genetic covariances 253 

among models were compensated by corresponding differences in genetic variances. The 254 
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genetic correlation estimated using G_Chen was ~20% lower. When multiplying this estimate 255 

by 
12

21

k

kk
=1.23, the genetic correlation became identical to the other three methods.  256 

  257 
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DISCUSSION 258 

The aim of this paper was to define a multi-population genomic relationship matrix to 259 

estimate current genetic variances within and genetic correlations between populations. We 260 

derived a genomic relationship matrix, G_New, that yields unbiased estimates of current 261 

genetic variances, covariances and correlations. Moreover, we showed the required property 262 

for other genomic relationship matrices to estimate the genetic correlation between 263 

populations, even though estimated variance components are not necessarily related to the 264 

current populations.   265 

 266 

Methods to calculate the genomic relationship matrix  267 

From the four methods used in this paper to calculate G, G_New was the only matrix 268 

correctly estimating both current genetic variances as well as genetic correlations. G_Chen 269 

also estimated current genetic variances, but the estimated genetic correlation had to be 270 

multiplied by 
12

21

k

kk
. G_1 estimated the correct genetic correlation, but estimated the 271 

variance of causal effects instead of the genetic variance. Although the base population in 272 

G_Across was not well defined, genetic correlations were correctly estimated but there was 273 

no clear interpretation of the estimated genetic variances. Results also showed that genetic 274 

variances were not affected by centering the allele count, as shown before by Strandén and 275 

Christensen (2011).  276 

Table 1 gives an overview of the most frequently used methods to calculate G across 277 

multiple populations, with scaling factors and correction factors for the estimated genetic 278 

correlation. G_New, G_1, G_Across, and the method described by Erbe et al. (2012) directly 279 

estimate the correct genetic correlation. The G_Chen method does not directly estimate the 280 

genetic correlation, but the estimate can be corrected using the scaling factors. Those five 281 
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methods all assume that allele substitution effects are independent of allele frequency, similar 282 

to method 1 of VanRaden (2008). This is in contrast to another regularly used method, namely 283 

method 2 of VanRaden (2008), also described by Yang (2010). This method yields a valid 284 

relationship matrix only when the average effect at a locus is proportional to the reciprocal of 285 

the square root of expected heterozygosity at that locus (Appendix, Equation A8). So, this 286 

method assumes that marker effects are determined by their allele frequency, with larger 287 

effects for rarer alleles. For a trait determined by relatively few genes and undergoing 288 

directional selection, this assumption may be plausible, since selection acts stronger on causal 289 

loci with a larger effect (Haldane 1924; Wright 1931, 1937). It is, however, a very strong 290 

assumption in general. Many traits may experience only weak selection, and/or are 291 

determined by many genes. In those cases, allele frequency distribution is determined mainly 292 

by the interplay of mutation and drift, and a direct relationship between effect size and allele 293 

frequency is not expected. Therefore, the assumption of independence between allele 294 

frequency and allele substitution effects seems more realistic for most traits. Moreover, when 295 

allele substitution effects would depend on allele frequency, effects for exactly the same trait 296 

would differ between populations when allele frequencies differ. This makes the 297 

interpretation of a genetic correlation estimated using method 2 of VanRaden (2008) rather 298 

difficult. Therefore, we advise to use G matrices based on method 1 instead of method 2 of 299 

VanRaden (2008), especially when multiple populations are considered. 300 

In this paper, we assumed that causal loci were known and were used to calculate G. In 301 

this way, differences in linkage disequilibrium (LD) between markers and causal loci across 302 

populations did not affect the results and all genetic variance was explained by G. When 303 

genomic markers are used to calculate G, differences in LD can affect the results, since the 304 

LD pattern is known to differ across populations in humans (Sawyer et al. 2005) as well as in 305 

livestock (e.g., Heifetz et al. 2005; Gautier et al. 2007; Veroneze et al. 2013). This difference 306 
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in LD is likely to affect the estimated genetic correlation, since it reduces the correlation of 307 

marker effects (Gianola et al. 2015). Moreover, markers might not explain all genetic 308 

variance when there is no complete LD between a causal locus and at least one marker (e.g., 309 

Yang et al. 2010; Daetwyler et al. 2013). This can affect the estimated genetic correlation 310 

when the variance explained by the markers shows either a higher or lower genetic correlation 311 

than the part not explained (Bulik-Sullivan et al. 2015). Therefore, it is difficult to predict the 312 

effect of not explaining all genetic variance by markers on the estimated genetic correlation. 313 

In a follow-up study, we will investigate the effect of using marker genotypes on the 314 

estimated genetic correlation between populations.  315 

 316 

Other approaches to estimate the genetic correlation between populations 317 

We focused on using genomic relationships in a multi-trait model to estimate genetic 318 

correlations between populations. Genetic correlations can also be estimated using summary 319 

statistics of genome-wide association studies (GWAS; Bulik-Sullivan et al. 2015; Brown et 320 

al. 2016) or using random regression on genotypes (Sørensen et al. 2012; Krag et al. 2013). 321 

The method based on summary statistics of GWAS combines information from different 322 

studies and weights estimated marker effects by LD overlap and corresponding z score (Bulik-323 

Sullivan et al. 2015; Brown et al. 2016). This method is beneficial when the costs of 324 

collecting enough data are high and data sharing is not possible. It is, however, not known 325 

whether this method estimates the correct genetic correlation. The method using random 326 

regression on genotypes is equivalent to the multi-trait GREML method used in this study, 327 

since both estimate the same additive genetic values when the genotypes are centered and 328 

scaled in the same way (Habier et al. 2007; VanRaden 2008; Goddard 2009). Variance 329 

components estimated with random regression on marker genotypes represent variances of 330 

marker effects (Meuwissen et al. 2001), similar to G_1, when the same centered genotypes 331 
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are used as input. Hence, random regression on centered genotypes can also be used to 332 

estimate genetic correlations between populations. When genotypes for the random regression 333 

are centered and scaled, the estimated genetic correlation becomes equal to the estimated 334 

genetic correlation using G based on method 2 of VanRaden (VanRaden 2008; Yang et al. 335 

2010). Therefore, the interpretation of this estimated genetic correlation remains unclear as 336 

well.         337 

 338 

Importance of the genetic correlation between populations 339 

The genetic correlation between populations is an important parameter for genomic 340 

prediction, since it determines the usefulness of combining information from multiple 341 

populations. A low genetic correlation means that it is very unlikely that combining 342 

populations will increase the accuracy of estimated genetic values. Therefore, the genetic 343 

correlation partly determines the accuracy of across- or multi-population genomic prediction. 344 

For predicting the accuracy in those scenarios, an accurate estimation of genetic correlations 345 

is essential (Wientjes et al. 2015; Wientjes et al. 2016). For predicting response to selection, 346 

both the accuracy as well as current genetic variances are needed (Falconer and Mackay 347 

1996). Even though the accuracy of estimated genetic values is quite consistent across 348 

methods for calculating G (Makgahlela et al. 2013, 2014; Lourenco et al. 2016), for 349 

estimating genetic (co)variances and correlations it is important to use the G_New matrix.  350 

 351 

Genetic correlation versus genic correlation 352 

The genetic correlation is defined based on additive genetic (co)variances. Under selection, 353 

however, additive genetic (co)variances change over generations, since selection creates 354 

transient gametic phase disequilibrium (i.e., correlations between allele substitution effects at 355 

different loci). This process is also known as the Bulmer effect (Bulmer 1971). Therefore, 356 
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genetic (co)variances and correlations depend not only on the genetic background of the traits, 357 

but also on transient processes like the type and intensity of selection. Apart from additive 358 

genetic (co)variances, quantitative genetics also describes genic (co)variances (e.g., Bulmer 359 

1980; Bulmer 1989), defined as the additive genetic (co)variance in the absence of gametic 360 

phase disequilibrium. In contrast to genetic variances, genic variances are independent from 361 

selection and are always equal to twice the Mendelian sampling variance (Hill 2014). In 362 

analogy to genic (co)variances, genic correlations can be defined as well. We believe that 363 

genic correlations are more relevant than additive genetic correlations, since genic 364 

correlations are not influenced by transient processes and, therefore, more constant across 365 

generations.  366 

In our simulation study, allele substitution effects were randomly sampled, so no transient 367 

gametic phase disequilibrium was present and genic (co)variances were equal to the additive 368 

genetic (co)variances. In all situations, genic variances can be estimated when the base 369 

population of the relationship matrix is unselected and phenotypic records on which selection 370 

decisions are based are available (Henderson 1985). It is also shown that even when 371 

phenotypic records from the base population are absent, the genic variance can be estimated 372 

when phenotypic records for several generations are available and the base population is 373 

unselected (Henderson 1985; Van der Werf and de Boer 1990). It can be expected that as long 374 

as several generations of phenotypic data is available in combination with the relationships 375 

between all those individuals, variances are corrected for selection and effectively genic 376 

variances are estimated. Therefore, genic correlations can likely be calculated using G_New, 377 

provided that data is available for several generations.   378 

 379 
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Conclusion 380 

The properties of the genomic relationship matrix affect estimates of genetic variances 381 

within as well as genetic correlations between populations. For estimating current genetic 382 

variances, allele frequencies of the current population should be used to calculate 383 

relationships within that population. For estimating genetic correlations between populations, 384 

scaling factors of the different blocks of the relationship matrix, based on method 1 of 385 

VanRaden (2008), should fulfill the property 2112 kkk  . When this property is not 386 

fulfilled, the estimated genetic correlation can be corrected by multiplying the estimate by 387 

12

21

k

kk
. In this study we present a genomic relationship matrix, G_New, which directly 388 

results in current genetic variances as well as genetic correlations between populations.  389 

 390 

 391 

  392 
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FIGURES 513 

 514 

 515 

Figure 1 – Estimated versus simulated genetic variance. The estimated genetic variance in 516 

both populations in each of the 100 replicates using the genomic relationship matrix derived 517 

in this study (G_New) versus the simulated genetic variance. The grey line represents the line 518 

y=x. 519 

 520 

 521 
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 523 

Figure 2 – Estimated genetic variance in population 1. The estimated genetic variance in 524 

population 1 in each of the 100 replicates using the genomic relationship matrix derived in 525 

this study (G_New) versus the estimated genetic variance using population-specific allele 526 

frequencies and either a genomic relationship matrix without scaling factors (G_1) or based 527 

on the method of Chen et al. (2013; G_Chen), or using allele frequencies across populations 528 

(G_Across). 529 

 530 
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532 
Figure 3 – Estimated genetic variance in population 2. The estimated genetic variance in 533 

population 2 in each of the 100 replicates using the genomic relationship matrix derived in 534 

this study (G_New) versus the estimated genetic variance using population-specific allele 535 

frequencies and either a genomic relationship matrix without scaling factors (G_1) or based 536 

on the method of Chen et al. (2013; G_Chen), or using allele frequencies across populations 537 

(G_Across). 538 

 539 
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542 
Figure 4 – Estimated genetic correlation between population 1 and 2. The estimated 543 

genetic correlation between population 1 and 2 in each of the 100 replicates using the 544 

genomic relationship derived in this study (G_New) versus the estimated genetic correlation 545 

using population-specific allele frequencies and either a genomic relationship matrix without 546 

scaling factors (G_1), based on the method of Chen et al. (2013; G_Chen), or using allele 547 

frequencies across populations (G_Across).  548 
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 550 

Figure 5 – Boxplot of the estimated genetic correlation using different methods to 551 

calculate the genomic relationship matrix. The estimated genetic correlation between 552 

population 1 and 2 in each of the 100 replicates using the genomic relationship matrix derived 553 

in this study (G_New), using population-specific allele frequencies and either a genomic 554 

relationship matrix without scaling factors (G_1), or based on the method of Chen et al. 555 

(2013; G_Chen), or using allele frequencies across populations (G_Across). The simulated 556 

genetic correlation was 0.5. 557 

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted April 5, 2017. ; https://doi.org/10.1101/124115doi: bioRxiv preprint 

https://doi.org/10.1101/124115
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 

 

Table 1 – Overview of frequently used method to calculate G across populations with scaling and correction factors.  558 

Method of 

calculating G
a 

Described by 
Used scaling factors of the different blocks in G

b
 Correction factor to correct the 

genetic correlation k1
c 

k2
c 

k12
c 

G_New This study    ii pp 11 12     ii pp 22 12    )1(2)1(2 2211 iiii pppp  Not needed 

G_1 This study 1 1 1 Not needed 

G_Chen Chen et al. (2013)    ii pp 11 12     ii pp 22 12       iiii pppp 2211 112     

   






iiii

iiii

pppp

pppp

2211

2211

112

1212
 

G_Across  VanRaden (2008)/ 

Makgahlela et al. 

(2013) 

   ii pp 12     ii pp 12     ii pp 12  Not needed 

Erbe Erbe et al. (2012)    ** 12 ii pp     ** 12 ii pp     ** 12 ii pp  Not needed 

VanRaden2/ 

Yang 

VanRaden (2008); 

Yang et al. (2010) 

Nr. of markers
d 

Nr. of markers
d
 Nr. of markers

d
 Unknown 

a
 Methods were compared assuming that no adjustment for inbreeding or regression back to the pedigree relationship matrix was performed. 559 

b
 k1 is the scaling factor of the block containing relationships in population 1, k2 is the scaling factor of the block containing relationships in 560 

population 2, and k12 is the scaling factor of the block containing relationship between population 1 and 2. 561 

c 
ip1  is the allele frequency in population 1, ip2  is the allele frequency in population 2, ip  is the average allele frequency across populations, *

ip  562 

is the estimated allele frequency when the populations separated. 563 
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d
 Per marker i, genotypes are scaled by )1(2 ii pp  . 564 

 565 

 566 
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APPENDIX 567 

The G matrix based on method 2 of VanRaden (2008) and Yang et al. (2010), G_VR2, 568 

weights markers by the reciprocal of the square root of the variance of its genotypes. In this 569 

Appendix, it is shown that this is only correct under the assumption that the variance of the 570 

average effect () at a locus, say l, is inversely proportional to expected heterozygosity at that 571 

locus,  572 

)1(2

2

ll pp

c
l 
 ,     (A1) 573 

where c is a constant, and lp  the allele frequency at locus l.  574 

Consider the single-trait mixed model eZaXby  , where a is the vector of random 575 

additive genetic effects, with 2)var( AGa  . This mixed model is valid only when 2

AG  576 

indeed represents the covariances between additive genetic effects (A) of individuals. This 577 

requires that  578 

)var(/),cov( AAA jiij G ,      (A2) 579 

where i and j are individuals.  580 

By definition, the additive genetic effect of an individual is the sum of the average effects 581 

at its loci, weighted by the centred allele count (Fisher 1918; Falconer and Mackay 1996), 582 

 
l

llili pxA )2( ,      (A3) 583 

where ilx  is the allele count of individual i at locus l, taking values 0, 1 or 2. Thus  584 









 

l

lljl

l

llilji pxpxAA  )2(,)2(cov),cov( .    (A4) 585 

For the genic covariance, the llil px )2(   terms are independent between loci by 586 

definition (Bulmer 1971), so that the covariance reduces to  587 

 
l

ljllilji l
pxpxAA 2)2)(2(),cov(  .    (A5) 588 
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Substituting the relationship between average effects and allele frequency given by 589 

Equation A1 yields 590 

 













l ll

ljllil

ji
pp

pxpx
cAA

)1(2

)2)(2(
),cov( .    (A6) 591 

Analogously, the genic variance equals 592 

cncppA l

ll

ll l
  2)1(2)var(  , 593 

where ln  is the number of loci. Finally, from Equation A2, 594 

)var(/),cov( AAA jiij G  =  












l ll

ljllil

l pp

pxpx

n )1(2

)2)(2(1
,  (A7) 595 

which is G_VR2. Thus obtaining G_VR2 requires Equation A1. 596 

Hence, G_VR2 is valid under the assumption that the magnitude of the average effect at a 597 

locus is proportional to the reciprocal of the square root of expected heterozygosity at that 598 

locus,  599 

)1(2

1

ll

l
pp 

 .     (A8) 600 

Equation A7 shows that elements of G_VR2 are the genome-wide average of the 601 

correlations at individual loci; the term in square-brackets is the correlation between additive 602 

genetic effects at locus l, and the sum of these terms is divided by the number of loci. Thus 603 

G_VR2 may have been motivated as the genome-wide average of relationships at individual 604 

loci.  605 

However, relatedness refers to the correlation between the total additive genetic effects of 606 

individuals (Equation A2), which are sums of additive genetic effects at individual loci. In 607 

general, the correlation between sums does not equal the average correlation between 608 

components of the sums, 609 
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l

ijl

l

ij
n

GG
1

       (A9) 610 

but is defined as the ratio of the covariance and variance of the sum, 611 

2/),cov( Ajiij AA G .      (A10) 612 

Equations A9 and A10 are only equal to each other under the assumption given in Equation 613 

A1.  614 

 615 

 616 

 617 
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