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Abstract 

We recently identified a motif for dynamical compensation (DC) – a property where a system               

maintains the dynamics and steady-state of a regulated variable robust in the face of              

fluctuations in key parameters. Such parameters are therefore unidentifiable from          

measurements of the regulated variable at steady-state. On the other hand, since the models              

showing dynamical compensation are typically non-redundant, their parameters are         

identifiable from experimental data. We clarify this apparent discrepancy by requiring that            

the parameters of DC circuits be identifiable both away from steady-state and when             

measuring other system variables. We use this observation to provide a definition for DC in               

terms of parameter identifiability and discuss its relevance for the examples provided in             

Karin et al. 
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Introduction 

Biological systems often need to maintain their steady-state output robust in the face             

of variation, a property known as exact adaptation [1]. Motifs for exact adaptation include              

integral feedback loops [2]. Some biological systems must go beyond maintaining the steady             

state output, and to keep their entire dynamical trace, including amplitude and response time,              

robust to fluctuations in key parameters. We called this robustness of the entire trace              

‘dynamical compensation’ (DC) [3].  

We recently identified a motif for DC in physiological circuits, including endocrine            

circuits [3]. In this motif, a regulated variable directly controls the functional mass of its               

regulating tissue. This motif creates a feedback loop on slow timescales that adjusts the              

functional mass of a tissue that, for example, secretes a hormone, to compensate for changes               

in parameters such as the hormone sensitivity of the target tissues. This motif occurs in the                

glucose-insulin system, and may apply to several other physiological circuits, including the            

regulation of calcium by PTH, the regulation of arterial oxygen by the carotid body, and               

neuroendocrine circuits [3]. 

The original paper described DC as follows. Consider a system with an input ​u(t) and               

an output ​y(t,p) such that ​p > 0 is a parameter of the system. The system is initially at steady                    

state with ​u(0) = 0 ​. DC with respect to ​p is the property that for any input ​u(t) and any                    

(constant) ​p the output of the system ​y(t,p) does not depend on ​p ​. That is, for any ​p,q ​and for                    

any time-dependent input ​u(t)​, ​y(t,p) = y(t,q) ​. Although the paper also dealt with             

non-steady-state situations, this description suggests that the parameter ​p is unidentifiable           

from measurements of ​y​.  

Identifiability is a concept from structural identifiability (SI) theory, a mathematical           

theory that deals with unidentifiable parameters – parameters that cannot be fit from             
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experimental data [4-5]. Such parameters are often considered redundant. SI theory is            

therefore useful for finding whether a model is well defined, or whether it should be               

reformulated with less parameters. Since DC models have parameters that cannot be            

identified from measurements of their regulated parameter, it has been suggested that SI             

theory may be useful for finding models with the DC property, as pointed out in [6-7]. 

Although it was not explicitly stated in Karin et al., the examples given in that paper                

all have an additional feature, namely that the DC property (a robustness property) must, in               

addition, be non-redundant. This creates an apparent discrepancy, which can be resolved by             

tightening the definition to explicitly require that while the parameter ​p of a DC model is                

unidentifiable from measurements of ​y ​at steady-state, it should be identifiable from other             

experimental measurements – either from measurements of ​y away from steady-state or from             

measurements of other system variables. We use this intuition to refine the definition of DC               

using SI theory. 

Informally, we will say that a model has DC on a variable ​y with respect to a                 

parameter ​p if the model is well defined (i.e ​p is identifiable from experimental data if rich                 

enough perturbations of parameters are allowed and/or rich enough types of measurements            

are allowed) but the system has Structural Non Identifiability (SNI) for ​p when only              

measuring the variable ​y ​starting from steady-state. We next define this concept formally. 

Definition 

Consider a dynamical system that is defined as follows: 

(x(t), (t), , ), y(t) (x(t), (t), , ), t≥0, (0)ẋ = f u p t  = h u p t  x = ξ  

Where ​f, h describe respectively the dynamics and the read-out map; ​u = ​u(t) is an input                 

(stimulus, excitation) function, assumed to be piecewise continuous in time, ​x(t) is an             

n-dimensional vector of state variables, ​y(t) is the output (response, reporter) variable,            
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and ​p is the parameter (or vector of parameters) that we wish to focus our attention on.                 

is the initial state of the system. We require that when the input ​u=0 this systemξ                  

should have a unique steady-state , i.e a unique solution for .xp (x(t), , )f 0 p = 0  

For the system to show DC with respect to ​p it must show both [I,II] and either [III] or                   

[IV]: 

I. Exact adaptation with respect to changes in the parameter ​p ​, that is, for all              

parameters ​p ​ and all initial conditions  then .ξ (x, , )→yh 0 p 0  

II. SNI, meaning that for all ​p,q ​, for all inputs ​u(.), for all ​t ​,             (x , , , ) (x , , , )y p p u t = y q q u t

.  

III. Identifiability from perturbations: For all ​p≠q​, there is some input ​u(.) and some             

time ​t ​0​ s.t. .(x , , , )≠y(x , , , )y p q u t0 q q u t0   

If there exists an additional output function: 

(x(t), (t), , )h′ u p t  

then the model may have DC if [I,II] hold when only the output ​h ​ is available, and also: 

IV. Complete identifiability given both ​h,h’​: for any ​p≠q there exists ​u(.) and a ​t ​0 s.t.               

.(x , , , )≠y(x , , , )y p p u t0 q q u t0  

Parameter identifiability of a DC model 

Here we apply the above definition to the ​βIG ​model ​for the glucose-insulin-beta cell              

system from Karin et al [3]. The system is defined by the following equations:  

    [1](t) C I)⋅GĠ = u0 + u − ( + s  

    [2]β⋅ρ(G) Iİ = p − γ  

   ​  [3]⋅ν(G)β̇ = β  

where is plasma glucose concentration, is plasma insulin concentration, is G      I      u0   

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted April 3, 2017. ; https://doi.org/10.1101/123489doi: bioRxiv preprint 

https://doi.org/10.1101/123489


endogenous production of glucose, is meal intake, is glucose removal rate at zero    (t)u     C        

insulin and ​is insulin sensitivity. Secretion of insulin is proportional to beta cell functional  s              

mass ​β ​, where is a monotonically increasing function of ​G ​, is the insulin removal   (G)ρ         γ      

rate, and is the insulin secretion per cell. Finally, is the beta cell growth rate and it is  p         ν           

stable at the homeostatic glucose set point ​G=G​0​, that is .(G )ν 0 = 0  

As was shown in Karin et al. [3], this system has both exact adaptation and the                

parameters are unidentifiable from measurements of ​G at steady-state, and therefore ,s p            

conditions [I-II] hold. We now show that are identifiable from perturbations or,       ,s p       

alternatively, from measurements of additional variables. 

We first calculate the steady-state of the system for a given set of parameters and              ,s p   

assuming zero input . Because the system has exact adaptation, steady-state glucose is   u = 0           

constant . The steady-state level of insulin is then:GST = G0   

    [3]( )IST = s−1 u0
GST

− C  

and the steady-state beta cell functional mass is: 

    [4]s ( )βST = p−1 −1 u0
GST

− C γ
ρ(G )ST

 

By measuring [3,4] we can infer both , so condition [IV] holds given that we can measure       ,s p           

both insulin and beta cell functional mass. 

The parameters can also be identified by measurements of glucose off steady-state.            

Let the system have insulin secretion and insulin sensitivity that changes from      p     s1     →ss1 2  

(Figure 1). Just after the change the level of glucose changes to some level      →ss1 2          ≠GG ST  

and returns to only after a transient period. During the transient period, the   G = GST            

dynamics of glucose in response to inputs is different from its dynamics before the change               

 and specifically its response to zero input ​u=0​ is different.→ss1 2   
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Figure 1. Dynamical compensation is only guaranteed after adaptation. ​Glucose dynamics in response to              

meal before a change in insulin sensitivity s→s/2 (black), immediately after the change in insulin sensitivity                

(red) and after adaptation (dashed gray). Glucose dynamics are the same before the change in insulin sensitivity                 

and after adaptation. However, during the transient after the change in insulin sensitivity, and before adaptation,                

glucose steady-state and dynamics are perturbed. 

The value of can be approximated after the step change , assuming that   s2         →ss1 2    

insulin changes much faster than beta cell functional mass. Let be the steady-state beta          βs1
     

cell functional mass when insulin sensitivity . After the change glucose      s = s1     →ss1 2   

changes to some value and insulin changes to some value so    ≠GG′ ST        I ′   

. Since is monotonic and ​G and the other variables areG′ = u0

C+s I2
′ = u0

C+s pβ ⋅ρ(G )/γ2 s1 ′
  (G )ρ ′           

non-negative then this equation has a unique solution for each and therefore the input ​u=0          s2       

suffices to distinguish between each . Therefore given only measurements of one can     ≠ss′
2 2       β    

infer  after any perturbation (Figure 1).s   

Condition [III] thus holds with respect to , given knowledge of . When ​p is not       s     p      

known then we require an additional measurement (e.g of beta cell mass at steady state/off              

steady state). This is a plausible measurement of a physiological quantity. Thus, given ​p we               
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can infer ​s either from either (i) measurements of glucose and insulin at steady state, or (ii)                 

measurements of glucose off steady state. To infer ​p we only require some additional              

measurement such as beta cell mass. 

To conclude, DC is a robustness property where the dynamics of a regulated variable              

are robust to fluctuations in key parameters. This robustness is only guaranteed at             

steady-state. This is the origin of the name dynamic compensation: when a parameter             

changes, the system slowly adjusts to precisely compensate for the change, and full             

compensation is achieved at steady state. DC models must be non-redundant, so their             

parameters can be fit either from measurements away from steady-state or from            

measurements of other system variables.  
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