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Summary

During in vitro differentiation, pluripotent stem cells undergo extensive remodeling of their gene
expression. While studied extensively at the transcriptome level, much less is known about protein
dynamics, which can differ significantly from their mRNA counterparts. Here, we present genome-wide
dynamic measurements of mMRNA and protein levels during differentiation of embryonic stem cells
(ESCs). We reveal pervasive discordance, which can be largely understood as a dynamic imbalance
due to delayed protein synthesis and degradation. Through a combination of systematic classification
and kinetic modeling, we connect modes of regulation at the protein level to the function of specific
gene sets in differentiation. We further show that our kinetic model can be applied to single-cell
transcriptomics data to predict protein levels in differentiated cell types. In conclusion, our
comprehensive data set, easily accessible through a web application, is a valuable resource for the

discovery of protein-level regulation in ESC differentiation.
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Introduction

Much of the medical potential of pluripotent stem cells is due to their ability to differentiate in vitro into
all tissue types of the adult body (Soldner and Jaenisch, 2012). While tremendous progress has been
made in guiding cells through successive lineage decisions, the gene regulatory mechanisms
underlying these decisions remain largely unknown. This gap in knowledge hampers the streamlining
and acceleration of differentiation protocols. A large body of work has focused on transcriptional
regulation, charting transcriptome changes during differentiation, most recently down to the single-cell
level (Klein et al., 2015; Loh et al., 2016) (Semrau et al., 2016). These studies assumed implicitly that
mRNA levels are a good proxy for protein levels. Mounting evidence suggests that this is not a good
assumption for mammalian systems, where mRNA and protein levels were found to correlate only
moderately (Lu et al., 2009) (Kristensen et al., 2013; Peshkin et al., 2015; Schwanhausser et al.,
2011). Where the discordance between protein and mRNA expression originates and what the
biological function might be are long-standing and controversially discussed issues (Liu et al., 2016;
Vogel and Marcotte, 2012). Here we study the relationship between mRNA and protein expression in
the context of in vitro differentiation, a highly dynamic process in which gene regulation at the protein

level likely plays an important role (Sampath et al., 2008).

Results

Measurement of transcriptome and proteome dynamics during retinoic acid driven differentiation

We used retinoic acid (RA) differentiation of mMESCs as a generic model for in vitro differentiation.
Previously, we characterized this differentiation assay in detail at the transcriptional level by single-cell
RNA-seq (Semrau et al., 2016). In particular, we have shown that within 96 h of RA exposure, mESCs
bifurcate into an extraembryonic endoderm-like and an ectoderm-like cell type (XEN and ECT
respectively). Here we collected samples of the mixed population during an RA differentiation time
course as well as the two final, FACS-purified differentiated cell types at 96 h (Fig. 1a). For each time
point or cell type we quantified poly(A) RNA by RNA-seq and protein expression by tandem mass tag
(TMT) labeling followed by tandem mass spectrometry (MS/MS). In total we obtained both RNA and
protein expression for 7459 genes (Supplementary Fig. 1a). Protein levels were quantified with low
technical error (Supplementary Fig. 1a) and high reproducibility between protein fold changes
measured in biological replicates (Pearson’s r = 0.92, Supplementary Fig. 1b). Moreover, the XEN-like
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cells measured here were similar to embryo derived XEN cells in their proteome (Mulvey et al., 2015)

(r = 0.65, Supplementary Fig. 1c).

Correlation between mRNA and protein levels is moderate

To explore the relationship between mRNA and protein levels we first correlated the two expression
levels across genes for individual time points or cell types (sample-wise correlation). In mESCs (Oh
time point) Pearson correlation between mRNA and protein was 0.57 (Fig. 1b). Similar values have
been reported in other mammalian systems (de Sousa Abreu et al., 2009; Jovanovic et al., 2015;
Schwanhausser et al., 2011). Sample-wise correlation was approximately the same for all samples,
including the purified differentiated cell types (Fig. 1¢). Low mRNA-protein correlation was thus not cell
state dependent. Importantly, a low sample-wise correlation does not exclude the possibility that
relative changes in protein levels during differentiation closely follow relative changes in mRNA levels.
To quantify the concordance between mRNA and protein dynamics we calculated their correlation
across time for individual genes (gene-wise correlation, Fig. 1d-e). Some genes, like the pluripotency
factor Rex1 (Zfp42) indeed exhibited a high correlation between mRNA and protein (r = 0.93 for
Rex1). However, we also observed many genes with anti-correlated profiles, among which were genes
with a role in differentiation, like the transcription factor Foxn2 (r = -0.85). Numerous genes, like the
ribosomal protein Rps6, for example, did not exhibit any strong correlation between protein or mRNA
(r = 0 for Rps6). Correspondingly, the distribution of gene-wise correlations, while peaking close to 1,
had a long tail towards -1 (Fig. 1e). This result clearly shows that mMRNA dynamics are in general not a

good predictor for protein dynamics during differentiation.

Classification by dominant temporal trends visualizes widespread discordance between mRNA and
protein

Having discovered that mRNA and protein dynamics are in general dissimilar we wanted to reveal the
main trends in expression dynamics and study how they differ between mRNA and protein. To that
end we used singular value decomposition (SVD) to decompose an expression profile into a weighted
sum of generic profiles, called eigengenes (Fig. 2a). In contrast to other classification methods, SVD
allows us to discriminate systematically between the main trend (the dominant eigengene) and
smaller, additional fluctuations (Fig. 2b). The first three eigengenes, which corresponded to monotonic,
transient or oscillatory trends, explained 76% and 85% of the variance in mMRNA and protein
expression, respectively (Fig. 2c). mMRNA eigengenes were more dynamic than protein eigengenes

(Supplementary Fig. 1d), which reflects the buffering of mMRNA dynamics by protein synthesis and
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degradation (Liu et al., 2016) (Jovanovic et al., 2015). Classification of all genes by their dominant
mRNA and protein eigengenes (which reflect the main temporal trends) revealed widespread
discordance (Fig. 2d). While there was a statistically significant enrichment of genes with similar
dominant mRNA and protein eigengenes (p-value < 1E-5), the majority of genes (60%) had discordant

mRNA and protein dynamics.

A simple kinetic model explains the mRNA-protein discordance for the majority of genes

The temporal delay between mRNA and protein eigengenes (Fig. 2a) sparked the hypothesis that the
delay inherent to protein synthesis and degradation might cause much of the observed discordance.
To pursue this hypothesis we modeled protein turnover using a simple birth-death process with
constant protein synthesis and degradation rates (Tchourine et al., 2014) (Peshkin et al., 2015)
(Methods, Fig. 3a). In our model the synthesis rate ks lumps all processes related to protein production
(translation initiation, elongation, etc.) while the degradation rate kq represents all processes leading to
a reduction in protein levels (dilution due to cell division, active degradation, etc.). To avoid over-fitting,
we also considered simpler models, which correspond to cases in which a protein is only synthesized,
only degraded or completely constant (Fig. 3b). To select among these models, we employed the
Bayesian Information Criterion (BIC), a score that penalizes the fit according to the number of
parameters (Methods). To reveal whether there is a connection between a certain model and specific
molecular functions, we performed GO term enrichment analysis. This analysis revealed that the
“degradation only” model was enriched for genes with a role in blastocysts development and inner cell
mass proliferation (Supplementary Fig. 2a). These genes are likely involved in preserving the
pluripotent state, as exemplified by the pluripotency factor Nanog. Degradation of the corresponding
proteins is crucial for the timely exit from pluripotency. GO term enrichment analysis also showed that
the “synthesis only” model was enriched for genes involved in neuron development and mesenchymal
cell development. These genes thus likely have specific functions in differentiated cell types and hence
must be synthesized quickly to ensure proper function. An example of such a gene is Lamb1, which is
highly expressed in XEN cells. This analysis shows that the different regulatory modes identified by
our model correspond to specific functions in differentiation.

We next wanted to evaluate the validity of our model by comparison with relevant data sets from the
literature. Protein half-lives (Supplementary Fig. 2b) calculated from the degradation rates were in the
same range as previously reported values for other systems (Peshkin et al., 2015; Schwanhausser et

al., 2011). Synthesis rates were positively correlated with translational efficiencies determined from
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ribosome profiling in mMESCs (Supplementary Fig. 2c) (Ingolia et al., 2011). The inferred kinetic rates
are thus biologically meaningful.

In order to assess how far our kinetic model can explain the observed protein-mRNA discordance we
calculated the correlation between measured and predicted protein levels (Fig. 3c). These correlations
were sharply peaked close to one, which means that our simple model is able to explain a large
portion of the observed mRNA-protein discordance. This discordance is likely only transient since
protein-to-mRNA ratios differed most from their equilibrium value (keq = ks/Kq ) in the beginning but
approached it over time (Supplementary Fig. 2d). This observation supports our conclusion that the
observed mRNA-protein discordance during differentiation is largely a transient, dynamic imbalance

caused by delayed protein synthesis and degradation.

The CDS/ 3°'UTR mRNA expression ratio is a modulator of the synthesis rate

We next sought to further refine our kinetic model and explore whether we could find predictors of
protein abundance. In that respect we were intrigued by a recent report that connected the ratio of
mRNA expression from the coding sequence (CDS) and 3’ untranslated region (UTR) to protein
abundance (Kocabas et al., 2015). In our data sets, the CDS/3’'UTR mRNA expression ratio w also
had a non-trivial relationship with protein levels (Supplementary Fig. 2e). Consequently, we included w
in our model as a modulator of the synthesis rate (Fig. 3d, Methods). Again, using the BIC to
determine whether using an additional free parameter is warranted by the improvement of the fit, we
found that 492 genes were fit optimally by the extended kinetic model (Fig. 3e). In the cases where it
was optimal the extended model provided a substantial improvement over the basic model (Fig. 3f).
For roughly half of those genes, w has a positive effect on protein synthesis and a negative effect on
the other half (Supplementary Fig. 2f). While the molecular mechanism relating w to the protein
synthesis rate is not yet known, our analysis shows that w is an interesting predictor that should be

explored in future studies of protein dynamics.

Failure of the kinetic model reveals dynamically regulated genes

Despite its success in explaining the mRNA-protein discordance overall, our kinetic model does not fit
the dynamics of all quantified proteins. We identified 1232 genes with a poor mRNA-protein correlation
that is not appreciably improved by any of the kinetic models (Supplementary Fig. 3a). Due to the
buffering of MRNA dynamics when synthesis and degradation rates are constant, the model fails in
particular when the protein profile is more dynamic than the mRNA profile (Supplementary Fig. 3b).

Importantly, the genes that are not fit well by our model are very similar to the full data set in their
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protein reliabilities (medians: 0.970 versus 0.972) and measurement errors (median SEM: 0.121
versus 0.115). Hence, technical noise is in general not the reason for the lack of a good fit. Rather, the
model fails due to the assumption that kinetic rates are constant. Consequently, we consider genes
that are not fit well by the model to be dynamically regulated. We sought to find sets of such genes
that potentially share regulatory features. To this end we again used the classification by dominant
eigengenes (Supplementary Fig. 3c). As an example, we focused on a class of genes with relatively
simple dynamics: monotonically increasing mRNA and a transient increase in protein expression
(highlighted in Supplementary Fig. 3c). Notably, we discovered that genes belonging to the MAPK
pathway were enriched in this particular class (ConsensusPathDB, adjusted p-value = 1.8E-3,
Supplementary Fig. 3d). This suggests that genes of the MAPK pathway, which is highly relevant for
the differentiation of MESCs (Kunath et al., 2007), are regulated dynamically at the protein level. This
analysis exemplifies that we can systematically identify sets of genes that are dynamically regulated at

the protein level, likely by common mechanisms.

Sets of genes with different functions in differentiation show distinct regulatory modes

We next wanted to concentrate further on the regulation of gene sets that are relevant for embryonic
stem cell differentiation. To that end, we defined sets of markers for the pluripotent state, XEN cells,
and ECT cells based on differential MRNA expression (Supplementary Fig. 4a), which were confirmed
by GO term enrichment (Supplementary Fig. 4b). As a fourth gene set we considered ribosomal
proteins since it has been shown previously that the translational state changes dramatically during
differentiation (Sampath et al., 2008). For these 4 gene sets we calculated the average mRNA and
protein profiles, correlation between mRNA and protein, classification by dominant eigengene and
inferred synthesis and degradation rates for the genes that are fit optimally by the full kinetic model
(Fig. 4a). This analysis of gene sets is also available on the companion website. Pluripotency markers
were in general down regulated at the mRNA level (per definition) but also at the protein level.
Correspondingly, we found this set to be enriched in the “degradation only” kinetic model while the
“synthesis only” model is underrepresented (Supplementary Fig. 4c). This observation is consistent
with the fact that pluripotency genes have to be down-regulated quickly to allow for a timely exit from
pluripotency. Nevertheless, there were some genes that showed a substantial increase in protein
expression and consequently had a negative correlation between measured mRNA and protein (see
Supplementary Fig. 4d for examples). XEN and ECT markers were in general upregulated, where ECT

markers came up before XEN markers, as shown by us previously (Semrau et al., 2016). In contrast to
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the set of pluripotency markers, XEN and ECT genes showed a high level of concordance between
mRNA and protein, as immediately obvious from the eigengene classification. Correspondingly, both
gene sets were enriched for high correlation between mRNA and protein. Additionally, XEN markers
were enriched for the “synthesis only” model (Supplementary Fig. 4b). This might be related to the fact
that XEN cells have to produce high levels of extracellular matrix proteins(Mulvey et al., 2015), like
laminin (Lamb1) or collagen (Col4a2) . Consequently, these proteins must be synthesized in a timely
manner to ensure the proper function of the XEN cells. All in all, it seems that cell type specific
markers defined at the mRNA level could be confirmed at the level of protein and that for these genes
protein expression closely follows mMRNA expression. Compared to the gene sets discussed so far,
ribosomal protein (RP) genes showed a remarkable extent of discordance between mRNA and protein
expression. Eigengene classification revealed that many RP genes had protein profiles that were more
dynamic than their mRNA counterparts. Correspondingly, RP genes were enriched for low correlation
between mRNA and protein (p-value = 3.3E-2). As cells differentiated, the protein levels of RP genes
decreased, consistent with reduced cell division rates. The rate of decrease in abundance, however,
was RP specific. Thus, it will be interesting to isolate ribosomes and analyze the extent to which these
RP dynamics reflect ribosome remodeling and specialization (Slavov et al., 2015). In summary, we
have shown that the 4 analyzed gene sets follow distinct regulatory modes that can be related to

biological functions.

The kinetic model can be applied to single-cell transcriptomics data to predict protein levels in
differentiated cell types

In the experiment presented here, the existence of good antibodies for highly expressed surface
markers allowed us to purify differentiated cells at 96 h and profile their proteome. For earlier time
points or many other differentiation assays such an approach is difficult or even impossible. By
contrast, single-cell transcriptomics methods can be applied to any differentiation system. Hence, we
would like to use such data sets to predict protein levels in subpopulations. To that end, we extracted
cell type specific mMRNA dynamics during differentiation from our earlier single-cell RNA-seq
measurement of the system (Semrau et al., 2016). We then applied our kinetic model to this data set
to predict protein levels in the differentiated cell types at 96 h (Fig. 4b, Methods). Our prediction was
clearly superior to a prediction that only used bulk RNA-seq measurements and protein-to-mRNA

ratios (Edfors et al., 2016) (Fig. 4c). We have thus demonstrated that our kinetic model with
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parameters learned from bulk measurements can be applied to single-cell transcriptomics data to
predict cell type specific protein levels.

We finally compared the differentiated cell types directly with each other. Overall, the correlation
between mRNA and protein changes was poor and we identified a few outlier genes in particular that
showed extreme behavior (Fig. 4d). These outliers had comparable protein expression in XEN and
ECT cells (at most 2-fold difference) but mRNA expression was much lower in XEN cells (up to 19-
fold). Notably, these outliers are strongly enriched for imprinted genes (hypergeometric test, p-value =
2.3E-10). It is a well-known fact that some imprinted genes are mono-allelically expressed in extra-
embryonic tissues (Miri and Varmuza, 2009). Yet, the observed down-regulation goes well beyond a
two-fold change expected for mono-allelic expression. This observation demonstrates that our data set

can be used to discover significant differences in gene regulation between differentiated cell types.

Discussion

Here we systematically analyzed the dynamics of mRNA and protein levels during mESC
differentiation and found widespread discordance. Such discordance has been observed recently in
several systems, in particular: Xenopus development (Peshkin et al., 2015), C. elegans development
(Grin et al., 2014), macrophage differentiation (Kristensen et al., 2013) and mESC differentiation (Lu
et al., 2009). While this discordance is typically interpreted as a sign of (post) translational regulation
(Griin et al., 2014) (Lu et al., 2009), we showed here that a simple model with constant kinetic rates,
substantially reduces the discordance for 63% of discordant genes (Supplementary Fig. 3a). The
same kinetic model explained protein dynamics of a third of all genes during stress response in yeast
(Tchourine et al., 2014) and of 75% of all genes in Xenopus development (Peshkin et al., 2015).
Consistently, this simple model thus explains discordance for significant proportions of the genome.
Genes that were not fit well by the kinetic model, are by our definition dynamically regulated, as
constant synthesis and degradation rates are insufficient to describe the observed kinetics. This
approach is complementary to the recently developed PECA method that can be used to reveal
regulatory events at the mRNA and protein level (Cheng et al., 2016).

Our in-depth analysis of several gene sets revealed that cell type specific genes show a high
concordance between mRNA and protein dynamics, while for RP genes the correlation is much lower.
Together with previous reports (Kristensen et al., 2013) (Jovanovic et al., 2015) our study supports a
model in which mRNA fold changes set the level of newly produced proteins that have crucial, specific
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function in the new cell state or cell type. Regulation on the level of protein turnover, on the other
hand, is used to adapt the existing proteome. Importantly, we also showed that some pluripotency
genes, defined as such by being down-regulated at the mRNA level, showed increasing protein
expression. This result cautions against defining markers for cell states or cell types solely based on
mRNA expression.

In summary, this study provided the first in-depth, integrated analysis of mMRNA and protein dynamics
during mESC differentiation. All measured data are provided in a convenient web application. We
hope that this application will facilitate future studies of specific gene sets or global relationships, for

example between sequence features and protein regulation (Vogel et al., 2010).
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Figure captions

Figure 1 mRNA and protein expression correlate poorly during mESC differentiation

(A) Experimental setup. (B) mRNA versus protein expression of 7459 genes in mESCs. Each data
point is an individual gene. Red lines indicate contour lines of equal density. (C) Sample-wise Pearson
correlation between mRNA and protein for all samples. The solid line indicates the average of all time
course samples. The grey area indicates the 5% rejection region for all samples being identical (see
Methods). Error bars: SEM. (D) mRNA versus protein expression at all time points for nine example
genes. Pearson’s correlation r is indicated for each gene. The line and grey area indicate the linear
regression fit and 95% CI, respectively. Error bars: SEM. (E) Distribution of the gene-wise Pearson
correlation between mRNA and protein. Numbered arrows indicate the position of the examples shown

in D. See also Supplementary Figure 1.

Figure 2 Classification of temporal mRNA and protein expression profiles by dominant trends reveals
widespread discordance

(A) First six eigengenes of mMRNA and protein expression profiles. (B) Reconstruction of mMRNA and
protein expression profiles from the top three eigengenes of an example gene. (C) Cumulative
variance explained by the eigengenes for mRNA and protein profiles. (D) Classification of all genes by
their dominant mRNA eigengene (columns) and protein eigengene (rows).

See also Supplementary Figure 1.

Figure 3 Simple kinetic models of protein synthesis and degradation explain mRNA-protein
discordance.

(A) Kinetic model. ks = synthesis rate constant; ky = degradation rate constant. (B) Example fits of the
full model (ks >0, ky >0) and the three reduced models: synthesis only (ks > 0, k; =0), degradation only
(ks =0, ks > 0) and degenerate (ks = ky =0). Percentages indicate the fraction of genes fit best by the
respective model. (C) Distribution of Pearson correlation between measured protein expression and
mMRNA expression or predicted protein expression. (D) Extended kinetic model. ky(t) = time-dependent
synthesis rate. (E) mRNA expression, log ratio of expression from CDS and 3’'UTR and protein
expression profiles of two example genes with fits of the extended model (solid line) or the basic

model (dashed line). (F) Distribution of Pearson correlation between measured protein expression
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and: mRNA expression, protein expression predicted by the basic model or the extended model. Error
bars in (B) and (E): SEM.

See also Supplementary Figures 2 and 3.

Figure 4. Classification and kinetic modelling reveal differences between gene sets involved in
differentiation and between differentiated cell types.

(A) Comparison of four gene sets that are relevant for differentiation. Log, fold change (L2FC) of
mRNA and protein expression are shown for individual genes (colored) and the set average (black).
The p-value in the classification matrix is based on picking genes at random from all genes (chi-
squared test). (B) mRNA expression of XEN and ECT subpopulations (from single cell data) and the
mixed populations (bulk sample). Protein expression in XEN and ECT is predicted by applying the
kinetic model to the single cell data. Alternatively, at 96 h we also predicted protein based on the
protein-to-mRNA (PTR) ratio. (C) Sum of squared residuals (SSR) of the kinetic model-based
prediction compared to the PTR-based prediction for the XEN and ECT marker genes. (D) mRNA and
protein expression in XEN cells relative to ECT cells. Outlier genes are highlighted with a dark
background and imprinted genes are shown in red (obtained from www.geneimprint.com, Oct-11-
2016). Imprinted genes are significantly enriched in the outlier gene set (hypergeometric test: p-value
= 2.72e-10).

See also Supplementary Figure 4.
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Methods

Cell culture

E14 mouse embryonic stem cells were cultured as previously described (Semrau et al., 2016). Briefly,
cells were grown in modified 2i medium (Ying et al., 2008): DMEM/F12 (Life technologies)
supplemented with 0.5x N2 supplement, 0.5x B27 supplement, 4mM L- glutamine (Gibco), 20 ug/mi
human insulin (Sigma-Aldrich), 1x 100U/ml penicillin/streptomycin (Gibco), 1x MEM Non-Essential
Amino Acids (Gibco), 7 ul 2-Mercaptoethanol (Sigma-Aldrich), 1 uM MEK inhibitor
(PD0325901,Stemgent), 3 yM GSK3 inhibitor (CHIR99021, Stemgent), 1000 U/ml mouse LIF
(ESGRO). Cells were passaged every other day with Accutase (Life technologies) and replated on

gelatin coated tissue culture plates (Cellstar, Greiner bio-one).

Differentiation and sample collection

Retinoic acid induced differentiation was carried out exactly as describe before (Semrau et al., 2016).
Prior to differentiation cells were grown in 2i medium for at least 2 passages. Cells were seeded at 2.5
x 10° per 10 cm dish and grown over night (12 h). Cells were then washed twice with PBS and
differentiated in basal N2B27 medium (2i medium without the inhibitors, LIF and the additional insulin)
supplemented with 0.25 uM all-trans retinoic acid (RA, Sigma-Aldrich). Spent medium was exchanged
with fresh medium after 48 h.

To collect samples, cells were dissociated with Accutase. RNA was extracted from half of the sample
(RNeasy, Qiagen) and the purified RNA was stored at -80C until RNA-sequencing was performed. The
other half of the sample was flash frozen in liquid nitrogen and stored at -80C until mass spectrometry

was performed.
Fluorescence-activated cell sorting

FACS sorting of the differentiated cell types and quantification of the cell type frequencies was carried

out exactly as described previously (Semrau et al., 2016).
RNA sequencing and mRNA quantification

Library preparation and RNA sequencing
The libraries for RNA sequencing were prepared under standard conditions using lllumina’s TruSeq

stranded mRNA sample preparation kit. The libraries were sequenced using lllumina HiSeq 3000 ; 40
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basepair long, stranded single-end reads were sequenced at an average read depth of 40 million

reads per sample. The data is available through GEO.

Read alignment

An RSEM-reference was created using RSEM v1.2.28 (Li and Dewey, 2011) with the lllumina
iGenome GRCm38 reference using the standard settings. Next, the lllumina adapter was trimmed
from the reads with cutadapt v1.8.3 (Martin, 2011) and low quality bases with sickle v1.33 (Joshi et al.,
2011). Finally the reads were aligned with RSEM v1.2.28 (Li and Dewey, 2011) and Bowtie 2 v2.2.6
(Langmead and Salzberg, 2012) using standard settings accept for “--sampling-for-bam --fragment-
length-mean 40”. The option “--sampling-for-bam” was applied so each read appears in the BAM file
once. This enabled the estimation of the CDS and 3'UTR counts by summarizeOverlaps from the

package GenomicAlignment v1.8.4 (Lawrence et al., 2013).

Gene quantification

mRNA expression was quantified by several different methods depending on the application.
Transcripts per million (TPM) was calculated by RSEM and was used when comparing between genes
since it is corrected for gene length. The more variance stabilized regularized log counts (rLC) were
determined by applying the rlog function from DESeq2 v1.12.3 (Love et al., 2014) on rounded
expected counts obtained from RSEM. From this regularized counts (rC) were obtained by: rC = 2"°.
rLC and rC are corrected for overdispersion in low-read genes and are therefore used when
comparing one gene across multiple samples. CDS and 3'UTR counts were determined by splitting
the gene annotation file (GTF) with the GenomicFeatures package v1.26.0 (Lawrence et al., 2013) into
CDS and 3'UTR for every Ensembl gene ID. Next, the number of reads on the CDS and 3'UTR
features from the aligned BAM files were counted with summarizeOverlaps with default options.
“Union”, the default option for mode, discards reads, if they overlap with both CDS and 3'UTR. The

ratio w (CDS / 3’'UTR) was only calculated for genes with at least 10 reads for CDS and 3’'UTR in

every sample.

Differentially expressed genes

Differentially expressed genes (DEGs) were determined by DESeq2 v1.12.3 (Love et al., 2014) on the
rounded expected counts obtained from RSEM at a false discovery rate (FDR) of 10%. The gene set
‘pluripotency genes’ were DEGs that were down-regulated when comparing the samples Oh (n=2) and

96h (n=2). XEN- and ECT-marker gene sets were DEGs that were up-regulated when comparing the
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samples Oh (n=2) with XEN (n=1) or ECT (n=1) respectively. Additionally, XEN- and ECT-markers

have at least a 2-fold difference in expression between the two cell types.

Mass spectrometry and protein quantification

Sample preparation

Pelleted cells were lysed in 400 ul RIPA buffer, except for the sorted cells, which were lysed in 200 ul
RIPA buffer. Volumes of cell lysate corresponding to 100 ug protein per sample were digested with
trypsin using a modified FASP protocol (Wisniewski et al., 2009). Subsequently each sample was
labeled with TMT 10-plex reagent (Prod# 90061, Thermo Fisher, San Jose, CA) according to the

manufacturer’s protocol. All labeled samples were combined into a set-sample.

Mass spectrometry

The labeled set—sample was fractionated by electrostatic repulsion-hydrophilic interaction
chromatography chromatography (ERLIC) run on an HPLC 1200 Agilent system using PolyWAX LP
column (200x2.1 mm, 5 ym, 30nm, PolyLC Inc, Columbia, MD) and a fraction collector (Agilent
Technologies, Santa Clara, CA). Set-samples were fractionated into a total of 40 ERLIC fractions.
Each ERLIC fraction was subsequently further separated by online nano-LC and submitted for tandem
mass spectrometry analysis to both LTQ OrbitrapElite or Q exactive high field (HF). One third of each
fraction was injected from an auto—sampler into the trapping column (75 um column ID, 5 cm length
packed with 5 um beads with 20 nm pores, from Michrom Bioresources, Inc.) and washed for 15 min;
the sample was eluted to analytic column with a gradient from 2 to 32 % of buffer B (0.1 % formic acid
in ACN) over 180 min gradient and fed into LTQ OrbitrapElite or Q exactive HF. The instruments were
set to run in TOP 20 MS/MS mode method with dynamic exclusion. After MS1 scan in Orbitrap with
60K resolving power, each ion was submitted to an HCD MS/MS with 60K resolving power and to CID

MS/MS scan subsequently. All quantification data were derived from HCD spectra.

Protein quantification

Relative peptide levels were estimated from reporter ion intensities measured at MS2 level. Only
peptides with co-isolation below 40 % were used for quantification. The intensities of all peptides
belonging to a Uniprot ID were averaged to form mean peptide intensity (MPI) for every protein. When
comparing different protein samples mean peptide intensities were normalized to the sample-mean to

form protein expression. Standard error of the mean (SEM) was calculated for every protein as
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follows: 1) for every peptide the intensities were averaged across the samples, 2) the SEM was

calculated from these mean-centered peptide intensities for every protein and sample.

Protein reliability

The protein reliability was calculated for genes with at least two peptides quantified. For each gene,
the peptides were randomly split into two groups and the MPI was calculated for each group as
described above. The correlation between the MPIs of the two peptide groups across the different

samples is defined as the reliability of the measurement of that protein.

Transcriptomics and proteomics integration

While transcripts were identified by Ensembl gene IDs, Uniprot IDs were used for proteins. To
integrate the two, we mapped 7681 out of 8515 Uniprot IDs to Ensembl gene IDs present in the RNA-
seq data using the idmapping file from the Uniprot website (15-Sept-2016). An additional set of Uniprot
IDs were mapped to Ensembl IDs using biomaRt v2.28.0 (Durinck et al., 2009). Some proteins have
more than one Ensembl ID mapping to it, therefore 33 Uniprot IDs were removed, Moreover, 92
Uniprot IDs mapped non-uniquely to Ensembl IDs and for these the protein intensities were
reevaluated based on Ensembl IDs. Finally, some genes were not considered because they were not
detected in all samples. This resulted in a total of 7489 genes based on Ensembl gene IDs, for which
we have matched mRNA and protein expression data in all samples. Additionally, we observed 3770

genes with at least 10 mMRNA reads in every sample but no detected protein.

Sample-wise correlation

We tested if the sample-wise correlation is constant during the differentiation time course using a
resampling approach. For each bootstrap a pseudo-sample was constructed consisting of every gene,
but with mRNA and protein expression randomly sampled from the different time points. The
correlations of 10,000 pseudo-samples were calculated to obtain a null distribution. Samples have
significantly different correlation if it falls below or above the 0.36 and 99.64 percentiles of the null

distribution respectively (a = 0.05, Bonferroni correction, grey area in Figure 1c).

Gene-wise correlation

To define a threshold for low gene-wise correlation we applied a shuffling approach (Tchourine et al.,

2014). We determined the Pearson correlation for all possible permutations of the mRNA and protein

expression for every gene. More than 95% of all Pearson correlation values obtained in this way were

lower than 0.7, which we therefore set as the threshold between low and high correlation.
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Expression profile classification

mRNA and protein expression were arranged in matrix form rows corresponding to genes and the
columns corresponding to time course samples. These matrices were standardized by rows. Next,
standard singular value decomposition (SVD) was performed separately for mRNA and protein (Wall
et al., 2003). From this analysis, we obtain n eigengenes I7k where k € 1,...,n and n is the number of

time points. Using these eigengenes we can reconstruct the standardized expression of gene i, as
follows: )?l- = Dk Ml-kl7k, where M;; is the contribution of eigengene k to the standardized expression of

gene i. We defined the eigengene with the biggest contribution to )?l- as the dominant eigengene. To
determine if there is an enrichment of genes with concordant mRNA and protein eigengenes, we
calculated an empirical p-value based on a null distribution generated by bootstrapped (number of
bootstraps = 100,000). This null distribution was constructed under the assumption that the marginal
eigengene distributions of MRNA and protein are independent. Moreover, we defined a confident set
of genes with a bigger than median fold-change between the contribution of the dominant eigengene

and the second most contributing eigengene for both mRNA and protein.
Kinetic models of protein synthesis and degradation

Approximation of mRNA and CDS/3’UTR expression by natural cubic splines

To describe the mRNA, CDS and 3'UTR behavior in the kinetic model of protein synthesis and
degradation we approximated the expression with natural cubic splines. These splines were fit on the
mRNA expression and on the log, fold change (L2FC) of w, which we call w. The number of degrees
of freedom p used for the fits of every gene was 4 for mRNA expression and 3 for w expression.
These values were automatically determined as described by Storey et al. (Storey, 2005). Briefly, an
SVD was performed on the expression matrices of mMRNA and w and the first n eigengenes that
explain at least 60% of the variance were selected. For each of these eigengenes the optimal number
of degrees of freedom p; was selected by leave one out cross validation (LOOCV) and the largest p;
was used as the number of degrees of freedom p to fit the natural cubic splines for all the genes of the

expression matrix. The nodes of the cubic splines were equally spaced across the time course.
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Kinetic rate parameters estimation
We model protein turnover as a birth-death process

dP(t)
dt

ks = R(t) — kq - P(t)

where P(t)and R(t) are protein and mRNA expression respectively. The solution of this ordinary

differential equation (ODE) is given by:
P(t) = Pyekat + ksf R(7) e ka -7
0

where P, is the protein expression at t = 0 hours. The integral of this equation was estimated
numerically in R using the spline fits described above. We fit the model using gene specific
parameters Py, ks and k; with the Levenberg — Marquardt non-linear least squares algorithm, which is
implemented in the R package minpack.Im v1.2-0. Additionally, we fit models where we set k; = 0,
ks = 0or k; = kg = 0. For each successful fit we determined the Bayesian Information Criterion:

BIC = —2In(L) + k-In(n)
where L is the posterior likelihood of the fit, k is number of parameters in the model and n is the

number of time points. L is determined by:

n

L= [p(Pt)]d)

j=1

where 6 is the vector of inferred model parameters. The probabilities are estimated by assuming a
normal distribution around the observed protein expression with a standard deviation equal to the
SEM of the peptide intensities. The kinetic model with the lowest BIC was selected as the optimal
model.
Additionally, for the subset of genes for which we could determine w we constructed a model with a

time-dependent synthesis rate:

dP(t)
dt

= ks(®) - R®) — kg - P(O) = ks (1 + Bw(®))-R®) — kq - P(t)

where kg describes the constant synthesis rate and g parameterizes the time-dependent modulation of

the synthesis rate by w. The solution of this ODE:

P(t) = Poe ket + fr((lcs+ﬁw(t))-R(r)-e"‘d'(t‘f))

0

was fit to the data in the same manner as above.

95% confidence region estimation

To estimate the 95% confidence intervals (Cls) for ks and kq we applied Wilk's theorem:
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In(L(8)) = In(L(0)) - %;(12_1_“
where a is 0.05 and xZ,_,is the value at which the cumulative chi-squared distribution with 1 degree of
freedom reaches 0.95. We varied ks and kqaround the obtained fit 8 to find the edges where Wilk’s
theorem holds. These edges where determined at 24 directions in the ks - ky solution plane to obtain a
crude 95% confidence region. The projection of this region on ks and kq defined CI>* and CI;>”, their

respective 95% Cls. Note that these intervals are typically much larger than the intervals obtained

when searching one parameter at a time. Genes with the full model (as determined by BIC), and with a
small CI;>” and CI>" (each spanning less than a 10-fold range) were defined as the high-confidence
gene set. Additionally, for genes in this set we determined the protein half-life 7, as

_ln2

T, = —
14
kq

Protein prediction of sorted populations

We applied our kinetic model to single-cell transcriptomics data of RA driven differentiation, which we
obtained previously (Semrau et al., 2016). We determined the mean expression of all cells, as well as
XEN and ECT subpopulations starting from the lineage bifurcation at 36 h. All three datasets thus
have identical expression up to 36 h. We then scaled the subpopulation data to the bulk data
measured here for every gene in the following way: 1) We standardized the single cell time course
data using the mean and standard deviation of the pooled single cell data, and 2) we scaled the
standardized single cell data to the bulk data using the mean and standard deviations of the bulk time
course. Next, we fit a natural cubic spline to the single cell data as before and applied the kinetic
model using Py, ks and kq learned from the bulk mRNA and protein measurements. We evaluated the
model performance by calculating the residuals between the predicted XEN and ECT protein
expression at 96 h and the bulk measurements of protein in the purified cell types.

An alternative way of predicting protein expression is by simply multiplying a gene’s protein-to-mRNA
ratio (PTR) with the gene’s mMRNA expression. We defined the PTR as the mean protein expression
divided by the mean mRNA expression during the time course. We predicted the protein expression of
the XEN and ECT populations at 96 h using the bulk mRNA of the respective sorted populations. We
used the sorted bulk data rather than the single cell data, because it is more accurate and we
therefore expect this to perform better. Like with the single cell predictions, we evaluated model
performance using the residuals of the PTR-predictions relative to the measured protein expression of

the sorted bulk data.
21


https://doi.org/10.1101/123497

bioRxiv preprint doi: https://doi.org/10.1101/123497; this version posted April 3, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Ribosomal protein gene list
The list of RPs was compiled as all Swiss-Prot proteins curated as ribosomal proteins in their

descriptions.

Eigengene dynamics
We quantified the dynamics of the eigengene profiles as the mean of the squared second derivatives
(roughness). The second derivatives were estimated numerically from three unequally spaced points

by this formula:

@ _ 2y, _ 2y, 2y3
dx?  (xz —x)(x3 — x1) (x3 — x3) (x5 — x4) (x5 — x2)(x3 — x1)

where x;, x, and x; are adjacent time points and y,, y, and ys;are the respective eigengene

intensities.

GO term enrichment
GO term enrichment was performed with the R package topGO v2.24.0 (Alexa et al., 2006) with the
classic algorithm. The genes were ranked using Fisher’s exact test and deemed significant with an

FDR of 10%.

Accession numbers

The RNA-seq data has been deposited in GEO (ID: GSE9563). The raw MS data has been deposited
in MassIVE (ID: MSV000080461). A web application complementing this publication, which allows
convenient access to all data can be found here:

https://home.physics.leidenuniv.nl/~semrau/proteomics/

user name:

password:
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Supplementary Figure 1. Related to figures and 1 and 2. Protein quantification using
TMT labeling is robust and reproduces previous results on embryo-derived XEN cells.
mRNA eigengenes are more dynamic than protein eigengenes.

(A) From left to right: Venn diagram of the number of genes with quantified mRNA and protein
levels (see Methods), distribution of the number of peptides used to quantify protein
expression, distribution of the coefficient of variation (CV, SD/mean) of the mean-centered
peptide intensities, distribution of the gene-wise protein reliability. The 7459 genes in the
intersection are detected in all mMRNA and protein samples.

(B) Protein expression of the 96 h sample (consisting of both XEN and ECT cells) compared
with a sample mixed in silico from the independently generated purified XEN and ECT cell
samples. L2FC: log, fold-change.

(C) Protein expression in XEN cells relative to ESCs as measured in this study compared with
in vivo derived XEN cells measured by Mulvey et al. (2015). Pluripotency- and XEN-marker
gene sets were defined using a support vector machine learning algorithm. The pluripotency
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set is significantly enriched in genes that are downregulated in our data (p-value = 4.0E-4) and
the XEN-marker gene set is enriched in genes that are upregulated (p-value = 1.4E-4, gene
set enrichment analysis).

(D) Roughness of mMRNA and protein expression eigengenes. The roughness of a profile is
defined as the average squared second derivative.
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Supplementary Figure 2. Related to figure 3. The kinetic models can be related to
biological functions and the inferred kinetic rates are biologically meaningful.

(A) Union of the top 10 significantly enriched cellular differentiation GO terms for genes fit best

by each of the four kinetic models. False discovery rate = 10%.

(B) Protein half life distribution for 1554 genes that were fit best by the full model (according to
the BIC) and have precise estimates of the rates (upper and lower bound of the 95%
confidence intervals (Cls) fall within a 10-fold range)
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(C) Translational efficiency (TE) in mESCs from Ingolia et al. (2011) versus our synthesis
rates. We show the rates for 1284 genes (intersection between data from Ingolia et al. (2011)
and the1554 genes shown in B). Boxplots represent the binned TE with whiskers indicating
1.5 xIQR.

(D) Log1o protein to mRNA ratio (PTR) versus equilibrium constant (keq = ks / kg) for the 1554
genes described in B. Each data point is an individual gene. Genes that are at equilibrium
(PTR = keq) are on the 1:1 line (green). Inserts: PTR relative to ksq across time are shown for
three example genes that are above, approximately on and below the 1:1 line.

(E) Ratio of CDS and 3’'UTR expression versus protein expression in the 96h sample relative
to ESCs. The genes with the highest CDS expression fold change are indicated in green. Solid
lines indicate linear regression fits. CDS = coding DNA sequence, 3’'UTR = 3’ untranslated
region.

(F) Distribution of the parameter B of the extended model, which sets the strength of the
influence of the CDS-3'UTR ratio on the synthesis rate. Shown are the values of 3 for the 492
genes that are improved by the extended kinetic model (according to the BIC).
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Supplementary Figure 3. Related to figure 3. Genes in the MAPK signaling pathway are
regulated dynamically at the protein level during differentiation.

(A) Pearson correlation between measured protein and mMRNA (rneas) versus Pearson
correlation between measured and predicted protein (rpreq). Background coloring indicates:
concordant genes with (high rneas, blue), discordant genes that are not well-fit (Iow rmeas , low
fored » Fed) and discordant genes that are well-fit (Iow rmeas , high rpreq , green). Here we
consider genes with rneas < 0.7 to be discordant (see Methods). To assure the the model
prediction correlates substantially better with the measured protein than the measured mRNA
we require rpeq >= 0.8 for a gene to be considered well-fit.
(B) Dominant eigengene classification of all 7459 genes. The color of a tile indicates the mean
fraction of variance explained (mean r ) by the best-fitting kinetic model for genes with a
particular combination of dominant mMRNA and protein eigengene.
(C) Dominant eigengene classification of the 368 genes that are not well-fit by the basic kinetic
model (red area of A) and exhibit a bigger than median fold-change between the contribution
of the dominant eigengene and the second most contributing eigengene. The color of a tile
indicates the number of genes with a particular combination of dominant mRNA and protein
eigengene. Enrichment analysis revealed an enrichment of MAPK signaling pathway genes in
the tile highlighted in green (g-value = 1.8e-3).
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(D) mRNA and protein expression profiles of two genes from the tile highlighted in C. Error
bars: SEM. regC = regularized counts; MPI = mean peptide intensity.
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Supplementary Figure 4. Related to figure 4. The different subtypes of the kinetic model
are enriched in gene sets defined by the differentiation process

(A) Volcano plots (mRNA relative expression versus p-value for differential expression) for the
96 h sample, the ECT sample and the XEN sample. mRNA expression is always relative to the
0 h sample (ESCs). Genes colored in both red or green are significantly differentially
expressed with a false discovery rate (FDR) of 10%. Only genes colored red are considered
marker genes: pluripotency markers are down regulated in the 96 h sample, ECT and XEN
markers are upregulated and have a minimum fold change of 2 compared with the other
purified sample (see Methods).

(B) Union of the top 10 significantly enriched cellular differentiation GO terms for genes in
each of the three DE gene sets and the ribosomal genes. FDR = 10 %.

34


https://doi.org/10.1101/123497

bioRxiv preprint doi: https://doi.org/10.1101/123497; this version posted April 3, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

(C) Overrepresentation (+ / blue) and underrepresentation (- / red) of the various subtypes of
the basic kinetic model in the gene sets from B. (D) Genes in pluripotency gene set with
upregulated protein expression. regC = regularized counts; MP| = mean peptide intensity.

35


https://doi.org/10.1101/123497



