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Abstract

Neurons within cortical microcircuits are interconnected with recurrent excit-
atory synaptic connections that are thought to amplify signals (Douglas and
Martin, 2007), form selective subnetworks (Ko et al., 2011) and aid feature
discrimination. Strong inhibition (Haider et al., 2013) counterbalances ex-
citation, enabling sensory features to be sharpened and represented by sparse
codes (Willmore et al., 2011). This “balance” between excitation and inhib-
ition makes it difficult to assess the strength, or gain, of recurrent excitatory
connections within cortical networks, which is key to understanding their op-
erational regime and the computations they perform. Networks of neurons
combining an unstable high-gain excitatory population with stabilizing inhib-
itory feedback are known as inhibition-stabilized networks (ISNs; Tsodyks et
al. 1997). Theoretical studies using reduced network models predict that ISNs
produce paradoxical responses to perturbation, but experimental perturbations
failed to find evidence for ISNs in cortex (Atallah et al., 2012). We re-examined
this question by investigating how cortical network models consisting of many
neurons behave following perturbations, and found that results obtained from
reduced network models fail to predict responses to perturbations in more real-
istic networks. Our models predict that a large proportion of the inhibitory
network must be perturbed in order to robustly detect an ISN regime in cor-
tex. We propose that wide-field optogenetic suppression of inhibition under
a promoter targeting all inhibitory neurons may provide a perturbation of suf-
ficient strength to reveal the operating regime of cortex. Our results suggest
that detailed computational models of optogenetic perturbations are necessary
to interpret the results of experimental paradigms.
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Significance statement

Many useful computational mechanisms proposed for cortex require local excit-
atory recurrence to be very strong, such that local inhibitory feedback is neces-
sary to avoid epileptiform runaway activity (an “inhibition-stabilized network”
or “ISN” regime). However, recent experimental results suggest this regime
may not exist in cortex. We simulated activity perturbations in cortical net-
works of increasing realism, and found that in order to detect ISN-like proper-
ties in cortex, large proportions of the inhibitory population must be perturbed.
Current experimentalmethods for inhibitory perturbation are unlikely to satisfy
this requirement, implying that existing experimental observations are incon-
clusive about the computational regime of cortex. Our results suggest that new
experimental designs, targetting a majority of inhibitory neurons, may be able
to resolve this question.

Introduction

Inspired by experimental observations of a repeated, “canonical” architecture
for cortex (Creutzfeldt, 1977; Rockel et al., 1980; Muir et al., 2011), several
authors have proposed that a concomitant canonical function might also ex-
ist — a fundamental computational basis, common to all cortical areas (e.g.
Szentagothai, 1978; Douglas et al., 1989). How can this computational prin-
ciple be discovered? A frequently-applied approach in reverse-engineering a
complex dynamical system is to measure the response of a system to a perturb-
ing stimulus. This technique has been applied to cortex in the past (Douglas et
al., 1989), but recent methodological advances permit targeted stimulation or
suppression of chosen neuronal populations, through genetic targetting of light-
sensitive ion channels and pumps (optogenetics; Boyden et al. 2005; Atallah et
al. 2012; Han and Boyden 2007; Zhang et al. 2007). Optogenetic stimulation
can be used to drive or suppress the activity of genetically-defined cell classes,
or cortical populations with particular projection targets. This approach confers
the possibility to use carefully targeted perturbations to observe and detect the
computational mode of cortex. However, due to the prevalence of recurrent
interactions in cortical networks, the outcome of such a perturbation may be
unintuitive or difficult to predict. For this reason, computational modelling of
perturbations is required to relate network architectures and operating regimes
to the expected result of a particular perturbation, and to guide the choice of an
appropriate experimental perturbation to optimally test hypotheses. Here we
take as specific example the question of quantifying the excitatory / inhibitory
balance in cortex, with a particular focus on mouse visual cortex.
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Network computational mechanisms that rely on recurrent processing of in-
formation within cortex can be flexible and powerful (Hopfield, 1982; Douglas
and Martin, 2007; Hopfield, 2015). Many computational models for mam-
malian cortex require strong recurrent excitation, which consequently must be
balanced by strong local inhibition to maintain stability of the cortical net-
work (Hahnloser, 1998; Rutishauser and Douglas, 2009; Neftci et al., 2013;
Muir and Cook, 2014). Networks with this property are known as inhibition-
stabilized networks, or ISNs (Tsodyks et al., 1997; Ozeki et al., 2009; Litwin-
Kumar et al., 2016). An alternative configuration of cortical networks could
rely on a weak excitatory population that is intrinsically stable, which would
support different computational mechanisms not relying on strong excitatory
recurrence. The question of which balanced regime mammalian neocortex op-
erates in is therefore of experimental interest, as this constrains the type of
computations that could be supported by cortex. Anatomical and physiological
estimates suggest that recurrent excitation is very strong, especially in the super-
ficial layers of cortex (Binzegger et al., 2004; Lefort et al., 2009). Similarly, ob-
servations of epileptiform activity when inhibition is blocked in cortex suggest
that inhibitory feedback is required for stability of the cortical network (Avoli
et al., 1995; Mann et al., 2009). However an ISN regime may also be detected
functionally by experimentally perturbing the dynamics of cortical activity and
observing the response of the network.

Here we analyse theoretical and simulation models of cortical networks, to de-
termine the conditions under which an inhibitory perturbation evokes a meas-
urable paradoxical response in the network, which can be used to infer the com-
putational regime of cortex (Tsodyks et al., 1997). We then examine whether
existing methods for perturbation of cortical activity — for example, electrical
stimulation by injecting currents into inhibitory neurons; perfusion of the brain
with chemical agonists or antagonists of inhibitory synaptic receptors (Bowery
et al., 1984); or optogenetics — will be able to reveal evidence for an ISN re-
gime in cortex.

Results

Simple ISNs display counterintuitive dynamics when inhibitory activity is per-
turbed by increasing or decreasing excitatory input into inhibitory neurons. If
inhibition is reduced by removing input then the network effect is to increase the
activity of inhibitory neurons; conversely, if extra input is provided to inhibit-
ory neurons then the network responds by decreasing their activity (Fig. 1). This
has been termed the “paradoxical” inhibitory response (Tsodyks et al., 1997),
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Figure 1: Globally perturbing the inhibitorynetworkgives rise to aparadoxical
inhibitory response, in inhibition-stabilized networks. The effect on activity of
excitatory and inhibitory neurons, of increasing (A) and decreasing (B) input to
the inhibitory population. At 50ms input is injected to all neurons. At 100ms
the input to the inhibitory population only is perturbed. Note that increasing
inhibitory input results in a counterintuitive decrease in overall inhibitory activ-
ity, and vice versa. Parameters: {wE,wI, τ} = {5, 20, 10ms}. Dashed line for
reference with pre-perturbation activity.

and arises through nonlinear network dynamics introduced by unstable excitat-
ory feedback. This counterintuitive effect of perturbing inhibition has been put
forward as a signature of ISN dynamics that could be detected in cortical net-
works (Tsodyks et al., 1997). This is an experimentally accessible metric, since
neurons are often being recorded and activated at the same time. When the
entire inhibitory population of an ISN is perturbed simultaneously, then the
paradoxical effect emerges as in Fig. 1. However, under typical experimental
conditions only a fraction of the inhibitory population can be perturbed. This
raises the question of whether the paradoxical effect will be observed if only por-
tions of the inhibitory population are perturbed. Recent results based on direct
activation and suppression of the inhibitory network (Atallah et al., 2012) did
not reveal evidence for a paradoxical inhibitory response. Based on these results,
some authors have inferred that an ISN regime may not exist in the superficial
layers of mouse visual cortex (Litwin-Kumar et al., 2016). It remains unclear
whether experimental methods for perturbing inhibition will be sufficient to
reveal a signature of ISN dynamics.

Perturbations of homogeneous networks of firing-rate neurons in ISN
and non-ISN regimes

To explore the properties of ISNs and non-ISNs and investigate how they re-
spond to perturbations over a wide range of parameters, we first developed a
simple analytically tractable model of a cortical network. For this we used non-
spiking linear-threshold neuron models, since they provide a good approxim-
ation to the F-I curves of adapted cortical neurons (Ermentrout, 1998). Net-
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Figure 2: Perturbing only a proportion of the inhibitory population may not
give rise to a paradoxical inhibitory response. Result of increasing (A) and de-
creasing (B) input to a portion p = 50% of the inhibitory population (compare
with Fig. 1). Although this network is an ISNwith same parameters as in Fig. 1,
the response of inhibitory neurons to perturbation is starkly different. No par-
ticular evidence for the paradoxical response is visible. Dashed trace: response
of non-stimulated inhibitory neurons, shifted up for visibility. The response of
excitatory neurons (red) and non-stimulated inhibitory neurons (dashed) are
identical.

works were built using homogeneous synaptic connectivity and equal numbers
of excitatory and inhibitory neurons (see Materials and Methods). In these
models we simulated synaptic inputs by injecting currents proportional to pre-
synaptic activity.

We analytically examined the stability and dynamic properties of this network,
to determine the conditions under which it operates in an ISN regime. The
stability of networks was determined by expressing all synaptic connections
between pairs of neurons as a weight matrix W , and then analysing the prop-
erties of this matrix. Each network has an associated property known as the
largest real eigenvalue λ1, which depends on the strength of excitation and in-
hibition within the network, and the dynamical properties of the network (see
Materials and Methods). If this value is large (i.e. λ1 > 1), then the network
can become unstable; this is because a pattern of activity in the network can be-
come amplified through local recurrent feedback, and the firing activity of the
neurons involved could increase without bound. Alternatively, if λ1 ≤ 1 then
the activity of all neurons in the network is guaranteed not to increase without
bound and this is defined as a stable network.

For a network to operate in an ISN regime, the network must be unstable in
the absence of inhibition, yet stable with inhibitory feedback (Tsodyks et al.,
1997). By setting the synaptic strength of inhibition wI to zero, we found
that the excitatory network is unstable (i.e. λ1 > 1) when the total synaptic
strength contributed by a single excitatory neuron (wE ) is greater than 1. The
interpretation of wE > 1 is that on average in an active network, a single spike
from an excitatory neuron leads to at least one extra spike in the rest of the
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network.

To ensure stability in the entire network (i.e. λ1 ≤ 1 in the presence of inhib-
itory feedback), we found a constraint relating the strength of excitation and
inhibition that guarantees local inhibition is strong enough to keep recurrent
excitation in check. For networks operating in the ISN regime, the relative
strengths of excitation and inhibition must satisfy 1 < wE < 1 + wI (Eq. 3).

Perturbation of entire inhibitory population For small networks consisting
of a single excitatory and a single inhibitory neuron (Tsodyks et al., 1997;
Litwin-Kumar et al., 2016), perturbing the inhibitory neuron will always result
in a paradoxical response in an ISN. We considered whether this result holds
true for larger networks with many excitatory and inhibitory neurons. We
began by estimating the effect of a perturbation to the entire inhibitory pop-
ulation on the activity of a single inhibitory neuron (Eq. 8). We ignored any
transient effect of a perturbation, comparing only the steady-state response of
a network before and after the perturbation (see Materials and methods). This
situation is illustrated in Fig. 1.

For the paradoxical effect to appear, a positive perturbation provided to the
inhibitory population must result in a counterintuitive reduction in the activ-
ity of the inhibitory neuron under measurement. To determine whether this
“paradoxical” effect occurs for a given network and given perturbation, we cal-
culated the change in firing rate of a chosen inhibitory neuron with respect to
a perturbation (see Materials and Methods).

For a stable ISN as defined above (Eq. 3; see Materials and Methods), we
found that a global perturbation of the inhibitory population will always evoke
a paradoxical effect. This result shows that the dynamics of our large networks
are comparable to previous simplified ISNmodels (Tsodyks et al., 1997; Litwin-
Kumar et al., 2016).

Perturbation of a single inhibitory neuron Since not all inhibitory neurons
within a cortical region will be perturbed with electophysiological or optogen-
etic approaches under realistic experimental conditions, we investigated how
networks respond when only a fraction of the inhibitory neurons are perturbed.
Starting with the extreme case of perturbing a single inhibitory neuron (Eq. 9),
we found that a narrow range of excitatory synaptic strength wE exists, within
which the paradoxical effect can be evoked (see Materials and Methods). How-
ever, the range for wE that satisfies this constraint shrinks rapidly to zero as the
size of the network increases, making this regime unlikely to exist in cortex.
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Figure 3: Many inhibitory neurons must be perturbed to evoke a paradoxical
inhibitory response. (A) The minimum proportion of the inhibitory popula-
tion p/N that must be perturbed under in order for the paradoxical effect to
appear in the perturbed neurons, in a network with equal numbers of excit-
atory and inhibitory neurons. This analytical result does not depend on the
size of the network N . Parameters: {hI, hE, f I, τ} = {1, 1, 0.5, 10ms}. (B)
The miminum proportion of inhibition p/NI for a network with f I = 20%.
Other parameters: {hI, hE, τ, NE, NI } = {1, 1, 10ms, 80, 20}. Note the differ-
ence in scale compared with (A). (B) The minimum proportion of the inhib-
itory population p/N that must be perturbed under in order for the paradox-
ical effect for networks with sparse synaptic connectivity between excitatory
and inhibitory neurons. Note this does not affect the overall trend for aver-
aged response of stimulated inhibitory neurons (cf. B), but the stochastic effect
of introducing sparse connections in smaller networks is evident. Parameters:{
hEE, hEI, hIE, hI I,NE, NI

}
= {0.1, 0.5, 0.5, 0.5, 4000, 1000}. × in b,c: estim-

ated nominal parameters for mouse visual cortex {wE,wI } = {5.4, 56}. This
estimate gives p/NI = 71%. †: non-ISN regime; ‡: unstable regime.
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Perturbation of a subset p of the inhibitory population We then investigated
the effect of perturbing a larger subset of the inhibitory population, as is likely
to be the case under experimental conditions. We injected a positive or neg-
ative current into p inhibitory neurons (see Materials and Methods; Eq. 10).
We found that for networks in a stable ISN regime, the relative total synaptic
strength of excitatory and inhibitory neurons determines a minimum propor-
tion p/N > −λ1/wI of the inhibitory network that must be perturbed, in order
to observe a paradoxical response in the perturbed neurons (Fig. 3a). Import-
antly, this proportion does not depend on the size of the network N .

Depending on the operating regime of the network, the proportion of inhibit-
ory neurons that must be perturbed can be considerable, approaching 100%. If
a smaller proportion of the inhibitory network is stimulated, then the paradox-
ical response does not occur in either the perturbed or non-perturbed inhibitory
neurons (Fig. 2).

Perturbation by injecting a global inhibitory current Some experimental per-
turbations, for example infusion of neurotransmitters or chemical agonists of
inhibition, result in injection of inhibitory currents across the entire network
(i.e. in both inhibitory and excitatory neurons). We therefore examined the
case of such a global perturbation in our models (see Materials and Methods;
Eq. 13). We found that this mode of perturbation cannot elicit a paradoxical in-
hibitory response in a network operating in a stable ISN regime. Experimental
methods that globally modulate inhibitory inputs to all neurons — as opposed
to perturbing the inhibitory population alone — cannot therefore be used to
demonstrate an ISN regime in cortex.

Perturbation by modifying effective inhibitory synaptic strength It is pos-
sible that some experimental perturbations, for example infusion of a GABA
antagonist, may result in a divisive rather than subtractive effect on inhibitory
input. We investigated the effect of divisive perturbations by scaling the ef-
fective inhibitory synaptic strength wI . We computed the change in neuronal
responses when effective inhibitory synaptic strength is perturbed, requiring
that for an increase in inhibitory synaptic strength, the analogous “paradoxical”
response would be for the inhibitory network to increase its activity (see Mater-
ials and Methods; Eq. 14). We provided a constant but different input current
to excitatory and inhibitory neurons, ιE and ιI respectively.

We found that for a network operating in a stable ISN regime, there is no
combination of relative excitatory and inhibitory input or synaptic weight that
can give rise to a paradoxical inhibitory response when the inhibitory synaptic
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strength is perturbed. This result implies that global modulation of inhibitory
weights, or other similar divisive modulation of inhibition, cannot be used to
demonstrate an ISN regime in cortex.

Networkswith realistic proportions of excitatory and inhibitoryneurons The
networks described above have equal numbers of excitatory and inhibitory neur-
ons, similar to classical ISN networks. However, in mammalian cortex, approx-
imately 20% of neurons are inhibitory (Gabott and Somogyi, 1986). We there-
fore redefined our network following Muir and Mrsic-Flogel (2015), and set
the proportion of inhibitory neurons in the network to 20% while maintaining
all-to-all non-specific connectivity. We numerically computed the proportion
of the inhibitory population that must be stimulated to observe the paradoxical
effect in the stimulated neurons (Fig. 3b; see Materials and Methods). In gen-
eral, networks with fewer inhibitory neurons are less stable. Indeed, an increase
in wI is required for stability (compare Fig. 3a with b). However, we observed
the same trends for evoking a paradoxical inhibitory response in networks with
fewer inhibitory neurons, as for the networks with equal numbers of excitatory
input.

Perturbations in networks with sparse connectivity

Synaptic connections between neurons in the neocortex are not all-to-all; neur-
ons connect to their immediate neighbours with an average probability of only
around 20% for recurrent excitatory connections (Gabott and Somogyi, 1986).
Connections between neighbouring inhibitory and excitatory neurons aremuch
more dense, with close to 100% connection probability between neighbour-
ing excitatory and parvalbumin-positive inhibitory neurons (Hofer et al., 2011;
Bock et al., 2011; Fino and Yuste, 2011; Martin, 2011; Bopp et al., 2014),
but connection probabilities fall off dramatically with distance (Boucsein et al.,
2011; see Materials and Methods).

To examine the effect of sparse connectivity we expanded upon the work in
Muir and Mrsic-Flogel (2015) by introducing connection sparsity parameters
that describe the number of synaptic connections made between nearby neur-
ons, as a proportion of all possible partners. We estimated separate sparsity
parameters for recurrent excitatory, exc. → inh., inh. → exc. and recurrent in-
hibitory connections, based on the assumption of stochastic connections formed
between neurons with overlapping axonal and dendritic arbors, and tomatch re-
ported connection probabilities (Peters’ rule; seeMaterials andMethods; Peters,
1979; Reimann et al., 2015).
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By computing the proportion p/NI of the inhibitory population that must be
stimulated in order to observe the paradoxical effect, we found that if one re-
cords the average response of stimulated inhibitory neurons then p/NI only
differs from the fully-connected network in terms of stochasticity induced by
the random sparsity structure of individual instances of W (Fig. 3c). Estimates
for nominal parameters of total synaptic strength in rodent cortex are indicated
by × in Fig. 3b–c, suggesting that in the order of 71% of inhibitory contribu-
tion must be perturbed in order to observe the paradoxical inhibitory response
in cortex. However, due to the spatial dependence of connectivity and the
tendency for local inhibition to be strong, dense and class-specific (Bock et
al., 2011; Fino and Yuste, 2011; Hofer et al., 2011; Martin, 2011; Bopp et al.,
2014), inhibition may be even stronger than this estimate which is based on
uniform connection probabilities. Our results predict that a large fraction of of
inhibitory neurons must be perturbed to evoke a paradoxical response in cortex.

Measuring inhibitory input currents in excitatory neurons Litwin-Kumar et
al. proposed that recording the inhibitory current received by excitatory neur-
ons as an experimentally-accessible metric for observing the paradoxical effect
of an ISN (Litwin-Kumar et al., 2016). Due to dense connectivity from the
inhibitory population onto excitatory neurons (Fino and Yuste, 2011), record-
ing net inhibitory currents provides an estimate of the mean activity of the
local inhibitory population, rather than sampling from an individual inhibitory
neuron. Optogenetic perturbation of the inhibitory population, while record-
ing from individual excitatory neurons, was performed by Atallah et al. (2012).
However, the behaviour of ISNs under simulated optogenetic perturbations is
not known, leaving in question whether the averaging is sufficient in sparse
networks, and under what conditions a paradoxical effect should be visible.

We therefore performed simulated optogenetic perturbations of the inhibitory
population by injecting positive and negative currents, and recording the res-
ulting change in inhibitory input to excitatory neurons (Fig. 4). We simulated
the presence of a stimulus in the network by providing random fixed input
currents to each neuron. This placed the network in a realistic regime where
symmetry is broken by an input stimulus, and competition between neurons
can be expressed. We then perturbed a randomly chosen proportion p/NI of
the inhibitory network by providing a common input current with amplitude δ
ranging (−1, 1), designed to simulate perturbation by optogenetic activation or
suppression.

We recorded the amplitude of inhibitory input currents impinging on each ex-
citatory neuron and defined an excitatory neuron as showing a paradoxical ef-
fect if inhibitory input currents were modified by at least 10% in response to
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Figure 4: Paradoxical effects under optogenetic perturbation. (A) Responses
to perturbation in an ISN-regime network, indicating the proportion of ex-
citatory neurons that exhibit a paradoxical effect in the net inhibitory input
currents, as a function of perturbation strength δ and proportion p of in-
hibitory neurons perturbed. (B–C) Relative change in (B) excitatory and
(C) stimulated inhibitory neuron activity, for the same simulations as in
(A). We considered that a paradoxical effect was visible when the input cur-
rents changed by at least 10% in the appropriate direction. Outlined re-
gions in A–C indicate responses to perturbation where changes in excitatory
and inhibitory activity are approximately equal to those reported by Atallah
et al. (Atallah et al., 2012; see Materials and Methods). * Region where
all excitatory neurons are below threshold, leading to failure of excitatory-
driven inhibition. Parameters: {wE,wI, hEE, hEI, hIE, hI I, NE, NI } ={
4, 100, 6.4 × 10−3, 0.21, 0.24, 0.99, 4800, 1200

}
.

the inhibitory perturbation. As shown in Fig. 4a, paradoxical effects were only
observed in a substantial proportion of excitatory neurons when the majority of
inhibitory neurons was inhibited. Indeed, regimes exist for ISN networks with
strong excitatory and inhibitory feedback, where the paradoxical effect cannot
be observed in the majority of excitatory neurons. Indicated regions in Fig. 4
correspond to the effect sizes reported in Atallah et al. (2012), as determined by
comparing the relative change in firing rates of excitatory and inhibitory neur-
ons following a perturbation (Fig. 4b, c). Under a range of choices for strengths
of excitation and inhibition, the simulated perturbations equivalent in size to
those reported in Atallah et al. (2012) are not sufficient to demonstrate the
paradoxical effect.

Perturbations in more realistic networks of spiking neurons

Our results so far were obtained in network models with simplified firing-rate
dynamics. However, networks composed of nonlinear spiking units are known
to show rich and complex activity dynamics (Brunel, 2000; Ostojic, 2014), with
response properties depending on the operating regime of activity (Destexhe et
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al., 2003; Kuhn et al., 2004; Kumar et al., 2008). In order to verify that our res-
ults hold in more biologically realistic networks, we investigated the dynamics
of paradoxical inhibitory response in networks of nonlinear conductance-based
spiking neurons (see Materials and Methods).

The spiking activity of a sample network of conductance-based exponential
integrate-and-fire neurons is shown in Fig. 5a, before and after perturbation
of two different fractions of the inhibitory population. The perturbation was
performed by decreasing input to a subset of inhibitory neurons.

The average activity within each subpopulation (excitatory, perturbed inhibit-
ory and unperturbed inhibitory) is shown in Fig. 5b. When 10% of the inhib-
itory population was perturbed, no paradoxical effect was observed: the (neg-
atively) perturbed inhibitory subpopulation decreased its activity, whereas the
unperturbed inhibitory and excitatory subpopulations increased their activity.
However, when larger fractions (75%) of inhibitory neurons were perturbed,
the network displayed the paradoxical effect by increasing the average activity
of the perturbed neurons, in spite of a decrease in the input to the inhibitory
network, consistent with the predictions of our firing-rate model (c.f. Fig. 2a).

To quantify the strength and presence of the paradoxical effect, we measured
the average differential firing rate (perturbed rate minus baseline rate) while
varying the fraction of perturbed inhibitory neurons (Fig. 5c; see Methods for
details). The paradoxical effect was present when large fractions of inhibitory
neurons were perturbed, as indicated by a positive differential rate. We de-
termined the minimum fraction at which the paradoxical effect emerged by
interpolating the mean differential rate, and inferring the point at which the
differential rate crossed zero (Fig. 5d; seeMaterials and Methods). Under these
simulation conditions >60% of the inhibitory neurons were required to generate
a paradoxical effect.

We next examined whether the minimum fraction of inhibitory neurons p/NI

required to evoke the paradoxical effect depended on the relative strengths of
excitatory and inhibitory feedback, as predicted by our non-spiking simulations.
To test this, we fixed all parameters of the spiking network and modified the
strength of exc. and inh. conductances Be and Bi (Fig. 5d). For each combin-
ation of synaptic strength, we estimated the minimum fraction of inhibition
p/NI from the differential rate curves (analogous to Fig. 5c).

When excitation was too weak (white regions on the left in Fig. 5d), no para-
doxical effect was visible. For these values of excitation, the network was not
operating in an ISN regime, since the excitatory network alone was intrinsic-
ally stable (exc. conductance Be at and below grey vertical line; obtained from
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Figure 5: Theparadoxical effect in spiking ISNs depends on the proportion of
perturbed inhibitory neurons. (A–B) Result of perturbing 10% (A) and 75%
(B) of the inhibitory population in a spiking network model, by reducing input
to inhibitory neurons. Top: Single-trial spike rasters from the entire popula-
tion. Bottom: Averaged firing rates over 10 trials (smoothed by a boxcar filter
of 100ms width). Black bar: perturbation period. c.f. Fig. 2. Red: Excitat-
ory (Exc.) neurons; Black: Perturbed inhibitory neurons (Inh. pert.); Cyan:
Non-perturbed inhibitory neurons (Inh. non-pert.). Parameters for this net-
work: {NE, NI, Be, Bi } = {1600, 400, 0.1 nS, 0.2 nS}. For other parameters, see
Methods and Table 3. (C) Mean (dots) and std. deviation (shading) of the dif-
ferential rates under a range of perturbed proportions for the network shown
in A,B. Cross and dashed line in C: inferred minimum fraction of perturbed
inhibition p/NI required to obtain the paradoxical effect (see Materials and
Methods for details). (D) The minimum fraction p/NI for spiking networks
while varying Be and Bi (c.f. Fig. 3). Dashed line in D: border of the ISN
regime according to a simplified linear analysis of the network (see Materials
and Methods). †: non-ISN regime; ‡: unstable regime (firing rates > 100 Hz).
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the stability analysis of the linearized network; see Materials and Methods for
details). For very strong values of excitatory coupling, without sufficient inhib-
itory feedback (high Be and low Bi), networks underwent a transition from the
stable regime with low firing rates and asynchronous-irregular activity to a re-
gime with high firing rates and large pairwise correlations. This was consistent
with our analysis of firing-rate networks (cf. the unstable regime of network
dynamics in Fig. 3). No paradoxical inhibitory response was observed in these
unstable networks.

For intermediate values of Be, we found a smooth relationship between network
parameters and the minimum fraction of perturbed inhibition p/NI required
to see the paradoxical effect: networks with stronger excitation and weaker
inhibition required smaller perturbations, similar to our results in firing-rate
networks (cf. Fig. 5d and Fig. 3). The trend for p/NI mimicked the tendency
for the network to become unstable for strong Be. The results from our spiking
simulations therefore agreed well with those from our analytical and firing-rate
models.
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Discussion

By examining the effects of simulated perturbations of activity in cortical net-
work models with increasing degrees of realism, we determined what classes
of perturbation could successfully detect the computational regime of cortical
networks. In particular we examined the properties of inhibition-stabilized net-
works (ISNs) — networks that require inhibitory feedback in order to balance
strong recurrent excitation (Tsodyks et al., 1997). This class of networks is
particularly important for mammalian neocortex, since many useful computa-
tional properties— e.g. selective amplification, sharpening of tuning, noise re-
jection— require networks to be in an ISN regime (Douglas and Martin, 2007;
Rutishauser and Douglas, 2009; Neftci et al., 2013; Muir and Cook, 2014;
Hopfield, 2015).

In simple ISN models where each cell class is represented by a single unit, per-
turbation of the inhibitory unit reliably leads to a “paradoxical” inverse response,
whereby exciting an inhibitory neuron results in a net decrease in activity (Tso-
dyks et al., 1997; Litwin-Kumar et al., 2016; Fig. 1). We explored whether this
paradoxical response could be used to detect ISNs experimentally, by analysing
larger models with many neurons, and with both homogeneous and sparse syn-
aptic connectivity. We then tested the predictions arising from simplified firing
rate models in more biologically realistic conductance-based spiking network
models. We found that when inhibitory and excitatory populations are expan-
ded, perturbing single inhibitory neurons only evokes a paradoxical response in
very small networks.

In larger and more realistic networks, we found that eliciting a paradoxical in-
hibitory response requires a large fraction of the inhibitory population to be
perturbed (Fig. 3). The proportion of cells required depends on the relative
size and synaptic strengths of the excitatory and inhibitory populations, but
importantly not on the total size of the network. For networks with parameters
estimated to be similar to mouse visual cortex, we found a large majority of
inhibitory neurons must be perturbed to evoke a paradoxical response (>70%;
Fig. 3b). Interestingly, connection sparsity does not affect the average min-
imum proportion of the inhibitory network that must be perturbed (Fig. 3c).
Therefore, dense inhibitory feedback and sparse excitatory recurrence as present
inmammalian cortex (Hofer et al., 2011; Bock et al., 2011;Martin, 2011; Bopp
et al., 2014) does not imply that an ISN regime should be a straightforward
observation. Our results suggest that establishing whether cortical networks
operate in the ISN regime requires application of optogenetic strategies that
allow perturbation of the vast majority of inhibitory interneurons in the circuit.
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Factors underlying the paradoxical effect in network models Simplified net-
work models (as in Tsodyks et al., 1997 and Litwin-Kumar et al., 2016) dis-
play robust paradoxical effects in response to perturbations of the inhibitory
system. Since these networks use single neurons to represent the entire inhib-
itory population or entire inhibitory classes, they implicitly assume that global
or class-global perturbations are made to the network. Our results imply that
this assumption is crucial to their results; we showed that networks operating
in an ISN regime will not display a paradoxical inhibitory response unless a
minimum proportion of the inhibitory population is perturbed (Fig. 3). Care
is therefore needed in interpreting these earlier results in light of the complex
inhibitory system in cortex.

We found that including sparsity in local recurrent connectivity did not change
the minimum proportion of the inhibitory population that must be perturbed
to evoke a paradoxical response (Fig. 3c). This is because the effects of sparse
connectivity average out as the network size increases. Although the local min-
imum proportion of inhibitory neurons fluctuates across the network under
sparse connectivity, we found that if the average total excitatory and inhibitory
synaptic strength per neuron is held fixed, the average minimum proportion is
then identical between fully- and sparsely-connected networks.

Application to experimental methods for inhibitory perturbation

Electrical stimulation The activity of a neuron can be conveniently perturbed
electrically by passing positive or negative currents through a recording elec-
trode. However, since only small numbers of cells can be perturbed simultan-
eously using electrophysiological methods, our results imply that paradoxical
responses will not be observed in cortex even if an ISN regime exists (Fig. 3).

Chemical stimulation Several agonists and antagonists of GABA receptors
exist, with varying selectivity for receptor subtypes (Chebib and Johnston, 1999;
Krall et al., 2015). Ant/agonists that result in additive or subtractive modula-
tion of inhibition are equivalent to adding or removing activity from both in-
hibitory and excitatory neurons. Our results for network-global perturbations
of input inhibitory currents imply that ant/agonists with this mechanism of ac-
tion cannot induce a paradoxical inhibitory response regardless of the presence
of an ISN regime (Eq. 13).

Ant/agonists that instead result in multiplicative or divisive modulation of in-
hibitory input currents are equivalent to a modification of inhibitory weight.
Our results for network-globalmodifications of effective inhibitory weight showed
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that this type of perturbation also cannot induce a paradoxical inhibitory re-
sponse (Eq. 14).

Optogenetic perturbation Optogenetic approaches enable photo-activation
or -suppression of specific neuron populations through genetically targeted ex-
pression of light sensitive proteins (Boyden et al., 2005; Han and Boyden, 2007;
Zhang et al., 2007; Aston-Jones and Deisseroth, 2013). This approach was
taken by Atallah et al. to stimulate and suppress activity in parvalbumin pos-
itive (PV+ve) inhibitory neurons, coupled with simultaneous in vivo electro-
physiology to record responses to stimulation in individual excitatory and in-
hibitory neurons (Atallah et al., 2012). Atallah et al. showed that mild per-
turbation of PV+ve neurons (approximately-40% suppression and +20% activ-
ation; their Fig. 2) did not modify tuning of stimuli in mouse V1 (Atallah et al.,
2012). The resulting changes in excitatory activity were also mild, and inhib-
itory currents received by excitatory neurons did not show a paradoxical effect
on average (their Fig. 5).

Our findings cast new light on these results by showing that a large majority of
inhibitory neurons must be perturbed to evoke a paradoxical response (Fig. 3).
It is therefore not surprising that Atallah et al. did not observe such an effect,
especially considering that PV+ve inhibitory neurons comprise less than 50%
of inhibitory neurons in the superficial layers of cortex (Markram et al., 2004;
Gonchar et al., 2007) and a similar proportion of inhibitory synapses (Binzeg-
ger et al., 2004), placing a hard upper bound on the proportion of inhibitory
neurons available for perturbation in their experiments.

We also showed that measuring inhibitory currents received by excitatory neur-
ons (Litwin-Kumar et al., 2016) does not guarantee a paradoxical effect will be
observed in sparsely-connected ISNs. In Fig. 4, white outlines mark regimes
of inhibitory perturbation that match the effects on excitatory and inhibitory
activity observed by Atallah et al. (2012). In the presence of strong inhibition
and sparse excitatory feedback in cortex, only a minority of excitatory neurons
is expected to show a paradoxical effect in inhibitory input currents. The lack
of a paradoxical change in inhibitory input currents observed by Atallah et al.
therefore does not rule out the presence of an ISN regime in rodent cortex. Our
results suggest that photosuppression of inhibitory neurons can be used to de-
tect an ISN regime, but that optogenetic transducer proteins must be expressed
in a majority of inhibitory neurons to do so. This could be achieved using an
interneuron-specific promoter such as glutamate decarboxylase (GAD) to tar-
get all cells that synthesize GABA. Large area photostimulation could then be
used to inhibit a large fraction of inhibitory neurons, rather than the subpopu-
lation studied in Atallah et al.. The presence or absence of a paradoxical effect
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could then be determined by examining the inhibitory drive onto pyramidal
cells (Litwin-Kumar et al., 2016).

Other evidence for the operating regime of cortex Surround suppression in
cat visual cortex is consistent with an ISN operating regime, under the assump-
tion that projections from the visual surround specifically modulate the inhibit-
ory population (Ozeki et al., 2009). Robust propagation of oscillatory activity
in several species (Timofeev et al., 2000; Rubino et al., 2006; Wu et al., 2008;
Stroh et al., 2013) suggest that recurrent excitation is strong enough to regen-
erate activity (Beurle, 1956; Compte et al., 2003; Wu et al., 2008). In the ro-
dent, supralinear amplification of single spikes (London et al., 2010) provides
additional evidence for strong excitatory recurrence in cortex. More directly,
anatomical and physiological estimates of synaptic contributions from various
neuronal classes place both cat and rodent cortex in an ISN regime (Binzegger
et al., 2004; Lefort et al., 2009; Binzegger et al., 2009).

Limitations of our results We examined networks in which local excitatory
connections were made sparsely, but with identical probability between all ex-
citatory neurons. However, recurrent excitatory connectivity is biased by func-
tional similarity in both rodent non-columnar visual cortex (Ko et al., 2011;
Cossell et al., 2015) and columnar visual cortex (Malach et al., 1993; Bosking
et al., 1997; Muir et al., 2011; Martin et al., 2014). We examined perturba-
tions in networks with recurrent excitatory selectivity (Muir and Mrsic-Flogel,
2015), but found this did not affect the perturbation required to evoke a para-
doxical inhibitory response. We included only a single inhibitory class in our
networks, compared with the multiple classes present in cortex; however re-
cent modelling results show that the dynamics and presence of ISN regimes
are similar in networks with multiple inhibitory classes (Litwin-Kumar et al.,
2016).

s

Our results illustrate that emergent dynamics in the highly recurrent networks
of mammalian neocortex can complicate experimental detection of the network
configuration. In particular, intuitions derived from small schematic models
about how classes of neurons interact may not hold in more realistic networks.
Our model-based predictions show that while it is possible to test for an ISN
regime in cortex using optogenetics, particular experimental conditions are re-
quired to do so successfully. Computational modelling of cortical dynamics
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is therefore an essential tool to predict the effect perturbations will have un-
der particular hypotheses of cortical interactions, and for guiding experimental
design to test those hypotheses.
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Materials and methods

Neuron and network dynamics

We begin by defining a simple model for a cortical network containing equal
numbers of excitatory and inhibitory linear-threshold neurons (Wilson and
Cowan, 1973). The activity dynamics of the network evolve according to the
system of equations

τȧ+ a = W [a]+ + i. (1)

Here, τ is the activation time constant applied to all neurons in the network;
a = (x1, x2, . . . , xN, y1, y2, . . . , yN )

T is the vector of instantaneous activations
(i.e. total input current in Amps) of excitatory neurons xi and inhibitory neur-
ons yi at time t; ȧ = da/dt; i = (ι1, ι2, . . . , ι2N )

T is the vector of instant-
aneous input currents applied to each neuron; the notation [·]+ indicates the
linear-threshold current to firing rate (I-F) transfer function [x]+ = max (x, 0);
and W is the weight matrix of the network. W is expressed in units of A/Hz, and
includes any required I-F gain factors.

Homogeneousnetworkswith equal numbers of excitatory and inhibitory neur-
ons With the firing rate of each neuron evolving under the dynamics given in
Eq. 1 above, we define a network weight matrix W with dimensions 2N × 2N ,
given by

W =



wE · · · wE −wI · · · −wI

wE wE −wI −wI

...
...

...
...

wE wE −wI −wI



/N . (2)

In this network, the first N neurons are excitatory and the subsequent N inhibit-
ory, with homogenous all-to-all connectivity. More cortically-realistic network
structures will be examined below. Neuron gains are assumed to be incorpor-
ated into the weight matrix W .

Stability and fixed-point response analysis We examine the fixed points and
stability of the network defined in Eq. 2 evolving under the dynamics in Eq. 1,
linearized in the partition where all neurons are active (Hahnloser, 1998; Muir
and Cook, 2014). The stability of these networks is determined by examining
the eigenvalues and trace of the system Jacobian J = (W − I) ./τ, where I
is the 2N × 2N identity matrix. Networks of this structure have a trivial ei-
genvector 1T corresponding to the eigenvalue (wE − wI − 1) /τ = λ1/τ. The
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trace of the Jacobian is given by Tr [J] = (wE − wI − 2N) /τ. To guarantee
that the network is stable under any finite input (i.e. bounded-input/bounded-
output or BIBO stability), the eigenvalue λ1 < 0. We therefore obtain an upper
bound on the total weight wE provided by each excitatory neuron relative to
the strength of inhibition, given by wE < 1 + wI . The system trace provides
an additional stability constraint wE < 2N + wI , which for these networks
is always a looser bound than that imposed by λ1 < 0. For the network to
require inhibitory feedback for stability, the excitatory network alone must be
unstable; that is, when wI = 0. This introduces a lower bound on excitatory
feedback wE > 1. For a stable ISN, we therefore obtain the following con-
straint relating excitation and inhibition:

1 < wE < 1 + wI . (3)

We analyse the response of the network in steady state, where a constant input
is provided and the system allowed to come to rest. The fixed point response
of the network is obtained by solving the system dynamics in Eq. 1 for the
condition ȧ = 0 for an input i, and is denoted ā, x̄ and ȳ. For a single neuron j,
the fixed point is given by

ā j = *
,

Nλ1ιj − wE

∑
E

ι+ wI

∑
I

ι+
-

/
Nλ1, (4)

where ∑E ι and
∑

I ι denote a summation of the input currents provided to all
excitatory or inhibitory neurons respectively, and λ1 = wE −wI − 1 as defined
above.

Homogenous networks with unequal numbers of exc. and inh. neurons We
additionally define networks with varying proportions of inhibitory neurons f I
(Muir and Mrsic-Flogel, 2015). In this work we examine networks where f I =
0.2, while maintaining all-to-all non-specific connectivity (i.e. in the notation
of Muir and Mrsic-Flogel 2015: hE, hI = 1; M = 1; κ = ∞). In these
networks, NI = N f I and NE = N (1 − f I ) denote the number of inhibitory
and excitatory neurons respectively. Stability and fixed point response analysis
are performed following the procedures above.

Networks with sparse connectivity To generate sparse networks we follow
the procedures in Muir and Mrsic-Flogel (2015). Briefly, fully-connected net-
work weight matrices W are combined with a sparse N × N boolean matrix D.
To generate D, the appropriate number of non-zero elements for a column, as
defined by h and N , are distributed randomly within each column. The network
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Table 1: Parameters for estimating connection sparsity.

Parameter Value Refs.
Axonal width 4σa

E , 4σa
I 1200 µm, 300 µm

Dendritic width 4σd
E , 4σd

I 300 µm, 300 µm
No. axonal syn. in L2/3 SE ,SI 8142, 8566 Binzegger et al., 2004*
Density of neur. in L2/3 η 36000mm-1 Schüz and Palm, 1989
Prop. neur. class A fE , f I 80%, 20% Gabott and Somogyi, 1986
Prop. of A→ B syn. rE,I 45% Bock et al., 2011; Bopp et al., 2014

rE,E 1 − rE,I †
rI,E 1 − f I †
rI,I f I †

Abbreviations: neur. neurons, syn. synapses; prop. proportion; E exc. excita-
tion, excitatory; I inh. inhibition, inhibitory. * Including an estimate of double
the number of synapses per neuron in mouse cortex compared with cat cortex.
† i.e. Non class-specific connectivity.

weight matrix is then given by W ′ = D ◦ W , where ◦ denotes the element-
wise Hadamard or Schur product, and W ′ is renormalized such that columns
of W ′ sum to wE and wI . In the limit as N → ∞, the elements of D can be
assumed to be independent, and therefore approximated by a Bernoulli distri-
bution. This assumption assists in estimating the eigenvalue spectrum radius
of W ′, described below.

Estimating the sparsity of connections in cortex

To estimate realistic parameters for the sparsity of local connections in cortex,
we assume that connections between neurons are made stochastically according
to the overlap of simulated axonal and dendritic densities, which are modelled
as 2-dimensional Gaussian fields. The overlap between two 2-dimensional
Gaussian fields is proportional to

O (δ, σa, σd) ∝
exp
(
−δ2/2

[
σ2
a + σ

2
d

] )
2π · σ2

a · σ2
d

[
1/σ2

a + 1/σ2
d

] , (5)

where δ is the 2-dimensional Euclidean distance between two points, and the
standard deviations of axonal and dendritic fields are given by σa and σd re-
spectively. Eq. 5 is used to compute connection probability fields as a function
of axonal and dendritic spreads.

We define the notation ⟨·⟩ to indicate that the quantity within the brackets
should be normalized such that is forms a p.d.f. over 2-dimensional space; that
is, ⟨X⟩ = X/

!
R2

X . The synapse formation probability from neuron class A
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Figure 6: (A) Simulated connection probability pA,B (δ) between neuron
classes E and I. Parameters given in Table 1. (B) Eigenvalue
spectrum for a sparse network with {wE,wI, hEE, hEI, hEI, hI I, N } =
{5.4, 56, 0.022, 0.072, 0.084, 0.34, 1000}. The trivial eigenvalue at λ = −8 is
not shown. Unit circle (red) and expected bulk radius rb (grey; Eq. 7) shown
for reference.

to class B is then given by

sA,B (δ) = rA,B
〈
O
(
δ, σa

A, σ
d
B

)〉
,

where A and B are either E or I for excitatory and inhibitory, and rA,B is the
proportion of synapses from class A that target class B. The factors rA,B allow
us to incorporate class-specific connectivity, which appears to exist in mouse
visual cortex in the connections from excitatory to inhibitory neurons (Bock et
al., 2011; Bopp et al., 2014).

We define the expected number of synapses from class A to class B as nA,B (δ) =

SA · sA,B (δ). The connection probability pA,B from a neuron of class A to a
neuron of class B at a distance δ is then given by

pA,B (δ) = min


˛

δ

nA,B(δ) dθ, 1

,

where
¸
δ dθ indicates integration around an annulus of distance δ from the

origin (see Fig. 6). The parameters given in Table 1 result in a proximal E →
I connection probability of pE,I ≈ 90%, and proximal E → E connection
probability of pE,E ≈ 25% (see Fig. 6).

The sparsity (and equivalently, the fill factor h) of connections from class A to
class B is therefore estimated by

ĥA,B (x) =
ˆ x

0

pA,B (δ)¸
δ η · fBdθ

dδ, (6)

where Eq. 6 should be integrated out to a distance x at which the connec-
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tion probability drops to zero. Taking x = 1500 µm for excitatory neurons
and x = 750 µm for inhibitory neurons, we estimate

{
ĥEE, ĥEI, ĥEI, ĥI I

}
=

{0.022, 0.072, 0.084, 0.34}. These low fill factors make the resulting network
instances highly unstable, even in the presence of strong inhibitory feedback,
due to expansion of the eigenspectrum bulk (Muir and Mrsic-Flogel, 2015; see
Fig. 6). The expected radius qb of the eigenspectrum bulk for a network with
class-dependent fill factors is given by

qb =
[
N
(

fE · σ2
E + f I · σ2

I

)]1/2
, where (7)

σE = (1 − hEE) fE · µ2E + (1 − hEI ) f I · µ2E+
fE · hEE [(wE/N · hEE) − µE ]2+
f I · hEI [(wE/N · hEI ) − µE ]2 ,

σI = (1 − hI I ) f I · µ2I + (1 − hIE) fE · µ2I+
hEI · f I [(wI/N · hI I ) − µI ]2+
hEI · fE [(wI/N · hEI ) − µI ]2 ,

µE = wE/N and µI = wI/N (c.f. Muir and Mrsic-Flogel, 2015). To ensure
stability in networks with scale smaller than cortex itself, we therefore simulate
networks where the radius of the bulk eigenspectrum is controlled by scaling h∗
by a common factor, such that qb ≈ 1.

Perturbation framework

In general, we introduce a perturbation to a network by defining an input s (δ),
where s defines the input currents to all neurons in a network and δ is a small
perturbing effect (δ > 0 corresponds to a positive perturbation in input and
δ < 0 corresponds to a negative perturbation. For example,

sI : ιj =

1 1 ≤ j ≤ N

1 + δH (t) N + 1 ≤ j ≤ 2N
(8)

defines a scheme where all neurons receive a constant input (“1”), and the entire
inhibitory population (N + 1 ≤ j ≤ 2N) receives an extra perturbing input δ
at t = 0. Here, H (t) is the Heaviside step function.

We assume that a perturbation is made in a network where every neuron is
active; inactive subsets of the network can be removed entirely from the system
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(Hahnloser, 1998; Muir and Cook, 2014). We examine the fixed point ā (Eq.
4) of the analytical network, linearized in the state partition when all neurons
are active (Muir and Cook, 2014). We assume that the perturbation δ is small
enough that no neuron is pushed below threshold.

We assume that a perturbation is only made once the transient response of the
network has settled and the network has reached a stable fixed point. We there-
fore examine the mean-field fixed-point response of these networks, under the
assumption that the effect of stochastic or oscillatory dynamics will be removed
by averaging. We likewise neglect the transient effect of a perturbation, and ex-
amine only the resulting fixed point response subsequent to the perturbation
(i.e. at t = ∞).

Following a perturbation, we examine the difference between perturbed and
unperturbed inhibitory activity s : dȳ/dδ, under a given perturbation s. Gener-
ally, we look for a “paradoxical” response of inhibition such that s : dȳ/dδ < 0

for δ > 0. For example, under the perturbation of the entire inhibitory popu-
lation defined in Eq. 8 above, the change in inhibitory activity in response to
the perturbation is given by

sI :
dȳN
dδ = (wE − 1) /λ1.

For this response to the perturbation to meet the characteristics of a paradoxical
inhibitory response, we require that dȳN/dδ < 0. Combining this requirement
with the conditions for a stable ISN (Eq. 3), we obtain the constraints on net-
work configuration that ensure a paradoxical inhibitory response is observed
in a stable ISN. By doing so, we find that the constraints already required by
Eq. 3 guarantee that a paradoxical inhibitory response will be observed under
the global inhibitory perturbation sI . This result implies that a stable ISN will
always display a paradoxical response when the entire inhibitory population is
perturbed.

Perturbation of a single inhibitory neuron We examined the other extreme
of perturbing a single inhibitory neuron, such that

s1 : ιj =

1 1 ≤ j ≤ 2N − 1
1 + δH (t) j = 2N

. (9)

As before, we computed the change in fixed-point response of a single inhibit-
ory neuron, when that neuron is perturbed, given by

s1 :
dȳN
dδ = 1 +

wI

N · λ1
.
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Under the requirement that a perturbation must lead to a paradoxical response
(i.e. s1 : dȳN/dδ < 0), we find an additional constraint on the excitat-
ory weight wE > 1 + wI (N − 1) /N . This implies that a stable ISN can
exhibit a paradoxical effect when a single inhibitory neuron is perturbed, iff
1+wI (N − 1) /N < wE < 1+wI . We note that (N − 1) /N → 1 as N → ∞,
and therefore the range for wE that satisfies this constraint approaches zero
with increasing N .

Perturbation of a subset p of the inhibitory population We investigated the
effect of perturbing a subset p of the inhibitory population, defined by

sp : ιj =

1 1 ≤ j ≤ 2N − p − 1
1 + δH (t) 2N − p ≤ j ≤ 2N

. (10)

The derivative of fixed point activity is then given for perturbed inhibitory neur-
ons by

sp, j ≥ p :
dȳj
dδ = 1 +

p · wI

N · λ1
(11)

and for non-perturbed inhibitory and for excitatory neurons by

sp, j < p :
dȳj
dδ =

p · wI

N · λ1
. (12)

Under the constraint sp, j ≥ p : dȳj/dδ < 0, Eq. 11 implies that at least a
proportion p/N > −λ1/wI of the inhibitory population must be perturbed in
order to observe a paradoxical effect in the perturbed neurons.

Perturbation by injecting a global inhibitory current We examined the effect
of perturbing the entire network by injecting a global inhibitory current, as
might be produce by infusing cortex with a GABA agonist. The perturbation
is defined by sg : ∀ j, ιj = 1 + δH (t). The derivative of fixed point activity for
all neurons is then given by

sg,∀ j :
dȳj
dδ = −1/λ1. (13)

Since sg : dȳj/dδ is always positive for a stable ISN (i.e. satisfying Eq. 3), no
paradoxical response of inhibitory neurons is possible under the network-global
perturbation sg.

Perturbation by modifying inhibitory weight wI Alternatively, infusion of
GABA agonists or antagonists might result in an divisive rather than subtract-
ive effect on inhibitory input currents. We therefore computed the change in
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fixed point response dȳj/dwI when the total inhibitory weight wI is perturbed,
requiring that for an increase in inhibitory weight, the paradoxical response
would be for the inhibitory network to increase its activity: i.e. dȳj/dwI > 0.
We define the input to the network

ιj =

ιE 1 ≤ j ≤ N

ιI N + 1 ≤ j ≤ 2N
. (14)

The fixed point response of the network under this input is given by

x̄ j = − [(1 + wI ) ιE − wI · ιI ] /λ1 (15)

ȳj = − [(1 − wE) ιI + wE · ιE ] /λ1,

and the resulting change in fixed point response by

∀ j :
dȳj
dwI

= [(wE − 1) ιI − wE · ιE ] /λ21. (16)

For a stable ISN, a regime exists such that if the inputs to excitatory and inhibit-
ory neurons differ (i.e. ιE , ιI ), then the paradoxical response ∀ j : dȳj/dwI >

0 is evoked when ιI > wE ·ιE/ (wE − 1). Unfortunately this regime only occurs
when ∀ j : x̄ j, ȳj < 0, that is when the network is silenced.

Comparison with optogenetic perturbation results from Atallah et al.
(2012)

Atallah et al. used optogenetic activators and inhibitors, expressed selectively
in parvalbumin-positive inhibitory neurons, to perturb inhibitory activity in
mouse visual cortex (Atallah et al., 2012). They recorded responses to visual
stimuli of varying contrast in the presence of optogenetically induced inhibit-
ory suppression and activation, while recording inhibitory and excitatory syn-
aptic input currents impinging on excitatory neurons. For comparison with
these results, we found combinations of network and perturbation parameters
in our simulated networks that resulted in similar perturbations of inhibitory
and excitatory activity observed by Atallah et al. (Fig. 4).

We defined a simulated excitatory neuron as displaying a paradoxical response
if the result of an inhibitory perturbation was to shift the net inhibitory input
current by at least 10% of its unperturbed value.
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Spiking networks with conductance-based neurons

Neuron model

Spiking neurons were modelled using an exponential integrate-and-fire model
(Brette and Gerstner, 2005), without adaptation. The dynamics of the mem-
brane potential Vm(t) of a single model neuron evolved under the equation

C
dVm

dt
= −gL (Vm − EL) + gL∆T exp [(Vm − VT ) /∆T ]

− Ge (t) (Vm − Ee) − Gi (t) (Vm − Ei) , (17)

where C is the membrane capacitance, gL is the leak conductance and EL is
the resting potential. The exponential term describes the activation of sodium
current. The parameter ∆T is called the slope factor and VT is the threshold
potential. Once the membrane potential Vm reaches the threshold VT , a spike
is emitted and the membrane potential is reset to a fixed voltage, Vreset, for a
refractory period tref.

Ee and Ei are the reversal potentials for excitation and inhibition, respectively.
Ge(t) and Gi(t) represent the total excitatory and inhibitory conductances at
time t, given by

Ge (t) =Σjge
(
t − t j

)
and

Gi (t) =Σkgi (t − tk) , (18)

where the times of occurrence of excitatory and inhibitory synaptic events are
denoted by t j and tk , respectively. ge and gi denote themembrane conductance
changes elicited by a single excitatory or inhibitory synaptic event, which are
modelled as alpha-functions, given by

ge (t) =H(t) · Be · exp (1 − t/τe) · t/τe and

gi (t) =H(t) · Bi · exp (1 − t/τi) · t/τi,

where Be and Bi denote the peak excitatory and inhibitory synaptic conduct-
ances, respectively. The integral of the conductances is given by

ˆ
ge(t) dt = Beτee and

ˆ
gi(t) dt = Biτie. (19)

The default parameters of the neuronmodel are listed in Table 2. Default values
of peak synaptic conductances (as in Fig. 5a-c) were Be = 0.1 nS, Bi = 0.2 nS,
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Table 2: Parameters of the spiking neuron model.

Parameter Value
Membrane capacitance C 120 pf
Leak conductance gL 7.14 nS
Resting potential EL -70mV
Threshold voltage VT -50mV
Reset voltage Vreset -60mV
Reversal potential Ee, Ei 0mV, -75mV
Synaptic time constant τe, τi 1ms
Slope factor ∆T 2ms
Refractory period tref 2ms

and τe = 1ms, τi = 1ms. Note that the effective time constant of the synapses,
defined as the time from a spike until the synaptic current decays to the 10%
of the peak current, is much longer (τeff = 4.9ms for τ = 1ms). To simulate
the spiking networks, we used the NEST software (Gewaltig and Diesmann,
2007). The implementation uses a fourth order Runge-Kutta-Fehlberg solver
with adaptive step size to integrate the differential equation.

Network simulations

Networks were composed of NE excitatory and NI inhibitory neurons. Excitat-
ory and inhibitory neurons had the same properties and parameters as described
above. All neurons received a baseline input. This wasmodelled as an independ-
ent homogeneous Poisson process with firing rate rb. The strength of synaptic
connectivity is parameterized by the peak synaptic conductance, which was de-
noted as Bb for the baseline input. Connection delays were chosen as the fixed
value of d for the input synapses; synaptic delays for recurrent connections were
drawn from a random exponential distribution with mean d .

Recurrent connections were drawn from a binomial distribution. The mean
connection probability from the pre-synaptic subpopulation X ∈ {E, I} to post-
synaptic subpopulationY ∈ {E, I} was CX→Y . The connection weights between
established connections were drawn from a truncated Gaussian distribution
with a mean of BX→Y and standard deviation of BX→Y/5. The mean value for
E→ E and E→ I connections were set to BE→E = BE→I = Be; similarly, the
mean value for I → E and I → I connections were set as BI→E = BI→I = Bi.
The parameter space for the balance of excitation and inhibition in the network
is scanned by changing these two parameters (e.g. in Fig. 5d).

The stimulation protocol of the network comprized of three phases: an initial
transient phase where the spiking activity was not analysed (Ttrans); the baseline
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Table 3: Parameters of spiking network simulations.

Parameter Value
Number of neurons NE, NI 1600, 400
Connection probability CE→E, CE→I, CI→E, CI→I 15%, 15%, 100%, 100%
Baseline input rb 9.6 kHz
Strength of baseline input Bb 0.1 nS
Average synaptic delay d 0.1ms
Simulation time

(transient, baseline, perturbation) Ttrans, Tbase, Tpert 0.15 s, 0.5 s, 0.5 s
Number of trials Ntr 5 (Fig. 5d) or 10 (Fig. 5a-c)
Size of input perturbation δ 0.4 kHz
Size of perturbed inhibitory subpopulation p {40, 100, 200, 300, 400}

duration where the normal activity of the network was recorded (Tbase); and the
perturbation period during which a certain fraction of the inhibitory population
was perturbed (Tpert). To obtain reliable estimates of firing rates, simulated
perturbations were repeated for Ntrial trials, with each trial lasting for Ttrial =

Ttrans+Tnormal+Tpert. The default parameters of network simulations are listed
in Table 3.

The perturbation was performed by reducing the baseline input to p inhibitory
neurons by δ = 0.4 kHz (i.e. by ∼ 4%), and it was repeated for a range of
inhibitory fractions p/NI = {0.1, 0.25, 0.5, 0.75, 1}. For each perturbation, the
mean firing rates of each subpopulation (excitatory, non-perturbed inhibitory
and perturbed inhibitory) in the normal state (rbase) and during perturbation
(rpert) were computed by averaging over time, trials and the subpopulation. The
change in the firing rate due to perturbation was then computed as rdiff = rpert−
rbase. As the perturbation is performed by decreasing the input to a fraction of
inhibitory subpopulation, a positive rdiff for the perturbed inhibitory fraction
implies the existence of the paradoxical inhibitory response. We estimated the
minimum fraction of inhibition to see this paradoxical effect for a given network
(i.e. the value of p/NI such that rdiff = 0) by linearly interpolating rdiff.

Mean-field approximation

The mean-field analysis of the network dynamics was performed by analysing
the average behaviour of the network. Let re and ri denote themean rates of the
excitatory and inhibitory populations within a network. Combining Eq. 18 and
Eq. 19, the temporally averaged excitatory and inhibitory conductances input
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to an example neuron can be written as

Ge =

ˆ
Ge (t) dt = Bbτee · rb + NEBeτee · re and

Gi =

ˆ
Gi (t) dt = NI Biτie · ri . (20)

The total excitatory conductance Ge is composed of two terms: the baseline
external input, and recurrent input from presynaptic excitatory neurons. The
inhibitory conductance Gi results from presynaptic inhibitory neurons in the
network.

To obtain the effective change in the membrane potential as a result of these
input conductances, we must consider the effective drives from Eq. 17. We
write

C∆Vm =

ˆ
[−Ge (t) (Vm − Ee) − Gi (t) (Vm − Ei)] dt, and therefore

C∆Vm = − (Vm − Ee)

ˆ
Ge (t) dt − (Vm − Ei)

ˆ
Gi (t) dt. (21)

Here, we have made a simplifying assumption that the population-average
membrane potential of the network is constant, and can be approximated by
the time-averaged membrane potential of the network, denoted by Vm. Substi-
tuting Eq. 20 into Eq. 21 we obtain the effective change in membrane potential
Vtot, given by

C∆Vtot = − (Vm − Ee) (Bbτee · rb + NEBeτee · re)+
− (Vm − Ei) NI Biτie · ri. (22)

Note that the effective input is similar for any neuron, independent of its sub-
type identity (excitatory or inhibitory). Furthermore, we make the ansatz that
the rates of excitatory and inhibitory subpopulations are the same: re = ri = r .
This is based on the fact that both subtypes have the same single cell parameters
and network connectivity profiles, and the input to both subnetworks is similar
in the unperturbed state. Due to this homogeneity, they have the same mean
firing rates. Eq. 22 can therefore be further simplified to

C∆Vtot = − (Vm − Ee) Bbτee · rb+
r [− (Vm − Ee) NEBeτee − (V − Ei) NI Biτie] . (23)

The first term on the right hand side is a constant external input, and the second
term is the recurrent input as a function of the average firing rate r of the entire
network. Both terms depend on the average membrane potential Vm.
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We make a final assumption that the firing rate of a neuron depends linearly on
its input (linear input-output transfer function). We take this linear depend-
ence to be rout = ∆Vinp/θ, where θ = VT − Vreset is the difference between the
reset voltage Vreset and the threshold voltage VT . Eq. 23 can be rewritten as a
self-consistent mean-field equation, given by

rθC = − (Vm − Ee) Bbτee · rb+
r [− (V − Ee) NEBeτee − (V − Ei) NI Biτie] . (24)

By defining the total baseline input as sb = − (Vm − Ee) Bbτee ·rb/θC and the
total recurrent weight asw = [− (Vm − Ee) NEBeτee − (Vm − Ei) NI Biτie] /θC,
we obtain r = sb + w · r and therefore r = sb/ (1 − w). The stability of the
linearized system can be ensured by constraining the total recurrent weight by
w < 1. For the full network, this provides a condition for stability, given by

− (Vm − Ee) NEBeτe − (Vm − Ei) NI Biτi < θC/e. (25)

Note that as the left hand side of Eq. 25 depends on the average membrane po-
tential Vm of the network, the condition can be evaluated at different “operating
points”. The stability of the excitatory subnetwork, in the absence of the inhib-
itory subnetwork, can be examined by setting the recurrent inhibitory contri-
bution to zero in Eq 25. This provides a constraint that ensures the network re-
quires inhibitory feedback for stability, given by − (Vm − Ee) NEBeτe ≥ θC/e;
we therefore obtain the constraint

Be ≥
θC

− (V − Ee) NEBeτee
. (26)

This constraint is plotted as the vertical line denoting the boundary between
the ISN and non-ISN regimes in Fig. 5d.

Experimental Design and Statistical Analysis

No statistical testing was performed. Models and simulations to reproduce all
results in thismanuscript are available fromFigShareDOI 10.6084/m9.figshare.4823212
(https://figshare.com/s/ac309d705ffd3d961fde).
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