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ABSTRACT 

Genomic prediction is a useful tool to accelerate genetic gain in selection using DNA marker 

information. However, this technology usually relies on models that are not designed to 

accommodate population heterogeneity, which results from differences in marker signals across 

genetic backgrounds. Previous studies have proposed to cope with population heterogeneity 

using diverse approaches: (i) either ignoring it, therefore relying on the robustness of standard 

approaches; (ii) reducing it, by selecting homogenous subsets of individuals in the sample; or 

(iii) modelling it by using interactive models. In this study we assessed all three possible 

approaches, applying existing and novel procedures for each of them. All procedures developed 

are based on deterministic optimizations, can account for heteroscedasticity, and are applicable 

in contexts of admixed populations. In a case study on a diverse switchgrass sample, we 

compared the procedures to a control where predictions rely on homogeneous subsamples. 

Ignoring heterogeneity was often not detrimental, and sometimes beneficial, to prediction 

accuracy, compared to the control. Reducing heterogeneity did not result in further increases in 

accuracy. However, in scenarios of limited subsample sizes, a novel procedure, which accounted 

for redundancy within subsamples, outperformed the existing procedure, which only considered 

relationships to selection candidates. Modelling heterogeneity resulted in substantial increases in 

accuracy, in the cases where accounting for population heterogeneity yielded a highly significant 

improvement in fit. Our study exemplifies advantages and limits of the various approaches that 

are promising in various contexts of population heterogeneity, e.g. prediction based on historical 

datasets or dynamic breeding.  
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INTRODUCTION 

Genomic prediction has proved a useful tool to predict genetic merit in plant and animal 

breeding (Hayes et al. 2009a, Lorenz et al. 2011). This technology consists of learning 

relationships between DNA markers and phenotypes, which arise from the non-random 

association (linkage disequilibrium; LD) between DNA markers and causal genetic variants 

having direct effects on the trait studied (Meuwissen et al. 2001). Typical genomic prediction 

models, including genomic BLUP (GBLUP; VanRaden 2008, Hayes et al. 2009b) or Bayesian 

linear regression (BLR) models (Meuwissen et al. 2001, Gianola et al. 2009), assume that the 

effects of causal variants are linear and purely additive, so estimated effects do not capture any 

dependence on context, arising for example from interactions of causal variants with 

environmental or genetic backgrounds. Initially, genomic prediction models have been proposed 

for applications in populations that are relatively homogeneous with respect to LD patterns and 

interactions involving causal variants (Meuwissen et al. 2001). In such situations, increasing the 

size of the calibration set (CS) – the set of individuals used to estimate the model’s parameters – 

would typically benefit accuracy of the models (Lorenzana & Bernardo 2009, VanRaden et al. 

2009). However, in practice, increasing the CS size may often involves calibrating prediction 

models on individuals with inconsistent LD patterns and/or backgrounds, which may result in 

reduced accuracy (Wientjes et al. 2016). This issue will arise in the typical situation where an 

initially homogeneous CS is augmented with individuals from extraneous populations, that is, 

multi-population – or (in the animal literature) multi-breed – calibration (Lund et al. 2014). 

Recently, studies in both plant and animal breeding have assessed the usefulness of combining 

populations from different genetic backgrounds in genomic prediction. In general, one or two of 

the following approaches were studied: (i) single-population prediction in a multi-population 

context (ignoring population heterogeneity); (ii) instance selection (reducing population 

heterogeneity); and (iii) multi-population prediction (modelling population heterogeneity). 

In single-population prediction (SPM), the simulation study of De Roos et al. (2009) suggested 

that adding an extraneous population to a CS may benefit prediction accuracy if the added 

population is not too dissimilar (in terms of divergence time) from the initial CS. These authors 

also suggested that high enough marker density could prevent prediction accuracy from 

decreasing, even in cases of strong divergence between populations. Consistently, most empirical 

studies of multi-population calibration with high marker density, based on single-population 

BLR and/or GBLUP, have reported little or no gain in accuracy under strong population 

structure (Lehermeier et al. 2015, Jarquín et al. 2016, Hayes et al. 2009c, Erbe et al. 2012). In 

contrast, only a few studies have reported substantial increases in accuracy from multi-

population calibration in similar conditions (Technow et al. 2013, Daetwyler et al. 2012). 

Interestingly, Habier et al. (2013) suggested that increasing CS size may reduce prediction 

accuracy in GBLUP, even in a single-population context, due to accumulated noise in the larger 

genomic relationship matrix, especially when many relationship coefficients are small. In an 

attempt to increase the accuracy of genomic relationship estimation, Endelman and Jannink 

(2012) and Müller et al. (2015) have proposed regularization methods, which proved especially 

useful when marker density was low. However, the regularization methods proposed in these two 

studies did not account for potential population structure in the genomic relationship matrix, 

which would naturally arise in a multi-population context. 

In instance selection (IS) – or training set design/optimization – only a subset of the available 

individuals is selected to make up the CS. Studies have generally focused on a scenario of 
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limited phenotyping resources, where the sample of individuals was searched for an optimal CS 

of pre-determined size. The CS searches in these studies were either stochastic or deterministic. 

Stochastic searches in this context have consisted in randomly choosing a CS to maximize some 

measure of prediction accuracy for the selection candidates, using either random exchange 

algorithms (Rincent et al. 2012, Isidro et al. 2014, Rutkoski et al. 2015) or genetic algorithms 

(Akdemir et al. 2015), which were compared to purely random sampling as a baseline. Studies of 

this type have used selection criteria such as the prediction error variance (Henderson 1984) or 

the mean coefficient of determination (Laloë 1993) as a measure of accuracy, and have generally 

concluded that stochastic searches guided by one of these criteria performed better than random 

sampling. One disadvantage of stochastic searches is that they are computationally intensive, so 

deterministic searches may be preferred in some scenarios (e.g., when sample size is large). This 

second type of searches has typically involved choosing the set of individuals so as to maximize 

some measure of relatedness between the CS and the selection candidates (Clark et al. 2012, 

Lorenz and Smith 2015). The contribution of such relatedness to accuracy has been asserted by 

simulation studies (Pszczola et al. 2012, Wientjes et al. 2013). However, Pszczola et al. (2012) 

also suggested that accuracy was negatively impacted by relationships within the CS, for a given 

CS size (probably owing to redundancy in information). To our knowledge, no deterministic 

search in genomic prediction has accounted for that trade-off involving relationships. 

In multi-population prediction (MPM), studies have proposed to fit, to the whole set of available 

individuals, models that were capable of accommodating population heterogeneity explicitly. 

This type of models includes multi-trait GBLUP models, with “traits” corresponding to 

population backgrounds (Karoui et al. 2012, Carillier et al. 2014, Lehermeier et al. 2015), and 

random regression models based on markers interacting with discrete population cluster 

coefficients (de los Campos et al. 2015, with a BLR model). To our knowledge, the 

implementation of these methods has not been adapted to contexts of admixture, where 

population structure variables are continuous. Furthermore, when calibration involves many 

populations, the increase in model complexity of these methods will make them computationally 

intractable and statistically inefficient. Parsimonious multi-population models, based on only a 

few parameters to capture population heterogeneity, have also been proposed (Zhou et al. 2014, 

Heslot and Jannink 2015). In presence of many populations, such models are more practical and 

potentially more useful than multi-trait and random interaction models. Also, since they 

generally assume some underlying basis for population heterogeneity (e.g., inconsistency in LD 

patterns), they may generate insight about the causes of marker-by-population interactions. 

In this study, we investigated the usefulness of SPM, IS and MPM for coping with population 

heterogeneity. We present a general framework for the application of existing and novel methods 

under each of these three approaches. All these procedures were compared to a control procedure 

(Target) where the CS includes only the individuals from the same population as the selection 

candidates, as is typically done to avoid dealing with population heterogeneity. We applied the 

procedures to the analysis of three traits (plant height, heading date, and standability) in 

switchgrass (Panicum virgatum L.), an herbaceous biomass crop showing good promise for 

biofuel production (Sanderson et al. 1996, Perlack et al. 2005, Perlack et al. 2011, Langholtz et 

al. 2016). The present work describes promising methods for increasing accuracy and robustness 

of predictions in situations where heterogeneous data sources are combined, for example when 

the CS incorporates data from historical trials (Dawson et al. 2013, Rutkoski et al. 2015) or from 

multiple generations of a dynamic breeding program (Sallam et al. 2015, Auinger et al. 2016). 
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MATERIAL AND METHODS 

Panels and populations 

In this study, two multi-population panels were assayed and considered together in one sample. 

The first panel was the breeding panel (BP) described in Ramstein et al. (2016), comprising two 

tetraploid breeding populations of half-sib (HS) families: WS4U-C2, which consisted of 137 HS 

families derived from a diverse upland-ecotype pool of 162 plants (Casler et al. 2006), and 

Liberty-C2, which consisted of 110 HS families derived from the lowland-upland cultivar 

Liberty (Casler and Vogel 2014). The second panel was the association panel (AP) described in 

Lu et al. (2013) and Evans et al. (2015), comprising six putative populations of clonally 

propagated genotypes of different ecotypes (U: upland; L: lowland), ploidy levels (4X: 

tetraploid; 8X: octoploid) and geographical origins (S: South; W: West; N: North; E: East): 

U4X-N (135 plants), U8X-W (129 plants), U8X-E (97 plants), U8X-S (10 plants), L4X-NE (106 

plants) and L4X-S (37 plants). These populations corresponded to 60 diverse accessions (Lu et 

al. 2013, Evans et al. 2015) with up to 10 individuals per accessions. 

In WS4U-C2, one individual was discarded so as to avoid assigning it to a population in AP, 

since it was too distantly related to the other individuals in BP (based on principal component 

analysis). In total, 𝑛 = 760 individuals were considered in this analysis. The main goal of this 

study was to assess different methods for accommodating genetic heterogeneity when predicting 

phenotypic means in a given target population. Four targets were chosen, with a defined focus on 

tetraploid populations with at least 100 relatively homogeneous individuals: WS4U-C2 and 

Liberty-C2 (from BP), and U4X-N and L4X-NE (from AP). 

Marker data 

Genotyping of individuals (parents in BP and clonally propagated plants in AP) was performed 

by exome capture sequencing. Single nucleotide polymorphisms (SNPs) were called at 2,179,164 

biallelic loci (Hapmap v2), as described for BP by Ramstein et al. (2016) and for AP by Evans et 

al. (2014, 2015). Marker genotypes were then called by using the expectation-maximization 

algorithm of Martin et al. (2010) fitted in each population separately, under the assumption of 

disomic inheritance. Although this assumption is supported in switchgrass for tetraploid 

genotypes (Okada et al. 2010; Li et al. 2014), it does not hold for octoploid genotypes, which 

would presumably exhibit tetrasomic inheritance. However, we did not adapt the algorithm of 

Martin et al. (2010) to accommodate possible tetrasomic inheritance, as sequencing depth was 

deemed insufficient for calling intermediate heterozygotes (simplex and triplex) with high 

enough accuracy. 

The resulting marker-data matrix consisted of expected allelic dosages (sums alternate-allele 

counts weighted by their posterior probabilities, for every individual and SNP). The SNPs were 

then filtered based on the following criteria: (i) proportion of missing values strictly lower than 

2%; (ii) minor allele frequency (MAF) strictly greater than 1 2𝑛⁄  and variance strictly greater 

than 2(1 2𝑛⁄ )(1 − 1 2𝑛⁄ ); (iii) p-value for Hardy-Weinberg equilibrium (HWE) strictly greater 

than 10-4 in each BP population; (iv) availability of genomic-location information (as per version 

1.1 of the reference genome of P. virgatum; DOE-JGI, http://phytozome.jgi.doe.gov/). Missing 

values at SNPs were imputed by their mode in the whole sample. The resulting 𝑛 × 𝑚 filtered 

and imputed marker-data matrix X consisted of expected allelic dosages at 𝑚 =  717,814 

markers. 
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Phenotypic data 

Populations in BP were assayed each year between 2012 and 2014, in Arlington, WI (USA), in a 

randomized complete block design, with four replicates for WS4U-C2 and three replicates for 

Liberty-C2. Populations in AP were assayed each year between 2009 and 2011 in Ithaca, NY 

(USA), in a sets-in-reps design, with two replicates per individual and 10 sets within each 

replicate, with each set comprising at most one individual from each of the 60 accessions in AP 

(Lu et al. 2013, Evans et al. 2015). In each panel, three phenotypic traits were considered: plant 

height, heading date and standability. Plant height (PH) was measured in centimeters as the 

height from the ground to the top of the tallest tiller. Heading date (HD) was measured in 

growing degrees days as the cumulated sum of daily average temperatures (in degrees Celsius; 

°C) above 10 °C, from January 1st to the day of heading, defined as the emergence of at least half 

of the panicles from the boot (Mitchell et al. 1997); daily average temperatures were estimated 

by the average of the minimum and maximum daily temperatures. Standability (St) was 

measured on a 0-10 scale to describe plants’ stature and stiffness, with 0 qualifying plants that 

are prostrate and 10 qualifying upright and rigid plants (Lipka et al. 2014). 

Not all traits were measured every year in any given population: only HD was measured in all 

three years in AP populations and Liberty-C2. For all other cases, measurements were available 

for only a subset of years (Table 1). 

In BP, observational units were half sibs from a given genotype (maternal parent) i; so the 

following model was fitted to phenotypic measurements 𝑃𝑖𝑗𝑘𝑙, to estimate HS family means fi’s: 

𝑃𝑖𝑗𝑘𝑙 =  𝜇 + 𝑓𝑖 + 𝑏𝑗 + 𝑡𝑘 + (𝑓 × 𝑏)𝑖𝑗 + (𝑓 × 𝑡)𝑖𝑘 + (𝑏 × 𝑡)𝑗𝑘 + (𝑓 × 𝑏 × 𝑡)𝑖𝑗𝑘 + 𝜀𝑖𝑗𝑘𝑙 

where 𝜇 is the grand mean; 𝑓𝑖, 𝑏𝑗 and 𝑡𝑘 are the effects of HS family 𝑖 (fixed), block 𝑗 (random) 

and year 𝑘 (random) respectively; × indicates interactions (random); 𝜀𝑖𝑗𝑘𝑙 are residuals. For each 

random term, the corresponding effects were modeled as independent and identically normally 

distributed.  

In AP, observational units were clones of a given genotype i; so the following model was fitted 

to measurements 𝑃𝑖𝑗𝑘 to estimate centered genotype means gi’s: 

𝑃𝑖𝑗𝑘 =  𝜇 + 𝑔𝑖 + 𝑏𝑗 + 𝑡𝑘 + (𝑔 × 𝑏)𝑖𝑗 + (𝑔 × 𝑡)𝑖𝑘 + (𝑏 × 𝑡)𝑗𝑘 + 𝑒𝑖𝑗𝑘 

where effects are as described above, except for 𝑒𝑖𝑗𝑘, which is the error for clone 𝑖𝑗 in year 𝑘. 

The linear mixed models described above were fitted using ASREML-R (Butler et al. 2009). 

Effects fi’s are transmitted abilities of genotypes, so that 𝑓𝑖 =
𝐵𝑉𝑖

2
, where BVi is the breeding 

value of genotype i. In comparison, effects gi’s are genotypic values, such that 𝑔𝑖 = 𝐵𝑉𝑖 + 𝛥𝑖, 

where 𝛥𝑖 is the deviation from additivity due to dominance and/or epistasis. Outcomes of interest 

for genomic prediction were set to be non-centered means yi’s such that 𝑦𝑖 = 𝜇̂ + 2𝑓𝑖 in BP and 

𝑦𝑖 = 𝜇̂ + 𝑔̂𝑖 in AP. 

Population structure data 

Admixture analysis 

The soft clustering model from the ADMIXTURE software was fitted on the whole sample and 

the whole set of SNPs, i.e., without selection on individuals or markers (Alexander et al. 2009). 

Based on the 10-fold cross-validation implemented in ADMIXTURE (Alexander et al. 2011), 
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the number of population clusters in the admixture model was set to 𝐾 = 7, as cross-validation 

error reached a plateau at that value (Figure S1). The resulting 𝑛 × 𝐾 matrix A of admixture 

coefficients comprised inferred membership probabilities at each cluster (Figure 1a). For 

convenience (in prediction models), minimum values in A (10-5) were set to zero while ensuring 

that each row still summed to one. 

Principal component analysis 

Principal component analysis (PCA) was performed on the whole sample and the whole set of 

SNPs. The number of principal components (PC) to choose for depicting population structure 

was chosen based on the proportion of variance explained and the grouping patterns captured by 

PCs (Figure 1b). The resulting 𝑛 × 𝑑 PC matrix P consisted of coordinates for each individual at 

the first 𝑑 = 4 PCs. 

Genomic prediction models 

All linear mixed models described below were fitted using the R package rrBLUP (Endelman 

2011). 

For a given marker-data matrix X and vector y of outcomes, the standard ridge regression BLUP 

model (RR-BLUP; BLUP: best linear unbiased predictor) is described as follows: 

𝐲 = 𝐐𝛂 + 𝐗𝛃 + 𝐞; [
𝛃
𝐞

] ~ 𝑁 ([
𝟎
𝟎

] , [
𝐈𝑚𝜎𝛽

2 𝟎

𝟎 𝐑
]) 

where y is the n-vector of outcomes (yi’s, as described above); X is the 𝑛 × 𝑚 marker-data 

matrix, and β is the m-vector of marker effects, assumed independent with variance 𝜎𝛽
2 (𝐈𝑚 is the 

𝑚 × 𝑚 identity matrix); Q is the 𝑛 × 𝑝 matrix depicting the population mean structure in the 

sample, and α is the p-vector of associated effects; R is the covariance matrix of errors, possibly 

accommodating correlations and differences in variance (heteroscedasticity) among errors. 

Often, errors are considered to be independent and identically distributed, such that 𝐑 = 𝐈𝑛𝜎𝑒
2, 

with 𝐈𝑛 the 𝑛 × 𝑛 identity matrix and 𝜎𝑒
2 the error variance. 

Let 𝐮 = 𝐗𝛃, so that Var(𝐮) = 𝐗𝐗′𝜎𝛽
2, by identical mean structure 𝐐𝛂 and variance structure 

Var(𝐲) = 𝐗𝐗′𝜎𝛽
2 + 𝐑 (Henderson, 1984), the RR-BLUP model is equivalent to the following 

genomic BLUP (GBLUP) model: 

𝐲 = 𝐐𝛂 + 𝐮 + 𝐞; [
𝐮
𝐞

] ~ 𝑁 ([
𝟎
𝟎

] , [
𝐗𝐗′𝜎𝛽

2 𝟎

𝟎 𝐑
])     (1a) 

In the RR-BLUP model, regressing out the mean-structure matrix Q from X yields the following 

equivalent model, where mean- and variance-structure matrices are orthogonal, i.e. columns 

from one matrix to another are now uncorrelated (see Appendix A1 for a general proof): 

𝐲 = 𝐐𝛂̇ + (𝐈𝑛 − 𝐇)𝐗𝛃 + 𝐞; [
𝛃
𝐞

] ~ 𝑁 ([
𝟎
𝟎

] , [
𝐈𝑚𝜎𝛽

2 𝟎

𝟎 𝐑
]) 

where 𝐇 = 𝐐(𝐐′𝐑−𝟏𝐐)−𝟏𝐐′𝐑−𝟏 is the matrix of projection onto the column space of Q; 𝐗̇ =
(𝐈 − 𝐇)𝐗 is the adjusted matrix of (residual) marker variables, made orthogonal to Q; 𝛂̇ is the 

new vector of fixed effects. With 𝐐 = 𝟏𝒏 (𝟏𝒏 is a n-vector of ones) and 𝐑 = 𝐈𝑛, the mean 

structure 𝐐𝛂̇ is simply an intercept and 𝐗̇ is the matrix of marker variables centered around their 
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respective mean, as often used in genomic prediction studies (Hayes et al. 2009b, de los Campos 

et al. 2013). With general Q, the mean structure 𝐐𝛂̇ is an individual-specific mean for y with 

respect to the specific population membership of each individual and 𝐗̇ is the matrix of marker 

variables centered around their respective individual-specific means.  

By identical mean and variance structures, the previous model is equivalent to the following 

alternate GBLUP model: 

𝐲 = 𝐐𝛂̇ + 𝐮̇ + 𝐞; [
𝐮̇
𝐞

] ~ 𝑁 ([
𝟎
𝟎

] , [
𝐆𝜎𝛽

2 𝟎

𝟎 𝐑
])     (1b) 

where 𝐮̇ = (𝐈𝑛 − 𝐇)𝐗𝛃 is the n-vector of genomic breeding values centered around population 

means 𝐐𝛂̇, and 𝐆 = 𝐗̇𝐗̇′ is the genomic relationship matrix for 𝐮̇ (here unscaled). 

Following the recommendations of Phocas and Laloë (2004), we chose to simply use 𝐐 = 𝟏𝒏 to 

define the mean structure in all fitted models. Also, we chose not to model heteroscedasticity of 

errors and used 𝐑 = 𝐈𝑛𝜎𝑒
2. Therefore, the covariance matrix 𝐆 = 𝐗̇𝐗̇′ was simply proportional to 

the standard genomic relationship matrix 𝐆𝟏 = 𝐗̇𝐗̇′ 𝑣⁄  of VanRaden (2008), where 𝑣 =
2 ∑ 𝜋̂𝑙(1 − 𝜋̂𝑙)

𝑚
𝑙=1  is a scaling factor depending on estimated allele frequencies 𝜋̂𝑙’s. Notably, the 

matrix G derived here will account for correlations and heteroscedasticity of errors, whenever 

𝐑 ≠ 𝐈𝑛𝜎𝑒
2 (the projector H is a function of 𝐑−𝟏). To our knowledge, the matrix 𝐆𝟏 has typically 

been used in GBLUP models, even when 𝐑 ≠ 𝐈𝑛𝜎𝑒
2 as in weighted GBLUP models on 

deregressed proofs. 

Optimization methods 

Hereafter, the testing TS is defined as the set of individuals left out for model validation. The 

calibration set CS is the set of individuals used to fit the prediction models, which excludes TS 

but does not necessarily consists of all remaining (available) individuals. 

In this study, we adapted model (1a) or (1b) to four different approaches: (i) the control 

procedure, consisting in including in the CS only individuals from the same target group as the 

testing set; (ii) single-population models, consisting in fitting a GBLUP model to all available 

individuals, with possibly some regularization on genomic relationships; (iii) instance selection, 

consisting in including a subset of available individuals in the CS, so as to optimize some 

selection criterion; and (iv) multi-population models, consisting of modelling population 

heterogeneity for the outcome on all available individuals, based on population structure data 

(PCs in P or admixture coefficients in A). 

Control procedure (Target) 

In the control procedure (Target), we fitted model (1a), with the CS restricted to individuals 

belonging to the same population as the TS. This method corresponds to a typical choice of 

relying only on individuals that have genetic architectures that are a priori similar to those in the 

TS.  

Single population models (SPM-GRM, SPM-GLASSO) 

Here, single-population models (SPM) are defined as the basic models incorporating information 

from all available individuals, with no modelling of population heterogeneity. The following 

general model was fitted: 

𝐲 = 𝐐𝛂̃ + 𝐮̃ + 𝐞̃; 𝐮̃ ~ 𝑁(𝟎, 𝐆𝜎𝐮̃
2), 𝐞̃ ~ 𝑁(𝟎, 𝐑̃)     (2) 
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where 𝐆 is some matrix depicting relationship among breeding values 𝐮̃. 

We considered two types of matrices for 𝐆: the original unscaled genomic relationship matrix 

𝐆 = 𝐗̇𝐗̇′ (SPM-GRM) and a regularized form of G, where relationships are shrunk for 

potentially higher estimation accuracy of relationships (SPM-GLASSO). 

In SPM-GRM, since 𝐆 = 𝐆, model (2) was equivalent to model (1b), so this approach simply 

corresponded to fitting a GBLUP model to all available individuals. 

In SPM-GLASSO, following Fan et al. (2013), 𝐆 was decomposed as 𝐆 = 𝐁𝐁′ + 𝐆𝐵, where 𝐁 

consisted of the first t PCs of G and 𝐆𝐵 was a regularized form of 𝐆𝐵 = 𝐆 − 𝐁𝐁′. Matrix 𝐁𝐁′ is 

the dense part of the relationship matrix G, representing resemblance among individuals through 

common structural factors. Here this matrix depicted relationships at the population level, 

through the t leading PCs of G. In contrast, matrix 𝐆𝐵 represented (recent) relationships 

conditional on population structure, similarly to the adjusted relationships introduced by 

Thornton et al. (2012) and Conomos et al. (2016), with the difference that here coefficients in 𝐆𝐵 

are not scaled for direct estimation of recent-kinship coefficients. In principle, most coefficients 

in 𝐆𝐵 should be close to zero, as there should exist only few familial relationships within the 

sample. So 𝐆𝐵 may be assumed to be sparse, which is often an important property for useful 

regularization of covariance matrices. Fan et al. (2013) suggested that matrix 𝐆𝐵 be regularized 

by adaptive thresholding (Cai and Liu 2011). However, we chose to perform regularization by 

the graphical LASSO (Friedman et al. 2008) so as to shrink coefficients in 𝐆𝐵 while inferring a 

sparse precision (inverse covariance) matrix 𝐆𝐵
−1

, which yielded a sparse graph of relationships 

among individuals (a zero ij-element in 𝐆𝐵
−1

 indicates that individuals i and j are unrelated 

conditionally on all other individuals, which corresponds to no edge between nodes i and j in the 

underlying graph of recent relationships). 

The graphical LASSO infers a sparse precision matrix 𝚺−1 by maximizing the Gaussian 

likelihood of the data, penalized by a L1-norm penalty 𝜆‖𝚺−1‖1, where λ is the regularization 

parameter and ‖𝚺−1‖1 is the sum of absolute values in 𝚺−1 (Friedman et al. 2008). 

Regularization of G was performed as follows: 

1. Performing eigenvalue decomposition on G to obtain B and decompose 𝐆 into 𝐁𝐁′ + 𝐆𝐵 

2. Standardizing 𝐆𝐵 to obtain the corresponding correlation matrix 𝚪𝐵: 𝚪𝐵 =
diag(𝐆𝐵)−1/2𝐆𝐵diag(𝐆𝐵)−1/2 

3. Applying the graphical LASSO algorithm to 𝚪𝐵, to obtain the regularized correlation matrix 𝚪̃𝐵 

4. Rescaling 𝚪𝐵 to obtain 𝐆𝐵 = diag(𝐆𝐵)1/2𝚪̃𝐵diag(𝐆𝐵)1/2 and then 𝐆 = 𝐁𝐁′ + 𝐆𝐵 

The graphical LASSO algorithm was run using the huge package in R (Zhao et al. 2012). The 

regularization parameter λ was determined so as to maximize the restricted maximum likelihood 

(REML) of model (2) in a grid search, with λ being the q-quantile of absolute values in 𝚪𝐵 and q 

varying from 0.05 to 1 by step of 0.05. 

With 𝐐 = 𝟏𝒏, the number t of PCs in B was set to 𝑑 = 4 (d is the number of PCs chosen to 

reflect population structure in P). However, when Q actually depicts population structure, e.g. 

when 𝐐 = [𝟏𝒏 𝐏] or 𝐐 = 𝐀, the matrix G already reflects relationships among individuals 

conditionally on population structure (so G should already be sparse), and t may simply be set to 
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zero (i.e., regularization may be performed on G directly). Notably, when 𝐐 = 𝟏𝒏, 𝐑 = 𝐈𝑛𝜎𝑒
2 and 

the CS consists of the whole sample, B simply equals P. 

Instance selection (IS-Rel, IS-QP) 

In instance selection (IS), we fitted model (1a) on a subset of all available individuals. We 

selected individuals deterministically (i.e., without using random searches through possible 

calibration sets) by first including individuals with highest scores (as defined below), so as to 

optimize a selection criterion. We chose to maximize the mean coefficient of determination 

CDmean (Laloë 1993) for the TS, with no contrast so that this selection criterion simply 

corresponded to the model-based estimate of the mean squared prediction accuracy (reliability) 

with respect to u in the TS, i.e. CDmean =
1

|𝑇𝑆|
∑ 𝐶𝑜𝑟(𝑢𝑗 , 𝑢̂𝑗)

2
𝑗∈𝑇𝑆 , with |𝑇𝑆| the size of the TS, 

𝐶𝑜𝑟(𝑢𝑗 , 𝑢̂𝑗)
2

= 1 −
𝑉𝑎𝑟(𝑢𝑗−𝑢𝑗)

𝑉𝑎𝑟(𝑢𝑗)
, where 𝑢̂𝑗  is the BLUP of 𝑢𝑗 , 𝑉𝑎𝑟(𝑢̂𝑗 − 𝑢𝑗) and 𝑉𝑎𝑟(𝑢𝑗) are 

inferred from the fitted model fit (Searle et al. 2006). 

We considered two types of scores (wi’s), for two different procedures: IS-Rel and IS-QP. 

In IS-Rel, 𝑤𝑖 =
1

|𝑇𝑆|
∑ 𝑔𝑖𝑗𝑗∈𝑇𝑆 , with 𝑔𝑖𝑗 being the ij-element of 𝐆 ∝ 𝐗̇𝐗̇′. So wi simply reflected 

the average relationship between individual i and the TS. 

In IS-QP, we inferred the scores wi’s on all available individuals, so as to minimize the 

difference between the average genotype in the TS and the weighted average of genotypes in 

remaining individuals (TSC), with weights wi’s. Formally, let 𝐰 = (𝑤𝑖)𝑖∈TS𝑐  such that 𝑤𝑖 ≥ 0 for 

all 𝑖 ∈ TS𝑐 and ∑ 𝑤𝑖𝑖∈TS𝑐 = 1, we minimized ‖
1

|TS|
∑ 𝐱𝑗𝑗∈TS − ∑ 𝑤𝑖𝐱𝑖𝑖∈TS𝑐 ‖

2
=

‖𝐗TS
′ 𝟏|TS| |TS|⁄ − 𝐗TS𝑐

′ 𝐰‖
2
, with ‖. ‖2 being the Euclidean norm, and subscripts referring to 

subsets on rows in vectors or matrices (𝐱𝑖 refers to the m-vector of marker variables for 

individual i). Equivalently, we minimized ‖𝐗TS
′ 𝟏|TS| |TS|⁄ − 𝐗TS𝑐

′ 𝐰‖
2

2
= (𝟏|TS|

′ 𝐗TS |TS|⁄ −

𝐰′𝐗TS𝑐)(𝐗TS
′ 𝟏|TS| |TS|⁄ − 𝐗TS𝑐

′ 𝐰) =
𝟏

|TS|2
𝟏|TS|

′ 𝐗𝐗′
TS,TS𝟏|TS| −

2

|TS|
𝐰′𝐗𝐗′

TS𝑐,TS𝟏|TS| +

𝐰′𝐗𝐗′
TS𝑐,TS𝑐𝐰. Since the first term in the last sum is constant with respect to wi’s, 𝐰 solved the 

following quadratic programming (QP) problem: minimizing 
1

2
𝐰′𝐗𝐗′

TS𝑐,TS𝑐𝐰 −
1

|TS|
𝟏|TS|

′ 𝐗𝐗′
TS,TS𝑐𝐰 subject to 𝑤𝑖 ≥ 0 for all 𝑖 ∈ TS𝑐 and ∑ 𝑤𝑖𝑖∈TS𝑐 = 1. This problem is similar 

to the general QP problem for feature selection introduced by Rodriguez-Lujan et al. (2010), i.e., 

minimizing 
1

2
(1 − 𝛼)𝐰′𝐐𝐫𝐰 − 𝛼𝐟𝐑

′ 𝐰, subject to 𝑤𝑖 ≥ 0 for all i and ∑ 𝑤𝑖𝑖 = 1, where vector 𝐟𝐑 

measures relevance of features with respect to a given outcome; matrix 𝐐𝐫 measures the 

redundancy among features; and 𝛼 ∈ [0,1] sets the relative importance of each term in the sum. 

The QP problem could have been defined freely, but our initial motivation allowed us to 

naturally set 𝐐𝐫 = 𝐗𝐗′
TS𝑐,TS𝑐, 𝐟𝐑 =

1

|TS|
𝐗𝐗′

TS𝑐,TS𝟏|TS| and 𝛼 =
1

2
. Compared to IS-Rel, IS-QP has 

two advantages: a solution w will represent a compromise between relevance (average of 

relationships 
1

|TS|
𝟏|TS|

′ 𝐗𝐗′
TS,TS𝑐 from TS𝑐 to TS) and redundancy (relationships 𝐗𝐗′

TS𝑐,TS𝑐 within 

TS𝑐), so scores from IS-QP should favor more diverse sets of individuals compared to IS-Rel; 

also, relationships used are not adjusted by allele frequencies (equivalently, they do not depend 
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on any projector H), so they could be less prone to misrepresentations of relationships, through 

inappropriate centering of marker variables. 

The QP problem in IS-QP was solved using the R package quadprog (https://CRAN.R-

project.org/package=quadprog). In optimization, we considered selecting 5% to 100% of 

individuals in CS, by step of 5%, selecting the subset of individuals which maximized CDmean. 

The prediction accuracy of IS methods was assessed with free CS sizes (i.e., as optimization 

procedures), but was also assessed with fixed CS sizes, with no selection of subset based on 

CDmean: for a given CS size |CS|, only the first |CS| individuals with the highest scores wi’s were 

included in the CS. Such assessments were intended to reflect the usefulness of IS procedures in 

conditions of limited resources for phenotyping (and calibration of prediction models). In this 

context, IS-Rel and IS-QP were compared to random selection (RS), which simply consisted in 

randomly selecting |CS| individuals for model fitting. For a given combination of TS, |CS| and 

outcome, the accuracy from RS was the average of accuracies over 200 random draws. Each 

draw corresponded to one random attribution of scores (wi’s) to individuals. 

Mixed population models (MPM-Mixture, MPM-Matérn) 

Mixed-population models (MPM) are extensions of model (1a) intended to accommodate 

population heterogeneity. The following general model was fitted: 

𝐲 = 𝐐𝛂 + 𝐮 + 𝐞; 𝐮 ~ 𝑁(𝟎, (𝛀𝑛 ○ 𝐗𝐗′)𝜎𝛽
2), 𝐞 ~ 𝑁(𝟎, 𝐑)    (3) 

where ○ is the element-wise (Hadamard) product, and 𝛀𝑛 is a n x n covariance matrix depicting 

population differentiation among individuals (see Appendix A2 for derivations and technical 

details). To parsimoniously estimate 𝛀𝑛, we used two different procedures: MPM-Mixture 

(based on A) and MPM-Matérn (based on P). In both procedures, we did not model any 

heteroscedasticity for additive genetic effects u.  

In MPM-Mixture, 𝛀𝑛 = 𝜌𝐀𝚯𝐾𝐀′ + (1 − 𝜌)𝐉𝑛, where 𝐉𝑛 is the n x n matrix of ones and 𝚯𝐾 is a 

K x K matrix depicting relationships among population clusters as inferred in A. Here, we simply 

set 𝚯𝐾 = 𝐈𝐾 (𝐈𝐾 is the K x K identity matrix), so 𝛀𝑛 = 𝜌𝐀𝐀′ + (1 − 𝜌)𝐉𝑛. Therefore in this 

procedure, 𝜌 ∈ [0,1] set a trade-off between the case where relationships were cluster-specific 

(𝜌 = 1) and the case where relationships assumed one single homogeneous population for all 

individuals (𝜌 = 0). This approach is similar (but not exactly equivalent) to the K-kernel method 

of Heslot and Jannink (2015), which considered a similar balance between cluster-specific and 

overall relationships, but using 𝐆𝟏 for relationships (VanRaden 2008), instead of 𝐗𝐗′, and 

considering only discrete population clusters (in which case values in A would then be only 0 or 

1). Alternatively, MPM-Mixture may be viewed as a multi-kernel model where 𝜌𝜎𝛽
2 and 

(1 − 𝜌)𝜎𝛽
2 are the variances components respectively associated to cluster-specific and main 

marker effects. 

In MPM-Matérn, 𝛀𝑛 = (𝜅𝜈,ℎ(𝐩𝑖, 𝐩𝑗))
𝑛×𝑛

, where 𝜅𝜈,ℎ is a Matérn kernel function of 𝐩𝑖 and 𝐩𝑗: 

𝜅𝜈,ℎ(𝐩𝑖, 𝐩𝑗) =
21−𝜈

𝛤(𝜈)
(√2𝜈

‖𝐩𝑖−𝐩𝑗‖
2

ℎ
)

𝜈

𝑅𝜈 {√2𝜈
‖𝐩𝑖−𝐩𝑗‖

2

ℎ
}, ‖𝐩𝑖 − 𝐩𝑗‖

2
 is the Euclidean distance 

between the d-vectors of PC coordinates for any pair (i, j) of individuals, 𝜈 > 0 is a shape 

parameter, ℎ > 0  is a scale parameter, and 𝑅𝜈{. } is the modified Bessel function of the second 

kind, of order ν (Abramowitz and Stegun 1984, Ober et al. 2011). Matérn functions have been 
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used in various contexts, including in genomic prediction for depicting relationships among 

individuals (Ober et al. 2011). Here, we used Matérn functions to depict relationships among 

populations, with the input ‖𝐩𝑖 − 𝐩𝑗‖
2
 representing differentiation with respect to population 

structure in 𝑑 = 4 orthogonal directions. We used Matérn functions instead of more typical 

kernel functions (e.g., an exponential or Gaussian kernel function) to allow for some flexibility 

in the shape of the correlation in 𝛀𝑛: 𝜈 = 0.5 and 𝜈 = ∞ correspond respectively to the 

exponential and Gaussian kernels as special cases, while different shapes can also be fitted (Ober 

et al. 2011). 

The parameter ρ in MPM-Mixture was estimated by maximizing the restricted likelihood of 

model (3) using the optimization algorithm implemented in the R function optimize. The 

parameters ν and h in MPM-Matérn were estimated by maximizing the restricted likelihood of 

model (3) using the Nelder-Mead algorithm implemented in the R function constrOptim, with 

constraints for positivity. In order to control (to some extent) for the possible presence of local 

maxima in the restricted likelihood surface in MPM-Matérn, we used four different starting 

points (𝜈0, ℎ0): (0.5, 𝐷𝑚𝑎𝑥 2⁄ ), (0.5, 𝐷𝑚𝑎𝑥), (10, 𝐷𝑚𝑎𝑥 2⁄ ) and (10, 𝐷𝑚𝑎𝑥), with Dmax the 

maximum distance ‖𝐩𝑖 − 𝐩𝑗‖
2
 observed over pairs of individuals (i, j). 

Validations 

We assessed the accuracy of our prediction procedures by cross-validation (CV): for each target 

(L4X-NE, U4X-N, Liberty-C2 or WS4U-C2), we used as the TS a random subset of the target 

sample. The size of the TS was one fifth of the target sample size. All remaining individuals 

were used as input to the prediction procedures (Target, IS, SPM, MPM), with some CS selection 

in Target and IS. Such validations were replicated 𝑛𝑟𝑒𝑝 = 20 times for each target. 

Prediction procedures were evaluated for accuracy by 𝑐𝑇𝑆 = 𝐶𝑜𝑟(𝐲𝑇𝑆, 𝐲̂𝑇𝑆), i.e., the correlation 

between “observed” and predicted outcomes in a given TS. To assess the significance of 

differences in prediction accuracy between two procedures, we performed a t-test on 𝑇 =  
𝛿̅

𝑆𝐷(𝛿̅)
, 

where 𝛿̅ is the average of 𝛅 = 𝑧(𝐜𝑡) − 𝑧(𝐜0); 𝐜𝑡 (𝐜0) is the vector of prediction accuracies over 

testing sets for the candidate procedure (reference procedure); and 𝑧 is the Fisher transformation. 

The standard error of the mean difference in prediction accuracy, 𝑆𝐷(𝛿̅), was estimated in two 

different ways: (liberal t-test) 𝑆𝐷(𝛿̅) = 𝑆𝐷(𝛿𝑇𝑆)√
1

𝑛𝑟𝑒𝑝
 where 𝑆𝐷(𝛿𝑇𝑆) is the standard deviation 

of 𝛅, with all testing sets assumed to be independent datasets; (conservative t-test) based on the 

first method of Nadeau and Bengio (2003), 𝑆𝐷(𝛿̅) = 𝑆𝐷(𝛿𝑇𝑆)√
1

𝑛𝑟𝑒𝑝
+

𝑜

1−𝑜
 , where redundancy 

over testing sets is accounted for by the additional term 
𝑜

1−𝑜
, with o being the expected fraction of 

overlap among testing sets; here 𝑜 =
1

5
 and 

𝑜

1−𝑜
=

1

4
 because testing sets were random subsets 

consisting of a fifth of any given target sample. We considered that this approach for estimating 

𝑆𝐷(𝛿̅) was conservative because Nadeau and Bengio (2003) derived it by assuming that the CV 

criterion (the “loss function”, analog here to 𝑧(𝑐𝑇𝑆,𝑡) − 𝑧(𝑐𝑇𝑆,0), for a given TS) did not depend 

on the CS instances, given a particular CS size. Therefore the adjustment from Nadeau and 

Bengio (2003) may have overestimated the correlation among values of the CV criterion across 

replicates, since prediction procedures are probably quite sensitive to differences in the 
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composition of the CS. Furthermore, some procedures actually differed in CS size (Target, IS, 

and SPM/MPM). In all comparisons between procedures, we reported the results from both tests 

in order to characterize the significance of differences in prediction accuracy. 

RESULTS 

Population structure in the sample 

Seven population clusters were inferred from the ADMIXTURE software (Figure S1; Alexander 

et al. 2009). These clusters corresponded roughly to populations L4X-NE, L4X-S, Liberty-C2 

and U4X-N, WS4U-C2, U8X-E, U8X-W. One population with little representation in our 

sample, U8X-S, appeared to be of mixed origin (Figure 1a). The other populations generally 

displayed a low level of admixture, with relatively few individuals having intermediate 

admixture coefficients. There seemed to be some admixture involving upland populations 

(WS4U-C2 and U4X-N, WS4U-C2 and U8X-W, U8X-E and U8X-W), with even some shared 

ancestry between WS4U-C2 and U4X-N. The principal component analysis (PCA) confirmed 

that population structure was relatively discrete (Figure 1b). Unsurprisingly, the first principal 

component (PC) separated genotypes by ecotype while the second PC reflected geographical 

origin within the lowland ecotype (Lu et al. 2013, Evans et al. 2015). The third and four PCs 

discriminated upland genotypes by geographical origin and ploidy level, and distinguished L4X-

S from the two other lowland populations (L4X-NE and Liberty-C2). 

Differences in mean and range among populations were quite typical of previously reported 

difference between ecotypes (Table 1; Casler 2012). Indeed, L4X-S and Liberty-C2 (populations 

of lowland origin) had high mean values and range values for PH, HD and St, compared to 

upland populations (excluding U8X-S). However, L4X-NE stood out as a lowland population for 

being relatively short, early-flowering, and prone to lodging, with corresponding values for PH, 

HD, and St more similar to those of the upland populations. 

Single-population models and relationships in the sample 

Here, marginal genomic relationships were defined as the elements of 𝐆 = 𝐗̇𝐗̇′ 𝑠⁄ , with 𝐗̇ 

consisting of centered marker variables, and s being some scaling factor. The strong and quite 

discrete population structure in the sample translated into multimodal marginal genomic 

relationship coefficients, with the multiple peaks in off-diagonal elements of G reflecting 

differentiation of population with respect to allele frequencies (Figure 2a). Conditioning 

relationships on population structure (as depicted by the first four PCs of 𝐗̇) yielded the matrix 

𝐆𝐵, with 𝐆𝐵 = 𝐆 − 𝐁𝐁′ and B consisting of the PCs chosen to reflect structure in G (Fan et al. 

2013). The conditional genomic relationships seemed sparser, in the sense that they appeared to 

cluster around zero, so most individuals could be assumed to be unrelated after accounting for 

population structure in the sample. In our particular study, conditional relationships in 𝐆𝐵 were 

all the more relevant that among-population variation, captured by 𝐁𝐁′, contributed little to 

variation within any given TS, because a TS generally consisted of selection candidates from a 

relatively homogeneous target sample (made of individuals from WS4U-C2, Liberty-C2, U4X-N 

or L4X-NE).  

The SPM-GLASSO model did not yield substantial increases in quality of fit, compared to SPM-

GRM, when fitted either to the whole sample or to calibration sets in cross-validation (CV) 

(Table 2). However, it is unclear to what extent a substantial improvement in fit should be 

expected from SPM-GLASSO: on the one hand, SPM-GLASSO relies on one additional 
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parameter λ compared to SPM-GRM, but on the other hand this parameter results in less complex 

relationships within 𝐆 compared to G (Foygel and Drton 2010). In general, quite small 

regularization parameters (λ) were selected based on REML: when fitted to the whole sample, 

SPM-GLASSO selected values of λ between 0.002 (for PH) and 0.007 (for St), corresponding 

respectively to 0.20- and 0.45-quantile of absolute correlations from 𝐆𝐵. As a result, the inferred 

graphs were rather dense, with average degrees (number of neighbors by node/individual in the 

graph) ranging from 217 to 458 (Figure 3). However, even at such low regularization levels, 

some noticeable features of populations emerged from the inferred graphs (Figure 3): WS4U-C2, 

U4X-N and U8X-E appeared quite connected to one another; U8X-W also showed some 

connection with other upland populations but seemed more distinct, as reflected by a relatively 

lower average degree (Figure S2); Liberty-C2 and L4X-S were somewhat connected to both 

upland and lowland populations, which certainly explains why their individual degrees were 

generally high (Figure S2); most notably, L4X-NE displayed an outstandingly low level of 

connection with the other populations, which translated in a clear separation of this population in 

the graph, after placing the nodes based on a force-directed algorithm (Fruchterman and 

Reingold 1991). These features exemplify the usefulness of conditional relationships and their 

associated graphs for describing relationships among individuals and, potentially, serving as 

input to other types of procedures, e.g., instance selection. 

For prediction in a given TS, the control procedure (Target) consisted in restricting the CS to the 

subset of the sample belonging to the same population as the TS. Compared to Target, SPM-

GRM yielded increases in prediction accuracy that appeared somewhat significant (𝑝 ≤ 0.05 

based on the liberal “naïve” t-test) for PH (WS4U-C2, U4X-N) and St (Liberty-C2) (Table 3, 

Table S1). However, prediction accuracy for St (WS4U-C2) was lower, with a somewhat 

significant difference. More intriguing is the consistent decrease in prediction accuracy with 

L4X-NE, with differences being small yet highly significant for PH and HD (𝑝 ≤ 0.05 based on 

the conservative t-test adapted from Nadeau and Bengio 2003; see Material and methods for 

details), and somewhat significant for St. It is unclear whether these differences are due to the 

consistently higher accuracies achieved with L4X-NE (in Target) compared to other populations, 

or a result of L4X-NE being relatively under-connected to the other populations in the sample 

(Figure S2, Figure 3). Both factors could very well contribute to the observed decreases in 

accuracy when incorporating information from the whole sample. Compared to SPM-GRM, 

SPM-GLASSO did not yield any notable increase in prediction accuracy, with generally similar 

accuracies, and differences from SPM-GRM ranging from -0.035 (for St, Liberty-C2) to +0.016 

(for HD, WS4U-C2). 

Instance selection in contexts of free and fixed CS size 

In the fixed CS size context, increasing CS size often resulted in higher accuracy, with a plateau 

reached around the Target CS size, i.e., the number of individuals belonging to the sample 

population as the TS, which corresponded to 11%-15% of the available individuals (Figure 4; 

Table S2). The observed plateaus suggest that adding individuals from extraneous populations, 

without explicitly modelling heterogeneity, did not add useful signal for predictive ability of 

GBLUP; they also suggest that GBLUP is quite robust to such “superfluous” signal in a multi-

population context. Exceptions were PH (WS4U-C2, U4X-N) and St (Liberty-C2) for which 

higher CS sizes did result in a somewhat significant increase in accuracy compared to Target 

(Figure 4). Conversely, with L4X-NE for all traits and WS4U-C2 for St, adding more individuals 

actually deteriorated accuracy (Figure 4). The results about L4X-NE make sense in light of the 
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facts previously noted for SPM: higher accuracies in L4X-NE and lack of kinship with other 

populations (Figure 3). When the CS was selected based on IS-Rel, CS sizes lower than the 

Target CS size resulted in significantly lower prediction accuracies compared to Target, except 

with WS4U-C2 (PH, St). Furthermore, at these low CS sizes, IS-Rel did not perform significantly 

better than random selection (RS) in some cases (Figure 5): PH (U4X-N, Liberty-C2), HD (U4X-

N), and St (U4X-N, WS4U-C2). It was even significantly worse than RS for St (Liberty-C2) 

(Figure 5). In comparison, IS-QP was often significantly better than IS-Rel at these low CS sizes, 

with substantial differences observed with U4X-N and L4X-NE (Figure S3). This advantage of 

IS-QP translated into similar accuracies compared to Target with 10% selected individuals, and 

small, sometimes non-significant, decreases with 5% selected individuals. Accordingly, IS-QP 

maintained its advantage over RS at low CS sizes, with a consistent relative improvement as CS 

size decreased (Figure 5). One exception was St (Liberty-C2), for which there was a (non-

significant) decrease in accuracy relatively to RS with 5% selected individuals. At intermediate 

CS sizes (35%-85% of selected individuals), IS-QP performed similarly to IS-Rel, with a small 

(yet significant) advantage over IS-Rel for HD (L4X-NE, U4X-N) but a significant disadvantage 

in three cases (PH, WS4U-C2; HD, WS4U-C2; St, Liberty-C2) (Figure S3). 

In a context of free CS size, IS procedures yielded some significant improvements over Target, 

similarly to SPM-GRM. In fact, both IS-Rel and IS-QP tended to select many, if not all, of the 

available individuals (Table 4). IS-QP tended to select less individuals than IS-Rel, except for 

HD (Liberty-C2, L4X-NE) and St (Liberty-C2, L4X-NE).  However, the differences in selection 

behavior between IS-Rel and IS-QP generally mattered little, with the exceptions of PH (WS4U-

C2) and St (L4X-NE) for which IS-QP performed slightly worse than IS-Rel (-0.011 in mean 

accuracy). In the cases where SPM yielded significantly lower accuracies than Target (St with 

WS4U-C2, and all traits with L4X-NE), IS procedures failed to select an appropriately low 

number of individuals that would have prevented these decreases in accuracy (Figure 4), with the 

notable exception of IS-Rel for St (L4X-NE) (Table 3, Table 4). 

Multi-population models and marker-by-population interactions 

The inferred mixing parameter ρ from the MPM-Mixture model was null (or close to null), low 

and intermediate, for PH, St and HD respectively, with estimations being quite consistent over 

CV replicates (Table 2). Expectedly, the improvement in fit, relatively to SPM-GRM, was non-

significant for PH, rather significant for St, and highly significant for HD (Table 2). In MPM-

Matérn, the inferred correlation functions differed substantially across traits, while being quite 

consistent over CV replicates (Table 2, Figure 6): 𝜅𝜈,ℎ roughly resembled an exponential kernel 

with PH and HD, and was more similar to a Gaussian kernel with St, for which a “shoulder” 

maintained high correlation in marker-effects for individuals that were relatively close to each 

other, based on their PCs. Inferences regarding 𝛀𝑛 in MPM-Matérn were weakly significant for 

PH and St, with p-values sometimes above 0.05 (ranging from 0.007 to 0.089 for PH and from 

0.015 and 0.065 for St); in contrast, inferences regarding 𝛀𝑛 for HD were highly significant 

(Table 2). Interestingly, distances based on PCs may be equivalent to distances based on allele 

frequencies. Specifically, ‖𝐩𝑖 − 𝐩𝑗‖
2

= 2 ‖𝛑𝐏𝑖
− 𝛑𝐏𝑗

‖
2
, where 𝛑𝐏𝑖

 (𝛑𝐏𝑗
) is the m-vector of 

individual-specific allele frequencies of individual i (j) as described by Conomos et al. (2016), 

with population structure described by [𝟏𝑛 𝐏] (Appendix A3). Therefore, the significant 

relationship between PC-based distances and correlations in marker effects for HD in MPM-
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Matérn indicates that marker effects for this trait were highly sensitive to variation in allele 

frequencies across genetic backgrounds. 

Regarding prediction accuracy, the performance of MPM-Mixture was very similar to that of 

SPM-GRM, with differences in accuracy ranging from -0.019 to +0.009 (Table 3). Quite 

surprisingly, MPM-Mixture displayed slightly deteriorated accuracies for HD (with the exception 

of U4X-N), despite the highly significant improvement in fit for this trait. In contrast, MPM-

Matérn yielded larger differences in accuracy, ranging from -0.021 to +0.059 (Table 3). With the 

two upland target populations (WS4U-C2 and U4X-N), noteworthy increases in prediction 

accuracy (+0.059 and +0.032 respectively) were observed for HD. In these two cases, somewhat 

significant differences in accuracy compared to Target could be achieved, while no significant 

improvement could be obtained from SPM-GRM. With the two other target populations (Liberty-

C2 and L4X-NE), smaller differences in accuracy (-0.009 and +0.006 respectively) were 

observed for HD. Our results suggest that a very high increase in quality of fit, as was observed 

for HD with MPM-Matérn, may allow for an increase in accuracy, but with no absolute 

guarantee. In the analysis of Heslot and Jannink (2015) across various multi-population contexts, 

there seemed to be a positive relationship between differences in quality of fit, as measured by 

the Akaike information criterion (AIC), and differences in prediction accuracy. Although this 

relationship was quite loose, it could be noted that for very high increases in AIC (≥ 30), gains 

in accuracy were null to high, similarly to the situation of MPM-Matérn with HD, for which 

increases in AIC varied from 28.37 to 42.53 across CV replicates (Table 2). Therefore, stringent 

thresholds on AIC increases could probably be used in MPM to avoid relative decreases in 

accuracy. Other characteristics and guidelines, related to the sample or the fitted model, may also 

be useful for this type of indication. 

DISCUSSION 

Conclusions 

The present study assessed various procedures to accommodate population heterogeneity in 

diverse samples, with an application in switchgrass. We employed three typical strategies for 

dealing with marker-by-population interactions, i.e., ignoring (SPM), reducing (IS), or modelling 

(MPM) the source of heterogeneity in the data. These general strategies had previously been 

mentioned, e.g. by Bernardo (2002) about the analysis of genotype-by-environment interactions 

(GxE). 

Here SPM often seemed robust to population heterogeneity, regarding prediction accuracy (Table 

3). This robustness was probably contributed by the high marker density in our assay (De Roos 

et al. 2009). However, some decreases in accuracy compared to the control procedure (Target) 

suggest that robustness of SPM may have been affected by other factors. Such factors may be 

related to relationships within the sample, e.g. under-connectedness of some populations with 

others (Figure 3), or differences in accuracy of the prediction model from one population to 

another, in a single-population context (Table 3). Our proposed procedure (SPM-GLASSO), 

relying on a regularized form of the genomic relationship matrix, did not yield any improvement 

in prediction accuracy compared to the standard procedure (SPM-GRM). However, SPM-

GLASSO was useful for inferring graphs of relationships within the sample, conditionally on 

population structure, which were used to derive informative features about our sample (Figure 3, 

Figure S2). In our study, the lack of benefit from regularization was probably due to the high 

marker density, translating into high estimation accuracy of genomic relationships (Endelman 
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and Jannink 2012, Casella and Berger 2002). In studies with lower marker densities, in which 

genomic relationship estimates are less accurate, SPM-GLASSO may have been more useful 

compared to SPM-GRM. 

Selecting individuals in IS was not useful for improving prediction accuracy compared to SPM, 

in a context of free CS sizes (i.e., when IS is used as means of optimization). However, IS 

procedures were useful compared to random selection (RS) in contexts of fixed CS sizes, i.e., 

when restrictive numbers of individuals were used for calibration (Rincent et al. 2012, Isidro et 

al. 2014, Akdemir et al. 2015). In this type of scenarios, with small CS sizes (less individuals 

than in Target), the proposed procedure (IS-QP), which not only accounted for relationships 

between the CS and the TS but also redundancy within the CS, was particularly useful (Figure 

5). In comparison, the more typical approach (IS-Rel), which only accounted for relationships to 

the TS, tended to lose its advantage over RS as CS size decreased (Figure 5). The relative 

superiority of IS-QP at low CS sizes are consistent with the findings of Pszczola et al. (2012), 

which suggested that redundancy within the CS was detrimental to prediction accuracy, for a 

given level of relationships to the TS.  

In our case study, MPM procedures yielded highly significant improvements in fit for one of the 

three traits assayed (HD), in comparison to SPM (Table 2). Our proposed procedure (MPM-

Matérn) relied on non-linear kernel functions for estimating population-level correlations in 𝛀𝑛, 

and was the only procedure to be more accurate than SPM for HD (Table 3). Differences in 

accuracy from SPM to MPM were smaller and seemed less predictable for PH and St, as could be 

expected from the more modest improvements in fit for these two traits. Our results exemplify 

the potential usefulness of parsimonious multi-population models, which are all the more 

interesting that they can be applied on samples comprising many populations. In contrast, typical 

multi-trait models would be computationally intractable or statistically inefficient here, since 

those would rely on one parameter for each population pair to model correlations among 

populations in 𝛀𝑛 (e.g., 21 parameters for 𝐾 = 7 population clusters). 

Improvement of procedures 

The regularization method applied here in SPM-GLASSO imposed sparsity on the inverse matrix 

of conditional genomic relationships, thereby inferring a graph of recent relationships among 

individuals in the panel. Other regularization techniques act directly on the covariance matrix. 

Those include various thresholding methods (Rothman et al. 2009, Cai and Liu 2011), which 

may be useful, especially when relationships are derived from low-density markers. However, 

such methods do not necessarily guarantee positive definiteness of the regularized relationship 

matrices, which could be an issue when using them in linear mixed models. One other aspect of 

regularization that could be improved is the selection of the regularization parameter (λ). Here, 

we chose to select λ based on REML for a given outcome, but other selection techniques, 

employed on the covariance matrix, may be more relevant. These include selection of λ based on 

cross-validation (Bickel and Levina 2008), information criteria (Foygel and Drton 2010), or 

stability of inference (Liu et al. 2010). Further research would be necessary to explore the 

potential of such selection techniques for improving regularization of genomic relationship 

matrices with respect to prediction accuracy and/or graph inference. 

In a context of unrestricted CS sizes, the tendency of IS procedures to select too many 

individuals, even when this was detrimental to prediction accuracy, may have been due to an 

overestimation of accuracy by CDmean with larger CS sizes (Table 3, Table 4, Figure 4). Based on 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 4, 2017. ; https://doi.org/10.1101/124081doi: bioRxiv preprint 

https://doi.org/10.1101/124081
http://creativecommons.org/licenses/by-nc-nd/4.0/


the results of Hayes et al. (2009c), this upward bias in CDmean may be of particular concern in a 

multi-population context. Therefore, other metrics than CDmean may result in more pertinent 

selections in IS. Another improvement of IS may come from selection of individuals for 

prediction of each TS individual considered separately, as was proposed by Lorenz and Smith 

(2015). Because the IS procedures would then be run for one TS individual at a time, 

computationally intensive procedures based on stochastic algorithms would certainly not be 

applicable, making the IS procedures presented here all the more relevant. Finally, IS could be 

further improved by using other types of relationships than those used here. For example, as was 

recommended by Pszczola et al. (2012) and Wientjes et al. (2013), selections could be based on 

squared relationships, i.e., 𝐆 ○ 𝐆 instead of 𝐆 in IS-Rel (and by analogy, 𝐗𝐗′ ○ 𝐗𝐗′ instead of 

𝐗𝐗′ in IS-QP). Alternatively, entries in the relationship matrix could be replaced with those 

inferred in MPM, e.g. using 𝛀𝑛 ○ 𝐗𝐗′ instead of 𝐗𝐗′ in IS-QP. Population heterogeneity would 

then be accounted for when selecting individuals from different genetic backgrounds. Finally, IS 

could rely on graphs of relationships such as those inferred from SPM-GLASSO. Selection of 

individuals would then be based on measures of connectivity between available individuals and 

the TS. Such measures could be the lengths of average shortest paths between each individual 

and the TS, or graph-based kernel functions, e.g. derived from the number of edges connecting 

each individual and the TS (Bishop 2006). Some features of our graphs seemed to mirror those 

revealed by the PCA plot (e.g., the distance of L4X-NE to the other populations). However, the 

PCA plot and the graphs depicted entirely distinct levels of relationships, the former representing 

relatedness at the population level and the latter representing relatedness conditionally on 

population structure. Therefore, graphs of relationships such as the ones inferred in SPM-

GLASSO in our study offer new possibilities for depicting relationships and selecting individuals 

accordingly. 

Multiple-population models were generally not useful when the improvement in model fit was 

modest. Therefore, a possible improvement of MPM procedures could simply come from model 

selection as an integral part of the fitting process, based for example on the Bayesian information 

criterion (BIC). In fact, the BIC differences relative to SPM-GRM were almost always negative 

for PH and St in MPM (Table 2). For these two traits, differences in prediction accuracy from 

SPM to MPM were quite inconsistent, especially with MPM-Matérn, so model selection could 

probably have made MPM procedures more robust. Another way of potentially improving MPM 

procedures would be to use other types of kernels than those used here. For example, one may 

use linear kernels based on population-level covariates (e.g. PCs) in place of 𝐀𝐀′ in MPM-

Mixture, hence taking an approach similar to that of Jarquín et al. (2014) who modelled GxE 

through environmental covariates in multi-environment genomic prediction models. Also, the 

relationship matrix used in MPM (𝛀𝑛 ○ 𝐗𝐗′) may be regularized, then shrinking further – or 

even setting to zero – the relationships that had been reduced through 𝛀𝑛. Finally, an interesting 

way of extending the MPM procedures described here would be to incorporate more information 

at the population level. Here in MPM, population homogeneity was captured through admixture 

coefficients (MPM-Mixture) or differences in PC coordinates (MPM-Matérn), the latter 

reflecting differences in allele frequencies (Appendix A3). However, marker-by-population 

interactions may also be due to differences in LD patterns (Wientjes et al. 2016). Therefore 

metrics depicting such differences could be particularly appropriate for capturing population 

heterogeneity. Further research would be necessary to determine the type of statistics to use for 

reflecting differences in LD patterns, and the appropriate way to parsimoniously combine the 

different types of information regarding population differentiation in MPM. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 4, 2017. ; https://doi.org/10.1101/124081doi: bioRxiv preprint 

https://doi.org/10.1101/124081
http://creativecommons.org/licenses/by-nc-nd/4.0/


Applications and prospects 

Based on our case study, we would recommend using MPM whenever a strong improvement in 

model fit is achieved. Otherwise SPM would be the method of choice, since it is often robust 

enough to perform at least as well as Target. However, Target may be preferred when making 

predictions on “outlier populations” such as L4X-NE, which are under-connected to other 

populations and are characterized by relatively higher prediction accuracy in a single-population 

context. Only when the CS sizes are restricted (fixed) would IS procedures be useful – even 

though further improvements may make IS more competitive in contexts of free CS sizes. In 

such situations, we recommend using IS-QP instead of IS-Rel, especially when the CS size ought 

to be small. Nevertheless, more empirical studies on population heterogeneity would have to 

follow to support the conclusions from our specific application. Such studies could apply to 

various contexts: in particular, predictions on diverse samples or dynamic breeding programs. 

The former includes analyses similar to our case study as well as analyses on more complex data, 

such as historical datasets, in which not only population heterogeneity but also GxE must be 

taken into account (Dawson et al. 2013, Rutkoski et al. 2015). The latter involves selection 

across multiple breeding generations, which might not necessarily suffer from strong population 

heterogeneity (Sallam et al. 2015, Auinger et al. 2016) but could nonetheless benefit from robust 

multi-population models for potential increase in persistency of accuracy over generations 

(Habier et al. 2007). In this context, IS procedures could also be interesting, for example if a 

subset of non-selected individuals may be assayed phenotypically during the breeding program. 

In dynamic breeding analyses particularly, simulation studies also hold promise for assessing the 

suitability of various procedures to accommodate population heterogeneity. 
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TABLE 1 – Description of populations and corresponding trait measurements 

Pop. Size Loc. Trait Years Mean Range 

L4X-NE 106 NY PH 2009 2011 142.8 96.5 - 202.8 

HD 2009 2010 2011 547.1 422.6 - 810.9 

St 2010 2011 5.6 1.0 - 9.0 

L4X-S 37 NY PH 2009 2011 209.6 130.5 - 240.7 

HD 2009 2010 2011 841.8 708.3 - 1076.0 

St 2010 2011 7.1 5.0 - 9.8 

Liberty-

C2 

110 WI PH 2012 2013 185.8 133.6 - 240.6 

HD 2012 2013 2014 806.6 650.9 - 981.6 

St 2013 6.2 2.6 - 8.9 

U4X-N 135 NY PH 2009 2011 155.8 94.3 - 207.8 

HD 2009 2010 2011 534.1 344.9 - 904.7 

St 2010 2011 5.4 1.5 - 8.0 

WS4U-C2 136 WI PH 2012 2013 163.8 127.7 - 203.7 

HD 2013 2014 527.6 400.3 - 688.5 

St 2013 5.7 2.1 - 8.2 

U8X-E 97 NY PH 2009 2011 168.3 100.9 - 225.5 

HD 2009 2010 2011 530.3 408.2 - 735.0 

St 2010 2011 5.6 1.7 - 8.0 

U8X-W 129 NY PH 2009 2011 165.3 126.5 - 225.8 

HD 2009 2010 2011 608 428.9 - 823.6 

St 2010 2011 3.5 0.5 - 7.3 

U8X-S 10 NY PH 2009 2011 175.6 138.5 - 190.7 

HD 2009 2010 2011 716.2 569.9 - 859.7 

St 2010 2011 5.8 4.0 - 7.5 

Population (Pop.): WS4U-C2 is a collection of upland ecotypes; Liberty-C2 is a cross between 

upland and lowland ecotypes; other populations are designated by ecotype (U: upland; L: 

lowland), ploidy level (4X: tetraploid; 8X: octoploid) and geographical origin (S: South; W: 

West; N: North; E: East). Location (Loc.): location of phenotypic trials, Arlington (WI, USA) or 

Ithaca (NY, USA). Trait: plant height (PH), heading date (HD) or standability (St). Mean and 

range refer to the non-centered means yi’s as described in Material and Methods. Units for mean 

and range are centimeter, growing degree days and scores on a 0-10 scale, for PH, HD and St, 

respectively. 
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TABLE 2 – Parameter estimates, likelihood-ratio test statistic (LRT) and p-value, by trait and 

procedure (range over target populations and cross-validation replicates in parentheses) 

Trait Procedure Parameter estimate LRT statistic LRT p-value 

PH SPM-

GLASSO 

λ: 0.002 (0.001-0.002) 0.84 (0.42-1.71) 0.36 (0.19-0.52) 

MPM-

Mixture 

ρ: 0.000 (0.000-0.005) 0.00 (0.00-0.01) 1 (0.9-1) 

MPM-

Matérn 

h*: 0.525 (0.225-0.575) 

ν: 0.625 (0.550-0.921) 

7.36 (4.85-9.92) 0.025 (0.007-0.089) 

HD SPM-

GLASSO 

λ: 0.003 (0.002-0.003) 2.24 (1.06-3.65) 0.13 (0.056-0.30) 

MPM-

Mixture 

ρ: 0.435 (0.355-0.572) 15.75 (13.67-18.78) 7.2E-5 (1.5E-5-2.2E-4) 

MPM-

Matérn 

h*: 0.325 (0.294-0.500) 

ν: 0.619 (0.550-0.735) 

42.34 (32.37-46.53) 6.4E-10 (7.9E-11-9.3E-8) 

St SPM-

GLASSO 

λ: 0.007 (0.000-0.019) 0.56 (0.00-2.38) 0.45 (0.12-1) 

MPM-

Mixture 

ρ: 0.138 (0.112-0.159) 5.68 (4.28-7.10) 0.017 (0.0077-0.038) 

MPM-

Matérn 

h*: 0.134 (0.125-1.096) 

ν: 9.049 (0.807-10.014) 

7.50 (5.47-8.42) 0.024 (0.015-0.065) 

Trait: plant height (PH), heading date (HD) or standability (St). SPM-GLASSO: Single-

population model based on regularized relationships (λ: regularization parameter); MPM: 

Multi-population model with among-population correlations based on admixture coefficients 

(MPM-Mixture; ρ: Mixture parameter) or PC distances (MPM-Matérn; ν: shape parameter; 

ℎ∗ = ℎ 𝐷𝑚𝑎𝑥⁄ , with h the scale parameter and Dmax, the maximum distance ‖𝐩i − 𝐩j‖2
 observed 

over pairs of individuals). LRT statistic: −2log (𝐿0 𝐿1⁄ ) where L0 is the REML of SPM-GRM 

(GBLUP fitted to the whole sample) and L1 is the REML of one of the procedure described here; 

p-values were obtained from a χ2-ditribution with one (SPM-GLASSO, MPM-Mixture) or two 

(MPM-Matérn) degrees of freedom.  
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TABLE 3 – Average prediction accuracy (standard deviation across cross-validation replicates 

in parentheses) by trait, target population and prediction procedure 

Trait Pop. Target SPM-

GRM 

SPM-
GLASSO 

IS-Rel IS-QP MPM-

Mixture 

MPM-

Matérn 

PH WS4U-

C2 

0.111 

(0.113)  

0.150 

(0.114)• 

0.132 

(0.113)  

0.150 

(0.114)• 

0.139 

(0.130)  

0.150 

(0.114)• 

0.129 

(0.117)  

Liberty

-C2 

0.466 

(0.186)  

0.474 

(0.188)  

0.477 

(0.187)  

0.472 

(0.189)  

0.469 

(0.202)  

0.474 

(0.188)  

0.470 

(0.186)  

U4X-N 0.496 

(0.147)  

0.531 

(0.139)• 

0.532 

(0.139)• 

0.531 

(0.139)• 

0.526 

(0.143)• 

0.531 

(0.139)• 

0.544 

(0.122)• 

L4X-

NE 

0.788 

(0.067)  

0.772 

(0.073)* 

0.772 

(0.073)* 

0.773 

(0.073)* 

0.776 

(0.074)* 

0.772 

(0.073)* 

0.768 

(0.075)* 

HD WS4U-

C2 

0.262 

(0.162)  

0.263 

(0.190)  

0.279 

(0.183)  

0.263 

(0.190)  

0.250 

(0.196)  

0.244 

(0.181)  

0.322 

(0.150)• 

Liberty

-C2 

0.533 

(0.152)  

0.533 

(0.145)  

0.539 

(0.141)  

0.527 

(0.149)  

0.525 

(0.147)  

0.517 

(0.152)• 

0.524 

(0.153)  

U4X-N 0.690 

(0.111)  

0.691 

(0.104)  

0.696 

(0.101)  

0.691 

(0.104)  

0.697 

(0.104)  

0.700 

(0.101)• 

0.722 

(0.091)• 

L4X-

NE 

0.839 

(0.073)  

0.826 

(0.075)* 

0.826 

(0.074)* 

0.826 

(0.076)* 

0.828 

(0.075)* 

0.829 

(0.074)* 

0.832 

(0.070)• 

St WS4U-

C2 

0.115 

(0.197)  

0.069 

(0.215)• 

0.071 

(0.220)• 

0.069 

(0.215)• 

0.064 

(0.216)• 

0.066 

(0.219)• 

0.078 

(0.212)• 

Liberty

-C2 

0.053 

(0.231)  

0.116 

(0.248)• 

0.081 

(0.243)• 

0.116 

(0.242)• 

0.112 

(0.245)• 

0.105 

(0.251)• 

0.103 

(0.252)• 

U4X-N 0.251 

(0.175)  

0.262 

(0.169)  

0.248 

(0.172)  

0.262 

(0.169)  

0.256 

(0.170)  

0.266 

(0.172)  

0.263 

(0.166)  

L4X-

NE 

0.598 

(0.121)  

0.582 

(0.128)• 

0.592 

(0.130)  

0.595 

(0.123)  

0.584 

(0.126)• 

0.583 

(0.129)• 

0.583 

(0.131)• 

Trait: plant height (PH), heading date (HD) or standability (St). Pop.: Population used as target 

for prediction. Prediction accuracies are averaged over 20 cross-validation replicates. 

Comparisons to the control procedure (Target): •, p < 0.05 in unadjusted (naïve) t-test (liberal); 

*, p < 0.05 in t-test corrected for overlap in testing sets as in Nadeau and Bengio (2003) 

(conservative). SPM: Single-population model based on non-regularized (SPM-GRM) or 

regularized (SPM-GLASSO) relationships; IS: Instance selection using average relationships 

(IS-Rel) or genotype weights (IS-QP); MPM: Multi-population model with among-population 

correlations based on admixture coefficients (MPM-Mixture) or PC distances (MPM-Matérn). 

Underlined values correspond to the best significant improvements over Target for each trait 

and population. 
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TABLE 4 – Size of the calibration set in the control procedure (Target), Single- and multiple-

population models (SPM/MPM) and instance selection (IS-Rel, IS-QP) 

Trait Pop. Target SPM/MPM IS-Rel (S.D.) IS-QP (S.D.) 

PH WS4U-C2 108 732 732 (0) 643 (119) 

Liberty-C2 88 738 674 (90) 650 (122) 

U4X-N 108 733 733 (0) 666 (76) 

L4X-NE 84 738 702 (0) 622 (170) 

HD WS4U-C2 108 732 732 (0) 670 (71) 

Liberty-C2 88 738 537 (123) 666 (113) 

U4X-N 108 733 733 (0) 660 (62) 

L4X-NE 84 738 591 (0) 646 (112) 

St WS4U-C2 108 732 732 (0) 716 (30) 

Liberty-C2 88 738 495 (94) 552 (211) 

U4X-N 108 733 733 (0) 682 (58) 

L4X-NE 84 738 148 (0) 528 (209) 

Trait: plant height (PH), heading date (HD) or standability (St). Pop.: Population used as target 

for prediction. S.D.: standard deviation across CV replicates for CS size in IS. 
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FIGURE 1 – (a) Admixture plot of the whole sample, with colors designating the seven inferred population clusters, which roughly 

matched populations, with the exception of U8X-S which displayed strong admixture; (b) Principal component analysis (PCA) plot of 

the whole sample of 760 individuals, with colors designating the eight populations. 
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FIGURE 2 – (a) Histogram of marginal genomic relationships, scaled as in VanRaden (2008): off-diagonal elements of 𝐆 𝑣⁄ , with 

𝑣 = 2 ∑ 𝜋̂𝑙(1 − 𝜋̂𝑙)𝑚
𝑙=1  (𝜋̂𝑙: estimated allele frequency at marker l). (b) Histogram of genomic relationships conditional on population 

structure, as captured by PC, also scaled as in VanRaden (2008): off-diagonal elements of 𝐆𝐵 𝑣⁄ , with 𝐆𝐵 = 𝐆 − 𝐁𝐁′ (𝐁 consists of 

the first 𝑑 = 4 PCs of 𝐆). 
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FIGURE 3 – Inferred graphs of relationships, conditional on population structure. Each graph represents the relationships as 

depicted from 𝐆𝐵
−1

 for a given trait, where 𝐆B is the regularized matrix of conditional relationships obtained by the graphical LASSO 

applied to the whole sample of individuals (the absence of edge between two individuals is indicated by a zero ij-element in 𝐆B
−1

). 

Nodes (individuals) were positioned using the force-directed placement algorithm of Fruchterman and Reingold (1991), as 

implemented in function ggnet (R package GGally), so aggregation of nodes reflects connectedness. 
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FIGURE 4 – Average prediction accuracies (over cross-validation replicates) from instance selection with fixed CS sizes, compared 

to the control procedure (Target). Upper panel: prediction accuracies from IS-Rel. Lower panel: prediction accuracies from IS-QP. 

Horizontal dashed lines indicate the average prediction accuracy from Target; vertical dotted lines indicate the corresponding 

proportion of individuals in the CS: 11%, 15%, 12% and 15% for L4X-NE, U4X-N, Liberty-C2 and WS4U-C2, respectively. 

Comparisons to the control: Colored fill, p < 0.05 in unadjusted (naïve) t-test (liberal); black circle, p < 0.05 in t-test corrected for 

overlap in testing sets as in Nadeau and Bengio (2003) (conservative). 
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FIGURE 5 – Average differences in prediction accuracy (over cross-validation replicates) between instance selection procedures and 

random selection (RS), with fixed CS sizes. Upper panel: prediction accuracies from IS-Rel. Lower panel: prediction accuracies from 

IS-QP. Significance of differences: colored fill, p < 0.05 in unadjusted (naïve) t-test (liberal); black circle, p < 0.05 in t-test corrected 

for overlap in testing sets as in Nadeau and Bengio (2003) (conservative). 
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FIGURE 6 – Shape of the inferred correlation function in MPM-Matérn by trait, in the whole sample (solid curves) or in cross-

validation replicates (dashed curves), as a function of 𝐷 = ‖𝐩i − 𝐩j‖2
(the Euclidean distance between population-structure PCs for 

any pair of individual (i,j)), scaled by Dmax, the maximum distance ‖𝐩i − 𝐩j‖2
 observed over pairs.
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APPENDIX 

A1. Equivalence of fit in linear mixed models after regressing out fixed-effect variables 

from random-effect variables 

In this section, matrix notations are not consistent with those in the main text; I refers to the 

identity matrix with dimensions equal to the number of observations. 

Consider the following two models: 

𝐲 =  𝐗𝛃𝟏 + 𝐙𝐮𝟏 + 𝐞𝟏;  [

𝐞𝟏

𝐮𝟏

𝐲
] ~𝑁 ([

𝟎
𝟎

𝐗𝛃𝟏

] , [
𝐑 𝟎 𝐑
𝟎 𝐆 𝐆𝐙′

𝐑 𝐙𝐆 𝐕𝟏

])      (1) 

 where 𝐕𝟏 = 𝐙𝐆𝐙′ + 𝐑 

𝐲 =  𝐗𝛃𝟐 + (𝐈 − 𝐇)𝐙𝐮𝟐 + 𝐞𝟐;  [

𝐞𝟐

𝐮𝟐

𝐲
] ~𝑁 ([

𝟎
𝟎

𝐗𝛃𝟐

] , [

𝐑 𝟎 𝐑
𝟎 𝐆 𝐆𝐙′(𝐈 − 𝐇)′

𝐑 (𝐈 − 𝐇)𝐙𝐆 𝐕𝟐

])  (2) 

with 𝐇 = 𝐗(𝐗′𝐑−𝟏𝐗)−𝟏𝐗′𝐑−𝟏 and 𝐕𝟐 = (𝐈 − 𝐇)𝐙𝐆𝐙′(𝐈 − 𝐇)′ + 𝐑.  

For given 𝐑 and 𝐆 (possibly estimated by ML or REML), in model (1), the ML estimates of 

regression coefficients are 𝛃̂𝟏 = (𝐗′𝐕𝟏
−𝟏𝐗)

−𝟏
𝐗′𝐕𝟏

−𝟏
y (as best linear unbiased estimators, 

BLUEs) and 𝐮̂𝟏 = 𝐆𝐙′𝐕𝟏
−𝟏(𝐲 − 𝐗𝛃̂𝟏) (as best linear unbiased predictors, BLUPs); in 

model (2), the mixed model equations (MME) are 

[
𝐗′𝐑−𝟏𝐗 𝟎

𝟎 𝐙′(𝐈 − 𝐇)′𝐑−𝟏(𝐈 − 𝐇)𝐙 + 𝐆−𝟏] [
𝛃̂𝟐

𝐮̂𝟐
] = [

𝐗′𝐑−𝟏𝐲

𝐙′(𝐈 − 𝐇)′𝐑−𝟏𝐲
] 

so the ML estimates of regression coefficients are (as solutions of the MME) 𝛃̂𝟐 =
(𝐗′𝐑−𝟏𝐗)−𝟏𝐗′𝐑−𝟏𝐲 and 𝐮̂𝟐 = (𝐙′(𝐈 − 𝐇)′𝐑−𝟏(𝐈 − 𝐇)𝐙 + 𝐆−𝟏)−𝟏𝐙′(𝐈 − 𝐇)′𝐑−𝟏𝐲 

(Henderson, 1984). 

□ For given 𝐑 and 𝐆, fitting model (1) and fitting model (2) by ML are equivalent, in that 

𝐞̂𝟏 = 𝐞̂𝟐, so 𝐲̂𝟏 = 𝐲̂𝟐. 

Consider the two matrices P and S such that 𝐏 = 𝐕𝟏
−𝟏 − 𝐕𝟏

−𝟏𝐗(𝐗′𝐕𝟏
−𝟏𝐗)

−𝟏
𝐗′𝐕𝟏

−𝟏 and 

𝐒 = 𝐑−𝟏 − 𝐑−𝟏𝐗(𝐗′𝐑−𝟏𝐗)−𝟏𝐗′𝐑−𝟏. 

As shown by Searle et al. (2006, pp. 282-283): 

 𝐏 = 𝐒 − 𝐒𝐙(𝐙′𝐒𝐙 + 𝐆−𝟏)−𝟏𝐙′𝐒 

Therefore: 

 𝐕𝟏
−𝟏(𝐲 − 𝐗𝛃̂𝟏) = 𝐏𝐲 = 𝐒𝐲 − 𝐒𝐙(𝐙′𝐒𝐙 + 𝐆−𝟏)−𝟏𝐙′𝐒𝐲    (E1) 

Moreover: 

 𝐒𝐲 = 𝐑−𝟏(𝐈 − 𝐇)𝐲 = 𝐑−𝟏(𝐲 − 𝐗𝛃̂𝟐).  

 Because 𝐒 = 𝐑−𝟏(𝐈 − 𝐇) = (𝐈 − 𝐇)′𝐑−𝟏 = (𝐈 − 𝐇)′𝐑−𝟏(𝐈 − 𝐇), 

 𝐒𝐙 = 𝐑−𝟏(𝐈 − 𝐇)𝐙 and 𝐙′𝐒𝐙 = 𝐙′(𝐈 − 𝐇)′𝐑−𝟏(𝐈 − 𝐇)𝐙. 
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Therefore (E1) simplifies into 𝐕𝟏
−𝟏(𝐲 − 𝐗𝛃̂𝟏) = 𝐑−𝟏[𝐲 − 𝐗𝛃̂𝟐 − (𝐈 − 𝐇)𝐙(𝐙′(𝐈 −

𝐇)′𝐑−𝟏(𝐈 − 𝐇)𝐙 + 𝐆−𝟏)−𝟏𝐙′(𝐈 − 𝐇)′𝐑−𝟏𝐲] = 𝐑−𝟏[𝐲 − 𝐗𝛃̂𝟐 − (𝐈 − 𝐇)𝐙𝐮̂𝟐]. So: 

 𝐕𝟏
−𝟏(𝐲 − 𝐗𝛃̂𝟏) = 𝐑−𝟏𝐞̂𝟐       (E2) 

Besides, as shown by Henderson (1984, Chapter 5 p. 9) by application of the Sherman-

Morrison-Woodbury formula to a general variance formulation: 

 𝐕𝟏
−𝟏(𝐲 − 𝐗𝛃̂𝟏) = 𝐑−𝟏(𝐲 − 𝐗𝛃̂𝟏 − 𝐙𝐮̂𝟏) = 𝐑−𝟏𝐞̂𝟏    (E3) 

Since 𝐑−𝟏 is positive definite (so it is full rank), it follows from (E2) and (E3) that 𝐞̂𝟏 = 𝐞̂𝟐. 

■ 

□ For given 𝐑 and 𝐆, 𝐮̂𝟏 = 𝐮̂𝟐. 

As previously stated: 

 𝐒 = (𝐈 − 𝐇)′𝐑−𝟏(𝐈 − 𝐇) 

Therefore, it follows from (E1) that: 

𝐕𝟏
−𝟏(𝐲 − 𝐗𝛃̂𝟏) = (𝐈 − 𝐇)′[𝐑−𝟏 − 𝐑−𝟏(𝐈 − 𝐇)𝐙(𝐙′(𝐈 − 𝐇)′𝐑−𝟏(𝐈 − 𝐇)𝐙 + 𝐆−𝟏)−𝟏𝐙′(𝐈 −

𝐇)′𝐑−𝟏](𝐈 − 𝐇)𝐲         (E4) 

 

By the Sherman-Morrison-Woodbury formula, 𝐕𝟐
−𝟏 = [𝐑 + (𝐈 − 𝐇)𝐙𝐆𝐙′(𝐈 − 𝐇)′]−𝟏 =

[𝐑−𝟏 − 𝐑−𝟏(𝐈 − 𝐇)𝐙(𝐙′(𝐈 − 𝐇)′𝐑−𝟏(𝐈 − 𝐇)𝐙 + 𝐆−𝟏)−𝟏𝐙′(𝐈 − 𝐇)′𝐑−𝟏]. 

So it follows from (E4) that: 

𝐕𝟏
−𝟏(𝐲 − 𝐗𝛃̂𝟏) = (𝐈 − 𝐇)′𝐕𝟐

−𝟏(𝐈 − 𝐇)𝐲 = (𝐈 − 𝐇)′𝐕𝟐
−𝟏(𝐲 − 𝐗𝛃̂𝟐) 

Therefore, as BLUP, 𝐮̂𝟏 = 𝐆𝐙′𝐕𝟏
−𝟏(𝐲 − 𝐗𝛃̂𝟏) = 𝐆𝐙′(𝐈 − 𝐇)′𝐕𝟐

−𝟏(𝐲 − 𝐗𝛃̂𝟐) = 𝐮̂𝟐. ■ 
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A2. Multi-population GBLUP models for heterogeneous calibration sets 

In this section, 𝟏𝑡, 𝐈𝑡, and 𝐉𝑡 refer to the vector of ones, identity matrix, and matrix of ones, 

respectively, of dimensions 𝑡, 𝑡 ×  𝑡 and 𝑡 ×  𝑡 (where t is specified). 

Consider the following model for population-specific marker effects with respect to K 

populations and n genotypes: 

𝐲̅ =  𝐐̅𝛂 + 𝐗̅𝛃̅ + 𝐞̅;  [
𝐞̅
𝛃̅
𝐲̅

] ~𝑁 ([
𝟎
𝟎

𝐐̅𝛂
] , [

𝐑̅ 𝟎 𝐑̅
𝟎 (𝛀𝐾 ⊗ 𝐈𝑚)𝜎𝜷

𝟐 (𝛀𝐾 ⊗ 𝐈𝑚)𝐗̅′𝜎𝜷
𝟐

𝐑̅ 𝐗̅(𝛀𝐾 ⊗ 𝐈𝑚)𝜎𝜷
𝟐 𝐕̅

]);  

𝐕̅ = 𝐗̅(𝛀𝐾 ⊗ 𝐈𝑚)𝐗̅′𝜎𝜷
𝟐 + 𝐑̅  

where ⊗ indicates the Kronecker product; 𝐐̅ = (𝟏𝐾 ⊗ 𝐐) is the Kn x p design matrix for the p-

vector 𝛂 of fixed effects; 𝐗̅ = (𝐈𝐾 ⊗ 𝐗) is the Kn x Km marker-data matrix for the Km-vector 𝛃̅ 

of marker effects at each of the K populations, with variance (𝛀𝐾 ⊗ 𝐈𝑚)𝜎𝜷
𝟐. The matrix 𝛀𝐾 

reflects covariances in marker effects between populations. The Kn-vector 𝐲̅, containing the 

phenotypic values for the n genotypes at each of the K populations, is hypothetical (and ill-

defined from a practical standpoint), since genotypes typically do not belong to more than one 

population. The Kn-vector of residuals 𝐞̅, with unspecified variance 𝐑̅ = (𝐈𝐾 ⊗ 𝐑), is assumed 

to be uncorrelated to marker effects 𝛃̅. 

Let 𝐮̅ = 𝐗̅𝛃̅ be the Kn-vector of additive genetic effects at each of the K populations, 

As a linear combination of a normally-distributed vector (𝛃̅), 𝐮̅ follows a normal distribution 

with expectation and variance as follows (Lehermeier et al., 2015): 

E[𝐮̅] = 𝐗̅E[𝛃̅] = 𝟎  

Var[𝐮̅] = 𝐗̅(𝛀𝐾 ⊗ 𝐈𝑚)𝐗̅′𝜎𝜷
𝟐 = (𝐈𝐾 ⊗ 𝐗)(𝛀𝐾 ⊗ 𝐈𝑚)(𝐈𝐾 ⊗ 𝐗′)𝜎𝜷

𝟐 = (𝛀𝐾 ⊗ 𝐗)(𝐈𝐾 ⊗ 𝐗′)𝜎𝜷
𝟐 =

(𝛀𝐾 ⊗ 𝐗𝐗′)𝜎𝜷
𝟐  

So a multi-population model for breeding values that is equivalent to the model described above, 

by identical mean and variance structures, is as follows: 

𝐲̅ =  𝐐̅𝛂 + 𝐮̅ + 𝐞̅; [
𝐞̅
𝐮̅
𝐲̅

] ~𝑁 ([
𝟎
𝟎

𝐐̅𝛂
] , [

𝐑̅ 𝟎 𝐑̅
𝟎 (𝛀𝐾 ⊗ 𝐗𝐗′)𝜎𝜷

𝟐 (𝛀𝐾 ⊗ 𝐗𝐗′)𝜎𝜷
𝟐

𝐑̅ (𝛀𝐾 ⊗ 𝐗𝐗′)𝜎𝜷
𝟐 𝐕̅

]) 

Now assume that 𝐾 = 𝑛, and each population correspond to the specific genetic background of 

each individuals separately. By considering only observations at every individual’s specific 

genetic background, the above model reduces to: 

𝐲 = 𝐐𝛂 + 𝐮 + 𝐞; [

𝐞
𝐮
𝐲

] ~𝑁 ([
𝟎
𝟎

𝐐𝛂
] , [

𝐑 𝟎 𝐑
𝟎 (𝛀𝑛 ○ 𝐗𝐗′)𝜎𝜷

𝟐 (𝛀𝑛 ○ 𝐗𝐗′)𝜎𝜷
𝟐

𝐑 (𝛀𝑛 ○ 𝐗𝐗′)𝜎𝜷
𝟐 𝐕

]); 

𝐕 = (𝛀𝑛 ○ 𝐗𝐗′)𝜎𝜷
𝟐 + 𝐑  
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where ○ is the Hadamard product; 𝐲 is the typical n-vector of observed phenotypic values; 𝐮 and 

𝐞 are the corresponding additive genetic effects and residuals, respectively. Individual-specific 

marker effects are therefore accounted for by multiplying each element of the relationship matrix 

𝐗𝐗′ by the corresponding element of 𝛀𝑛, thereby reflecting correlations in marker effects among 

individuals’ genetic backgrounds. 

In general, we propose to infer 𝛀𝑛 = (𝜔𝑖𝑗)
𝑛×𝑛

 by 𝜔𝑖𝑗 = 𝜅 (𝜑(𝐱𝑖), 𝜑(𝐱𝑗)), where 𝜑 is some 

function of the m-vectors of marker variables 𝐱𝑖 and 𝐱𝑗, for any pair of individuals i and j, and κ 

is a valid kernel function guaranteeing that 𝛀𝑛 be positive semi-definite. In MPM-Mixture, 

𝜑(𝐱𝑖) = 𝐚𝑖 (K-vector of admixture coefficients for i) for any individual i, and the kernel function 

is 𝜅𝜌(𝐚𝑖, 𝐚𝑗) = 𝜌𝐚𝑖
′𝐚𝑗 + (1 − 𝜌), so that 𝛀𝑛 is a “mixture” between a matrix of correlations 

restricted to population clusters and a matrix allowing full exchange of information across 

clusters, as in a standard GBLUP model. More generally, one could define the kernel function as 

𝜅𝜌,𝚯(𝐚𝑖, 𝐚𝑗) = 𝜌𝐚𝑖
′𝚯𝐾𝐚𝑗 + (1 − 𝜌), where 𝚯𝐾 is a K x K matrix depicting relationships among 

clusters. Here, we simply set 𝚯𝐾 = 𝐈𝐾 and adjusted the kernel function (by REML) for ρ only. 

In MPM-Matérn, 𝜑(𝐱𝑖) = 𝐩𝑖 (d-vector of PC coordinates for i) for any individual i, and the 

kernel function is a Matérn function 𝜅𝜈,ℎ(𝐩𝑖, 𝐩𝑗) of ‖𝐩𝑖 − 𝐩𝑗‖
2
, where ‖.‖2 is the Euclidean 

norm. Notably, it can be shown that ‖𝐩𝑖 − 𝐩𝑗‖
2
 is proportional to ‖𝛑𝐏𝑖

− 𝛑𝐏𝑗
‖

2
, where 𝛑𝐏𝑖

 

(𝛑𝐏𝑗
) is the m-vector of individual-specific allele frequencies for individuals i (j), defined by 

projection of matrix X onto the column space of 𝐐𝐏 = [𝟏𝑛 𝐏] (Appendix A3). So ‖𝐩𝑖 − 𝐩𝑗‖
2
, 

which reflects differentiation with respect to coordinates at the leading PCs of X, also reflects 

differentiation with respect to individual-specific allele frequencies, with an underlying 

population structure represented by the same PCs. The allele frequencies 𝛑𝐏𝑖
 have been 

introduced by Conomos et al. (2016), in a study where they also recommended using principal 

components from a subset of unrelated individuals in X. Here, we simply applied PCA on the 

whole matrix X.   
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A3. Relationship between distance based on principal components and distance based on 

individual-specific allele frequencies 

In this section, 𝟏𝑡, 𝐈𝑡, 𝐉𝑡 and 𝟎𝑠×𝑡 refer to the vector of ones, identity matrix, matrix of ones and 

matrix of zeros, respectively, of dimensions 𝑡, 𝑡 ×  𝑡, 𝑡 ×  𝑡 and 𝑠 ×  𝑡 (where s and t are 

specified). 

We will consider the case where the PC matrix P consists of the first d PCs of X, and individual-

specific allele frequencies are defined as (Conomos et al. 2016): 

𝚷𝐏 =
1

2
𝐐𝐏(𝐐𝐏

′𝐐𝐏)−𝟏𝐐𝐏
′𝐗 

where 𝐐𝐏 = [𝟏𝑛 𝐏] represents population structure through an intercept and the effects of the 

first d PCs of X. Vector 𝛑𝐏𝑖
 (𝛑𝐏𝑗

) then consists of individual-specific allele frequencies (with 

respect to 𝐐𝐏) for individual i (j), such that: 

𝛑𝐏𝑖
=

1

2
𝐪𝑖

′(𝐐𝐏
′𝐐𝐏)−𝟏𝐐𝐏

′𝐗 

and similarly for 𝛑𝐏𝑗
 (𝐪𝑖 refers to the (𝑑 + 1)-vector of population-structure variables from 𝐐𝐏 

for individual i). 

We will show that ‖𝐩𝑖 − 𝐩𝑗‖
2

= 2 ‖𝛑𝐏𝑖
− 𝛑𝐏𝑗

‖
2
 for any pair (i, j), i.e., Euclidean distances 

based on d PCs are equivalent, by proportionality, to those based on m individual-specific allele 

frequencies, with such frequencies as defined above. 

‖𝐩𝑖 − 𝐩𝑗‖
2

= √(𝐩𝑖
′ − 𝐩𝑗

′ )(𝐩𝑖 − 𝐩𝑗) = √𝐩𝑖
′𝐩𝑖 + 𝐩𝑗

′ 𝐩𝑗 − 2𝐩𝑖
′𝐩𝑗 

‖𝛑𝐏𝑖
− 𝛑𝐏𝑗

‖
2

= √𝛑𝐏𝑖
′𝛑𝐏𝑖

+ 𝛑𝐏𝑗
′ 𝛑𝐏𝑗

− 2𝛑𝐏𝑖
′𝛑𝐏𝑗

=
1

2
√𝐪𝑖

′𝐌𝐪𝑖 + 𝐪𝑗
′ 𝐌𝐪𝑗 − 2𝐪𝑖

′𝐌𝐪𝑗 

where 𝐌 = (𝐐𝐏
′𝐐𝐏)−𝟏𝐐𝐏

′𝐗𝐗′𝐐𝐏(𝐐𝐏
′𝐐𝐏)−𝟏. 

Below, we will specify M more explicitly, to subsequently show that ‖𝐩𝑖 − 𝐩𝑗‖
2

=

2 ‖𝛑𝐏𝑖
− 𝛑𝐏𝑗

‖
2
. 

Let (𝐈𝑛 −
𝐉𝑛

𝑛
) 𝐗 be the matrix of marker variables centered around their respective overall mean. 

Assuming 𝑚 > 𝑛, by eigenvalue decomposition (𝐈𝑛 −
𝐉𝑛

𝑛
) 𝐗𝐗′ (𝐈𝑛 −

𝐉𝑛

𝑛
) = 𝐔𝚲𝐔′, with U the 

𝑛 × 𝑛 matrix of eigenvectors and 𝚲 the 𝑛 × 𝑛 diagonal matrix of eigenvalues of 

(𝐈𝑛 −
𝐉𝑛

𝑛
) 𝐗𝐗′ (𝐈𝑛 −

𝐉𝑛

𝑛
); and 𝐏 = 𝐔𝑑𝚲𝑑

1 2⁄
, where the 𝐔𝑑 is the 𝑛 × 𝑑 matrix of leading 

eigenvectors and 𝚲𝑑
1 2⁄

 is the 𝑑 × 𝑑 diagonal matrix of corresponding singular values, assumed 

strictly positive. 

Because 𝐔𝑑 consist of left-eigenvectors of a column-centered matrix (associated with strictly 

positive eigenvalues), 𝐔𝑑
′ 𝟏𝑛 = 𝟎𝑑×1 so 𝐏′𝟏𝑛 = 𝚲𝑑

1 2⁄
𝐔𝑑

′ 𝟏𝑛 = 𝟎𝑑×1. 

Besides, 𝐏′𝐏 = 𝚲𝑑. 
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So: 

(𝐐𝐏
′𝐐𝐏)−𝟏 = [

𝟏𝑛
′ 𝟏𝑛 𝟏𝑛

′ 𝐏

𝐏′𝟏𝑛 𝐏′𝐏
]

−1

= [
𝑛−1 𝟎1×𝑑

𝟎𝑑×1 𝚲𝑑
−1 ] 

Moreover  𝐐𝐏
′ 𝐗 = [

𝟏𝑛
′

𝐏′ ] ((𝐈𝑛 −
𝐉𝑛

𝑛
) 𝐗 +

𝐉𝑛

𝑛
𝐗) = [

𝟏𝑛
′ 𝐗

𝐏′ (𝐈𝑛 −
𝐉𝑛

𝑛
) 𝐗

] because 𝐏′𝐉𝑛 = (𝐏′𝟏𝑛)𝟏𝑛
′ =

𝟎𝑑×𝑛. 

So 

(𝐐𝐏
′𝐐𝐏)−𝟏𝐐𝐏

′ 𝐗 = [
𝛍′

𝚲𝑑
−1 2⁄

𝐔𝑑
′ (𝐈𝑛 −

𝐉𝑛

𝑛
) 𝐗

] 

where 𝛍′ =
1

𝑛
𝟏𝑛

′ 𝐗 

Finally, 𝐌 = ((𝐐𝐏
′𝐐𝐏)−𝟏𝐐𝐏

′𝐗)(𝐗′𝐐𝐏(𝐐𝐏
′𝐐𝐏)−𝟏) = [

𝛍′𝛍 𝐚′

𝐚 𝐈𝑑
] 

with: 

𝚲𝑑
−1 2⁄

𝐔𝑑
′ (𝐈𝑛 −

𝐉𝑛

𝑛
) 𝐗𝐗′ (𝐈𝑛 −

𝐉𝑛

𝑛
) 𝐔𝑑𝚲𝑑

−1 2⁄
= 𝚲𝑑

−1 2⁄ (𝐔𝑑
′ 𝐔𝚲𝐔′𝐔𝑑)𝚲𝑑

−1 2⁄
= 𝚲𝑑

−1 2⁄
𝚲𝑑𝚲𝑑

−1 2⁄
= 𝐈𝑑  

𝐚 = 𝚲𝑑
−1 2⁄

𝐔𝑑
′ (𝐈𝑛 −

𝐉𝑛

𝑛
) 𝐗𝛍  

Therefore, for any pair of individuals (i, j): 

𝐪𝑖
′𝐌𝐪𝑗 = [1 𝐩𝑖

′]𝐌 [
1

𝐩𝑗
] = 𝛍′𝛍 + 𝐩𝑖

′𝐚 + 𝐚′𝐩𝑗 + 𝐩𝑖
′𝐩𝑗 

So: 

2 ‖𝛑𝐏𝑖
− 𝛑𝐏𝑗

‖
2

= √𝐪𝑖
′𝐌𝐪𝑖 + 𝐪𝑗

′ 𝐌𝐪𝑗 − 2𝐪𝑖
′𝐌𝐪𝑗

= √(𝛍′𝛍 + 2𝐩𝑖
′𝐚 + 𝐩𝑖

′𝐩𝑖) + (𝛍′𝛍 + 2𝐩𝑗
′ 𝐚 + 𝐩𝑗

′ 𝐩𝑗) − 2𝛍′𝛍 − 2𝐩𝑖
′𝐚 − 𝟐𝐚′𝐩𝑗 − 2𝐩𝑖

′𝐩𝑗

= √𝐩𝑖
′𝐩𝑖 + 𝐩𝑗

′ 𝐩𝑗 − 2𝐩𝑖
′𝐩𝑗 = ‖𝐩𝑖 − 𝐩𝑗‖

2
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