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Developmental system drift is a likely mechanism for the origin of hybrid incompatibilities between

closely related species. We examine here the detailed mechanistic basis of hybrid incompatibilities for a

genotype-phenotype map for developmental system drift under stabilising selection, where the organismal

phenotype is conserved, but the underlying molecular phenotypes and genotype can drift. This leads

to number of emergent phenomenon not obtainable by modelling genotype or phenotype alone. Our

results show that: 1) speciation is more rapid at smaller population sizes with a characteristic, Orr-

like, power law, but at large population sizes slow, characterised by a sub-diffusive growth law; 2) the

molecular phenotypes under weakest selection contribute to the earliest incompatibilities; and 3) pair-

wise incompatibilities dominate over higher order, contrary to previous predictions that the latter should

dominate. Our results indicate that biophysics and population size provide a much stronger constraint

to speciation than suggested by previous models.

INTRODUCTION

The detailed genetic mechanisms by which non-

interbreeding species diverge is still poorly understood. Dar-

win, inspired by John Herschel, called it that “mystery of

mysteries” [16]; he struggled to understand how natural

selection could give rise to hybrid inviability or infertility

between populations without producing such incompatibili-

ties within the populations. A solution to this problem was

conceived independently by Dobzhansky, Muller and Bate-

son in which cross-mating would combine alleles at differ-

ent loci that are incompatible due to epistatic interactions

(Dobzhansky Muller incompatibilities, DMI) [5, 17, 58].

Consider a common ancestor with alleles ab across two loci,

which after a period of allopatric divergence give rise to two

lineages which have fixed genotypes Ab and aB, respec-

tively. Interbreeding between these two populations would
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result in the heterozygotic hybrid genotype Aa|Bb, combin-

ing the potentially incompatible A and B, a combination

that could not arise in either population mating separately.

Assuming that any combination of alleles that have not

been “tested” by the process of evolution represents a po-

tential incompatibility, Orr predicted that the number of in-

compatibilities between pairs of alleles in a sufficiently large

genome would increase with the number of substitutions

separating the two lineages (K) as K (K − 1) ∼ K2 [64].

Similarly, the number of untested combinations involving n

loci would increase as ∼ Kn, suggesting that, with evolu-

tionary time, potential incompatibilities would become in-

creasingly dominated by more complex epistatic interactions

[64]. This would occur, firstly, because there are a larger

number of combinations, and secondly, because there are

more ways for separate lineages to evolve around incom-

patible genotypes when there is a larger number of loci.

It is unclear, however, how the simplistic assumptions of

this model fare with increased biological realism. Not all

possible untested hybrids are equally likely to result in real
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incompatibilities. Selection acting on each separate lineage

affects the substitutions that occur and their likely contri-

butions to reproductive isolation. In particular, evolutionary

constraints have a strong effect on the development of more

complex DMIs, making it uncertain whether their role is as

important as suggested by Orr’s combinatorial argument.

This highlights the need for considering more realistic mod-

els that better capture the salient aspects of the underly-

ing biology, whilst remaining sufficiently simple for tractable

evolutionary modelling and simulation.

In recent years a form of epistasis has been described

in a number of organisms whereby closely related species

have similar organismal phenotypes but are produced by very

different developmental mechanisms [56, 79]. This cryptic

“developmental system drift” [33, 76] could be an impor-

tant source of hybrid incompatibilities that cause reproduc-

tive isolation [38, 39]. Developmental system drift is an

example of a more general characteristic of biological sys-

tems where many genotypes can correspond to the same

phenotype; this redundancy of the mapping from genotype

to phenotype results in a number of non-trivial behaviours

which do not arise on fitness landscapes which consider evo-

lution of phenotypes or genotypes independently [7, 23, 29–

32, 35, 44, 52, 55, 59, 69]. The degree of redundancy can

be represented as the “sequence entropy”, corresponding to

the log of the number of genotypes corresponding to a given

phenotype, in analogy to the similar expression in statistical

mechanics [30, 42–44].

To explore the role of developmental system drift on spe-

ciation, we examine the growth of Dobzhansky-Muller in-

compatibilities using a simple genotype-phenotype map that

models the development of spatial patterning of gene ex-

pression. The model, introduced by [44] allows for cryp-

tic genetic variation and changes in molecular phenotypes

while maintaining organismal phenotype under stabilising

selection. In addition, we introduce a novel computational

method to decompose hybrid DMIs so we can examine the

behaviour of the fundamental pair-wise and higher order

incompatibilities. We show that including biologically rele-

vant elements gives rise to a number of novel phenomenon

that could not arise with models based only on the fitness of

genotypes or phenotypes. Our results show that small pop-

ulations develop hybrid incompatibilities more quickly, due

to the pressure of sequence entropy in small populations

meaning the common ancestor harbours on average a larger

drift load. For large populations, we find hybrid incompat-

ibilities arise more slowly, with a growth law characteristic

of a sub-diffusion of the hybrid binding energies, indicative

of kinetic traps in the molecular substitution process due

to roughness to the fitness landscape [44]. Strikingly, we

find that for moderate population sizes it is the molecular

phenotypes under weakest selection that give rise to ear-

liest incompatibilities, since in the common ancestor they

are more likely to be already maladapted. Finally, we find

that unlike Orr’s prediction that complex DMIs should be

abundant, pair-wise interactions between loci dominate the

growth of DMIs, showing that biophysics provides a stronger

constraint than pure combinatorics.

A SIMPLE GENOTYPE-PHENOTYPE MAP TO MODEL

DEVELOPMENTAL SYSTEM DRIFT

The genotype-phenotype map we use is a modification

of the one described in [44]. The evolutionary task set for

the gene regulation module is to turn an exponentially de-

caying morphogen gradient (M) across a field of cells in an

embryo into a sharp step function profile of a downstream

transcription factor T with its transition at the mid-point

of the embryo, as shown in Fig.1. This is accomplished

by having the morphogen and an RNA Polymerase R bind

to two adjacent non-overlapping binding sites in the cis-

regulatory region (C) region of the transcription factor, the

promoter P , and a single binding site B adjacent to it; tran-

scription occurs whenever the polymerase binds to the pro-

moter, although both proteins can bind to both binding sites

dependent on their binding affinities. Binding to the reg-

ulatory region is cooperative due to stabilising interactions

between the two proteins when bound at the two adjacent
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FIG. 1. An overview of the genotype-phenotype map. The gene regulatory module has as input a morphogen concentration

[M ](x) that varies approximately exponentially across a 1-dimensional embryo of length L, and outputs a transcription factor

[T ](x). Spatial gene regulation of T is achieved via a simple Hamming model of protein DNA binding as shown. Fitness is

determined by weighting any gene expression in the anterior half of the embryo as positive, and any in the posterior half as

negative (as shown bottom left). We show idealised expression profiles that give maximum fitness when gene expression is

confined only to the anterior half (bottom middle), and minimum fitness when there is no discrimination between anterior and

posterior (bottom right); these translate to log-fitnesses of F = 0 and F = −∞, respectively (see Methods).

sites. The sequences of M and R at the DNA binding sites

are represented by binary strings of length `pd = 10. The

corresponding DNA binding sites B and P are also repre-

sented by binary strings of the same length. Interactions

between a pair of proteins are similarly represented by bi-

nary strings of length `pp = 5. We assume an exponential

morphogen concentration profile [M ](x, α), as a function

of the position of embryonic cells, x; the decay rate of the

morphogen α is represented as a continuous variable, with a

relative probability of mutation corresponding to an effective

string of length `α = 10 bases. This results in a genome

G, of total length `G = 60. Protein-DNA and protein-

protein binding strengths are determined by the number of

mismatches between corresponding strings on the two inter-

acting molecules, where for protein-DNA binding the cost

of a mismatch is εpd = 2kBT and for protein-protein inter-

actions εpp = 1kBT , where kBT is Boltzmann’s constant

multiplied by room temperature (298K). We assume that

there is a fixed concentration [R] of polymerase, in each cell.

We then follow [71] and assume that the concentration of
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the transcription factor in a cell at position x ([T ](x)) is

simply proportional to the probability of the polymerase be-

ing bound to the promoter. The fitness contribution F of

the overall patterning phenotype ranges from 0 to κF de-

pending on how well expression of the transcription factor

is confined to the anterior half of the embryo, as shown in

Fig. 1 (bottom left), where κF is a measure of the rela-

tive contribution of this trait to the fitness of the organism.

We define a population-scaled fitness contribution 2NeκF ,

where Ne is the effective population size; for 2NeκF < 1

the effects of selection are weak, and are conversely strong

when 2NκF > 1. We also assume that there is a boundary

at F = F ∗, below which the organism is unviable. We sim-

ulate evolution as continuous time Markov process. After

evolving a single population for a given number of genera-

tions, we form two replicates of the population that evolve

independently, representing the process of allopatric specia-

tion. At various time points following this imposed isolation,

we consider the fitness and viability of various outcrossings

between the two populations. A DMI occurs when the fit-

ness contribution of a particular hybrid drops below F ∗.

RESULTS

Evolutionary properties of genotype-phenotype map on

each lineage

The properties of a similar genotype-phenotype map have

been previously explored [44]. An important property of this

genotype-phenotype map is that only a single mechanism

of patterning is found, in which the polymerase (R) binds

with intermediate affinity to the promoter (P ) but with high

affinity to the morphogen (M), while the morphogen binds

to the morphogen binding site (B) only above a critical

morphogen concentration. This results in a spatial switch

once the morphogen falls below this concentration; evolu-

tion then fine tunes the relationship between the protein-

DNA binding energies, the protein-protein binding energy

and the steepness of the morphogen gradient α to turn off

transcription at the mid-point of the embryo. Despite a sin-

gle global solution there are many different combinations of

the protein-DNA and protein-protein binding energies and

α that give good patterning, and each of these correspond

to many possible genotypes (G). Of the different possible

binding energies, we find that EMB , ERP , ẼRM are under

strong selection, whilst the other possible binding energies

are essentially neutral with weak selective effects. At large

population sizes it is found that the evolutionary dynamics

exhibits what is known as quenched-disorder in statistical

physics, where energy phenotypes that are less constrained

take different random values between independent evolu-

tionary runs with no further substitutions; this indicates an

underlying roughness to the fitness landscape and that these

non-important trait values in a local optimum [44].

A key property determining the rate at which incompati-

bilities arise is the distribution of common ancestor pheno-

types as a function of the population-scaled fitness contri-

bution 2NeκF , as shown in Fig. 2. For a given value of

κF , we see that for large population sizes (2NκF � 10)

the distribution is what we would expect from conventional

evolutionary theory on a fitness landscape with a fitness

maximum. In contrast, as the population size is decreased,

we find the distribution shifts to lower fitness values to the

point when selection is weak (2NκF ≤ 1) the distribution

is poised at the inviability boundary. This effect arises due

to genetic drift at low population sizes pushing populations

towards marginally fit phenotypes that correspond to the

largest number of genotypes, that is, with the largest se-

quence entropy.

Decomposition of DMIs

Our genome is composed of 4 loci: 1) the R locus cor-

responding to the polymerase sequence, 2) the Morphogen

(M) locus, 3) the C locus which corresponds to the se-

quences for the cis-regulatory region of the transcription

factor and 4) the α locus, which is the morphogen gra-

dient steepness α. Hybrids between the two lineages are
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FIG. 2. Histogram of the fitness of populations over single long runs as a function of the population scaled fitness contribution

2NκF .

constructed by independent reassortment of these loci as-

suming complete linkage within each locus and no linkage

between them. We define a hybrid genotype by a 4 let-

ter string where each letter corresponds to one of the loci

defined above and takes one of two cases correspond to

whether the allele is from the 1st line or 2nd line; for ex-

ample, the hybrid rMCa corresponds to R locus having an

allele from the 1st lineage, M locus with the allele from

the 2nd lineage, the transcription factor (cis-regulatory) C

locus from the 2nd lineage and α locus the allele from the

1st lineage. Note that the underlying sequence of each hy-

brid changes as different substitutions are accepted in each

lineage; the notation only refers to alleles fixed at any point

in time. We can represent all combinations of the four loci

drawn from the two parents (RMCA, RMCa, RMcA, etc.)

as points on a four-dimensional Boolean hypercube. In total

there are 24 − 2 = 14 hybrids.

In Fig.3, we plot a typical time series of how the fit-

ness of two different hybrids (Rmca(a & b) and RMcA(c

& d) changes over a divergence time µt separating a pair

of lineages, for 2NκF = 1 (a & c) and 2NκF = 10 (b

& d), where µ = `Gµ0 is the mutation rate for all base

pairs in all loci. 2NκF > 1 indicates strong selection,

whilst 2NκF ≤ 1 indicates weak selection where genetic

drift dominates (For reference, in human populations it has

been estimated that ≈ 20 − 30% of mutations are weakly

selected [19, 36], compared to in Drosophila < 10% [36].).

We see that the fitness of hybrids generally decreases in a

stochastic fashion; when the log-fitness of a hybrid drops be-

low the threshold F ∗ (indicated by the dashed line), a DMI

arises as is indicated by a vertical log-fitness line (F = −∞)

for that hybrid. As can be seen in Fig.3, at any given time
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a changing subset of the fourteen possible hybrids might be

incompatible.

Total number and type of DMIs

To decompose the pattern of hybrid DMIs into fundamen-

tal pair-wise, 3-way and 4-way incompatibilities, we use a

parsimonious method (Material & Methods) which finds the

minimum total number of fundamental DMIs types that can

explain the pattern of DMIs observed. As shown in Fig.4a,

on a 4-dimensional Boolean hypercube, a pair-wise incom-

patibility is represented by a face of the cube (blue square),

a 3-way incompatibility by a single edge (green line) and a 4-

way incompatibility by a single point (red circle). This arises

because, for example, as in Fig.4a, a 2-point DMI ICa means

any genotype which features this sub-genotype Ca must, by

definition, also be a DMI; the alleles on the remaining loci

not involved in the DMI, can take any value and so form a

2D subspace, which is a whole face of the Boolean 4-cube .

Similarly, a 3-point DMI, such as ImcA as shown, constrains

the sub-genotype of 3 loci to be incompatible and the re-

maining locus can take any value forming an edge (r → R

in the example) of a 4D Boolean hypercube. A 4-point

DMI must be a single point in a 4D Boolean hypercube

(e.g. IrmCA as shown). In Fig. 4b, we show an example

where the pattern of hybrid incompatibilities, shown by red

crosses, can be explained in three different ways, each with

only 2 DMIs: 1) ICa + IRca, 2) IRa + IrCa, 3) ICa + IRa;

two is the minimum number of DMIs, as there is no way

to explain the pattern seen with a single pair-wise, 3-way or

4-way DMI. We assume each of these is, a priori, equally

likely and so the total number of pair-wise incompatibilities

is calculated as an average over the different ways we can

explain the observed pattern of hybrid DMIs; in the exam-

ple in Fig. 4b, we therefore have a total number of 2-way

DMIs of n2 = 4/3 and 3-way DMIs n3 = 2/3, giving a total

number of n = n2 + n3 = 2 DMIs, which is the minimum

number of DMIs needed to explain the pattern of hybrid

incompatibilities.

Using this method, we plot the total number of each type

of DMI versus divergence time in Fig.5, where the panels

correspond to different population scaled fitness contribu-

tions from 2NeκF = 0.1 to 2NeκF = 100. We see clearly

that as the population size is decreased the rate at which in-

compatibilities arise increases. This effect results from the

shift in distribution of fitness to poorer values for smaller

populations in Fig. 2; this means that the common ancestor

is more likely to be slightly maladapted (higher mutational

load) for smaller populations, and so fewer substitutions are

required before hybrid incompatibilities arise. This effect

was also found for simple models of protein-DNA binding

[42, 43], but arose as a result of direct selection for high

binding affinity, which also corresponds to low sequence en-

tropy as there are exponentially fewer ways of binding with

no or only a few mismatches between protein and DNA. In

this work there is only selection on the overall patterning

phenotype, yet remarkably we find analogous behaviour due

to the effect of sequence entropy of this phenotype.

Pair-wise incompatibilities dominate reproductive isolation

As is clearly shown by Fig.5, pair-wise incompatibilities

dominate for all population sizes, though at larger pop-

ulation sizes the difference is smaller, and particularly at

shorter times. These results should be contrasted with the

prediction of Orr that 2-way: 3-way: 4-way incompatibilities

should arise in the ratio 12 : 24 : 14 (for L = 4 loci); so

for example, there should be double the number of 3-way

incompatibilities to pair-wise.

It is possible that this bias could arise by the develop-

ment of a random set of incompatibilities that would pref-

erentially decompose into sets of 2-way DMIs. In order to

consider this possibility, we randomly assigned a set of in-

compatibilities and analysed them using our decomposition

procedure. Contrary to the observed results,, we find that

this decomposition results in the largest number of 4-way

DMIs , followed by 3-way and then 2-way DMIs (Supporting

Information). This is as expected as when the probability
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FIG. 3. Plot of the times series of two hybrids Rmca(a & b) and RMcA(c & d) at population scaled fitness contributions of

2NκF = 1 (a & c) and 2NκF = 10 (b & d). Times when the fitness of a hybrid drop below the critical value F ∗ (dashed line)

correspond to DMIs.

FIG. 4. Decomposition of hybrid DMIs on a Boolean hyper 4-cube. Each point on the 4-cube represent each possible hybrid

genotype across 4 loci, including the genotype of each parental lineage, where each red cross represents an incompatible hybrid

genotype. As shown in a) the pattern of DMIs can be explained by different combinations of fundamental types of DMIs, where

a blue square or face identify a subspace of genotypes that correspond to a 2-way DMI, a single green edge or line corresponds

to a 3-way DMI and a red open circle corresponds to a single isolated 4-way DMI. b) A more complicated pattern of hybrid

DMIs and their decomposition into fundamental types.

that a hybrid is incompatible is small, by random chance,

we should expect to see isolated incompatible hybrid geno-

types, which would be explained by 4-way DMIs; the fact

that our results show that 2-way DMIs are dominant, even

at early times, means that whole faces of the Boolean hyper-

cube are found to incompatible, which is not likely to arise

in a random model. Hence overall, these results show that

contrary to Orr’s prediction that higher order DMIs should

be easier to evolve, higher order DMIs evolve more slowly

and are in smaller number compared to pair-wise DMIs.
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2NκF 0.1 1 10 20

Total

γ

1.94± 0.05 1.99± 0.05 1.95± 0.05 2.00± 0.12

2-way 1.93± 0.05 1.98± 0.06 1.84± 0.06 1.97± 0.13

3-way 2.66± 0.13 2.81± 0.17 2.76± 0.24 2.14± 0.15

4-way 3.17± 0.19 3.43± 0.41 3.14± 0.24 2.93± 0.19

TABLE I. Table of values of the exponent γ characterising

the power law of growth of DMIs at short times and small

scaled population sizes.

Quantification of power law growth of DMIs for small

populations

We find that for small population sizes 2-way, 3-way and

4-way DMIs all increase as a power law at small times, indi-

cated by a straight line on a log-log plot, in agreement with

[64, 66], who predicted that n-way DMIs should increase

as ∼ tn. To more quantitatively assess the exponent, we

fit the data for 2NκF ≤ 20 using the phenomenological

equation:

I(t) =
I0t

T + t

(
1− exp−(t/τ)γ−1

)
(1)

which has the asymptotic form of I(t) ∼ tγ for t � τ and

t � T and an opposite limit of I(t → ∞) = I0. We see

that for the total number of DMIs and for 2-way, 3-way

and 4-way DMIs, this form fits the data well at intermedi-

ate and small population sizes. We tabulate the power law

exponent derived from these fits in Table I. We see that

the total number of DMIs and 2-way DMIs have a power

law exponent close to γ = 2, which is consistent with the

Orr model. The 4-way DMIs have a larger exponent than

the 3-way DMIs, which is larger than the 2-way DMIs, also

in agreement with Orr’s model, although the values of the

exponent are substantially lower than n for the 3-way and

4-way DMIs.

Sub-diffusive growth of DMIs for large populations

For large population sizes there is no clear power law,

which is again consistent with previous simulations [43] and

also theoretical calculations [42]; when high fitness corre-

sponds to high binding affinity, so that the common ances-

tor distribution is peaked away from the inviability bound-

ary, large populations have a small drift load, meaning that

DMIs arise when hybrid energy traits diffuse to the bound-

ary. One such analytically tractable model was investigated

in [42] and predicted that the number of DMIs is a com-

plementary error function, which has an asymptotic form

I(t) ∼
√
4µt
K∗ e−(K

∗)2/4µt, which due to the essential singu-

larity as t → 0 has the property of negative curvature on

a log-log plot. However, neither this form nor its multidi-

mensional generalization fit the simulation data well (not

shown). A functional form that is a good fit to the data at

large populations sizes is

I(t) =

√
4(µt)β

K∗
e−(K

∗)2/4(µt)β , (2)

which arises when considering fractional Brownian processes

with exponent β [8]; normal diffusion or Brownian motion

arises when β = 1, while β < 1 corresponds to subdiffusive

behaviour, while β > 1 is superdiffusive. It is clear by exam-

ining the exponent β in Table II from fits of the data in Fig.5

at large population size (2NκF ≥ 50) that the DMIs arise as

a result of a sub-diffusive process, where 2-way, 3-way and

4-way DMIs have an exponent β ≈ 1/3 for 2NκF = 50 and

β ≈ 1/4 for 2NκF = 100. The most likely mechanism that

would give rise to sub-diffusive behaviour is a broad spec-

trum of times between substitutions; even though in the

simulations the kinetic Monte Carlo scheme is based on a

Poisson process for a given genotypic state G, the distribu-

tion of rates could vary significantly as populations explore

the fitness landscape. This would be consistent with the re-

sults in [44], which reveal the underlying fitness landscape

of this spatial patterning genotype-phenotype map to be

rough, which could lead to broad distribution of substitution
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FIG. 5. Plot of the total number of DMIs vs divergence time, together with their decomposition into the total number of 2-way,

3-way, 4-way DMIs, for various scaled populations sizes. For 2NκF ≤ 20 the solid lines correspond to fits of the simulation

data to Eqn.1, while for 2NκF ≥ 50 correspond to fits to Eqn.2.

rates in each lineage and effective sub-diffusive behaviour

of the hybrids. Finally as expected the average number of

substitutions needed at large population sizes is large, with

values of K∗ ranging from 6 to 9, and increases with in-

creasing population size, as expected; it also increases very

moderately with increasing n, which would be consistent

with an increase in dimensionality of higher order DMIs. In-

terestingly, these values of K∗ would indicate that the frac-

tion of viable genotypes is very small, ∼ 2K
∗
/2`G ∼ 10−13,

where `G = 60 is the number of effective binary sites in this

genotype-phenotype map.

Molecular phenotypes under weakest selection dominate

DMIs at larger population sizes

The DMI decomposition algorithm allows examination of

the behaviour of different types of pair-wise, 3-way and

4-way DMIs. The different pair-wise DMIs can easily be

identified with the different molecular binding energy phe-

2NκF 50 100

Total β 0.47± 0.03 0.33± 0.02

K∗ 6.58± 0.12 7.37± 0.26

2-way β 0.32± 0.01 0.25± 0.01

K∗ 6.71± 0.07 7.51± 0.18

3-way β 0.33± 0.01 0.22± 0.01

K∗ 7.53± 0.10 8.09± 0.27

4-way β 0.31± 0.02 0.25± 0.02

K∗ 7.50± 0.28 8.66± 0.39

TABLE II. Table of values of the parameters characterising

the sub-diffusive growth of DMIs for large scaled population

sizes; β = 1 corresponds to normal diffusive motion, β < 1 to

sub-diffusion and β > 1 super-diffusion, while K∗ corresponds

roughly to the number of substitutions required to reach the

inviable region.

notypes that combine together to form the overall organis-

mal phenotype. The plot in Fig.6 shows how the number

of DMIs grows for the three most dominant pair-wise DMIs
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Irm, Irc and Imc (pair-wise DMIs involving the α locus are or-

ders of magnitude smaller - see Supporting Information), as

a function of the scaled divergence time `′µt, where `′ = 5

for Irm and `′ = 10 for Irc and Imc, cancelling how mu-

tations are more likely to hit longer regions of the genome

[43]. Strikingly, we find that contrary to what might seem

intuitive, it is the molecular interactions under weakest se-

lection that dominate the number of DMIs, particularly for

larger population sizes. For 2NκF >= 50, we see at early

times Irc > Irm > Imc, which is the same order of increasing

selective constraint on each of these molecular interactions

(Supporting Information). This has a simple explanation:

at a sufficiently large population size such that none of the

selective constraints on different molecular phenotypes is

neutral, in the common ancestor the molecular interaction

strengths under weakest selection will have the largest drift

load and hence fewer substitutions are needed for incompat-

ibilities to arise in hybrids. This is precisely as observed in

simple models of transcription factor DNA binding, where

the incompatibilities arise more quickly where binding is un-

der weak selection for high affinity [43].

In the converse limit, when population sizes are suffi-

ciently small that all molecular phenotypes are neutral (up

to the truncation threshold), we find only small differences

between the rise of each of the pair-wise incompatibility

types; this is again consistent with simple models of tran-

scription factor DNA binding, where the phenotypic distri-

bution of binding energies is dominated by their sequence

entropy and not fitness at small population sizes and there

is only a weak dependence on sequence length [43]. In the

Supporting Information, we show this is also true of the

higher order DMIs, where it is purely the sequence-entropy

constraints of each DMI type which controls the dynamics

of incompatibilities and fitness has little bearing; however,

as the population size is increased this degeneracy is lifted

and each of the DMIs exhibits individual behaviour.

DISCUSSION

There is still very little understood about the underlying

genetic basis that gives rise to reproductive isolation be-

tween lineages. Gene expression divergence is thought to

be a strong determinant of the differences between species

[1, 47, 82–84] with a growing body of evidence for their

direct role in speciation, particularly through transcription

factors [6, 10, 51, 53, 75]. In particular, transcription factors

mediate the control of gene expression and the ultimately

body plans of organisms through complicated gene regula-

tory networks. Studies in drosophila and nematodes have

shown in closely diverged species conserved body plans yet

plasticity in the underlying molecular architectures between

them [26, 33, 76, 79].

This evidence suggests that divergence in the regulatory

networks controlling gene expression and body plans in al-

lopatric lineages is likely to be an important mechanism

of speciation in many higher organisms, yet we do not

yet have a quantitative evolutionary framework to model

such processes, which can then be used to make predic-

tions. A key challenge is to link changes at the genetic

level, where mutations arise, to their outcomes on changes

in phenotype, where selection actually acts. Although in

the past century we have made great strides in our un-

derstanding of evolution through the modern synthesis of

Fisher, Wright, Kimura and many others [15, 18, 20, 46, 85],

this has focussed on the evolution of either genotypes or

phenotypes separately. However, in recent years there has

been increasing attention on the development of more real-

istic fitness landscapes, and how this affects the evolution-

ary process. For example, in biologically realistic systems,

often many genotypes correspond to the same phenotype;

this redundancy of the mapping from genotype to pheno-

type results in a number of non-trivial and emergent be-

haviours which do not arise on fitness landscapes which con-

sider evolution of phenotypes or genotypes independently

[7, 23, 29, 31, 32, 35, 44, 52, 55, 59, 69].

One important and well explored example is the evolution
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FIG. 6. Plot of the spectrum 2-way DMIs vs scaled divergence time for different scaled population sizes. Here the divergence

time for each pair-wise DMI is scaled by the number of base-pairs involved in each interaction in order to remove the effect

that interactions with a larger number of base-pairs mutate at a larger rate in proportion to their length; for Irm, `′ = 5, and

for Irc and Imc, `
′ = 10

of transcription factor DNA binding [7, 34, 42, 43, 52, 59,

60], where the genotype-phenotype map from sequence to

binding affinity can be explicitly enumerated under simplify-

ing assumptions [27, 80]. These investigations show that for

small populations dominated by genetic drift, evolution does

not optimise fitness. Rather, there is a trade off between the

high fitness of a small number of sequences that bind well

and the exponentially larger number of sequences that bind

less well. The result is the maximisation of a combination

of fitness and the number of sequences that correspond to

that phenotype. We can take advantage of analogies with

statistical mechanics and represent this combination as the

“free fitness”, where the log of the number of sequences is

the “sequence entropy” of a phenotype [7, 37, 42, 43]. In

this formulation, the effective population size is analogous

to an inverse temperature for a physical system connected

to a heat-bath, where decreasing population size increases

the effect of drift and the importance of sequence entropy

relative to fitness.

When the free fitness framework is applied to the role

of transcription factor DNA binding in allopatric speciation,

our previous work gave rise to a simple prediction: incom-

patibilities arise more quickly for smaller, drift-dominated,

populations [42, 43], supporting previous computational

studies by Tulchinsky et al. [77], that showed decreased hy-

brid fitness for smaller populations. This can be understood

as a result of the greater importance of sequence entropy

for small populations, resulting in common ancestors with

a higher drift load, which are therefore closer to incompati-

ble regions. As a result, fewer substitutions are required for

the development of hybrid incompatibilities [42, 43]. Con-

versely, those transcription factor binding site pairs under

weaker selection, at a fixed population size, will give rise to

incompatibilities more quickly, as they are more susceptible

to drift and in the common ancestor will have a larger drift

load.
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In this paper, we examine speciation in a more realistic

genotype phenotype map. For the first time we examine how

incompatibilities arise in allopatry for a simple evolutionary

model of developmental system drift, where a higher level

organismal spatial patterning phenotype is maintained by

stabilising selection, whilst the underlying molecular binding

energy phenotypes and ultimately the sequences that deter-

mine them, the genotype, are allowed to drift in the evolu-

tionary simulations. Earlier analyses of this model demon-

strated the evolution of a number of non-trivial features

such as a balance between fitness and sequence entropy de-

ciding the course of evolution at small population sizes and

a roughness to the fitness landscape for phenotypes which

have high fitness [44]. Importantly here, unlike in previous

works [42, 43] we do not directly select for high binding

affinity, but only on the organismal level phenotype, but as

we discuss, we find the same population size dependence, as

well as a number of other novel phenomenon to the speci-

ation process, which would not be obtainable by modelling

selection only at the level of phenotypes or genotypes. The

results show that biophysics and effective population size

provide a much stronger constraint than previous simple

modelling of the dynamics of hybrid incompatibilities would

suggest [64, 66].

A key result we find is that small populations are char-

acterised by a power law growth of incompatibilities with

time, vs large populations a sub-diffusive law (discussed be-

low). Thus we suggest that empirical evidence of power

law growth in incompatibilities is a signature of allopatric

speciation at small population sizes. The Orr model of the

growth of hybrid incompatibilities predicts that incompati-

bilities grow as a power law of the divergence time between

allopatric lineages [64, 66], where the exponent represents

the number of genes participating in the interaction (e.g. 2

for a 2-way incompatibility). The results of our model also

yield this prediction, but only when populations sizes are

sufficiently small. There is, however, an alternative model

for the power law behaviour to the combinatoric argument

made by Orr. As argued in [43], at small population sizes,

where genetic drift is dominant and there is a large drift

load, common ancestor populations are poised close to the

incompatibility boundary and the growth of DMIs at short

times is determined by the likelihood that a few critical sub-

stitutions arrive quickly, which is given by a Poisson process;

if the critical number of substitutions is K∗ then for short

times we would expect PI(t) ∼ (µt)K
∗

and so given that at

least n substitutions are needed for a n-way incompatibility,

we would expect K∗ ≥ n. In this paper, we introduced

a new method to decompose DMIs into their fundamen-

tal pair-wise, 3- and 4-way incompatibilities, and find that

for more complex incompatibilities (more loci involved) the

larger the exponent of their power law growth. However, we

find the exponents we measure for 3- and 4-way incompat-

ibilities are smaller than the predicted exponents of 3 and

4 respectively. We suggest this could be due, as shown in

the Supporting Information, to the greater number of higher

order DMIs arising just by chance, leading to an overesti-

mation of 3- and 4-way DMIs at short times, where at short

times a smaller exponent corresponds to a larger number

(i.e. τn−1 > τn for τ < 1, where τ is some dimensionless

timescale).

We also find that incompatibilities arise more rapidly in

smaller populations, which is an emergent effect due to the

genotype-phenotype map, giving a bias in degeneracy of

different phenotypes; lower fitness and less sharp pattern-

ing organismal phenotypes have many more sequences than

higher fitness, sharper patterning, phenotypes. In smaller

drift-dominated populations, this means there is bias to-

wards phenotypes of small sequence entropy (log degen-

eracy) that counteracts the tendency of natural selection

to favour phenotypes of high fitness. Consequently, the

common ancestor in small populations is more likely to be

slightly maladapted and less substitutions are needed before

hybrids develop incompatibilities. These predictions are con-

sistent with empirical evidence for an inverse correlation of

speciation rates with effective population size; the net rates

of diversification from phylogenetic trees [2, 14, 61] indicate

smaller populations speciate more quickly, as well from in-
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ferred times for post-zygotic isolation to arise [13, 21, 73],

where for example mammals and cichlids, which have effec-

tive population sizes of order 104 [22, 25, 40, 78], develop

reproductive isolation more quickly than birds, which have

effective populations sizes of order 106 [68]. This model

and the similar results obtained for transcription factor DNA

binding [42, 43] provide a robust explanation of how stabil-

ising selection can give rise to this population size effect in

speciation, which do not require passing through fitness val-

leys as do models based on the founder effect [3, 4, 48, 49].

However, the results for this genotype-phenotype map for

developmental system drift are particularly noteworthy com-

pared to the previous results on transcription factor DNA

binding, as they are obtained without directly selecting for

high affinity, low sequence entropy, binding phenotypes; here

we only select on the organismal spatial patterning pheno-

type, but nonetheless we find small populations develop hy-

brid incompatibilities more quickly through a similar mech-

anism of the interplay between fitness, sequence entropy

and populations size. Although studies with more complex

genotype-phenotype maps will be required, we suggest this

points towards a broad principle, where the specificity re-

quired of a phenotype to be functional and of high fitness

will mean that it will be coded by fewer genotypes. For

example, in simple models of protein stability, the empirical

observation that all proteins tend to be marginally stable,

can be explained by the fact that as the stability of a protein

is increased the number of sequences that give that stabil-

ity decreases rapidly [29]; assuming high fitness corresponds

to maximum stability, this phenotype is highly specified, as

only a few sequences will meet the requirement that all

inter-chain interactions in the protein are favourable.

Examining the growth of incompatibilities at large popu-

lation sizes, we see there is a characteristic negative curva-

ture on a log-log plot, predicted theoretically by [42], indi-

cating that, as the number of substitutions needed for in-

compatibilities is large, the changes in the hybrid traits can

be approximated by a diffusion process. However, we find

that a simple model of diffusion does not fit the simulation

data well; instead a model of sub-diffusion, that would arise

if there are a number of kinetic traps giving a broad distri-

bution of substitution times, does fit the data well. This

is consistent with the finding that the genotype-phenotype

map has a rough fitness landscape, which is only revealed

at sufficiently large population sizes [44].

Another property that emerges from this model not ob-

tainable by simply modelling transcription factor DNA bind-

ing is that certain molecular phenotypes are more impor-

tant than others in giving rise to incompatibilities. One

particular feature of this model is that the selective con-

straints on the different molecular binding energy pheno-

types emerge through the evolutionary process of stabilising

selection on the organismal phenotype, and are not specified

by the model. Most strikingly, and counterintuitively, the

model predicts that molecular phenotypes that are under

the weakest selective constraints (but not strictly neutral)

dominate by giving rise to the earliest incompatibilities for

intermediate and large population sizes. Remarkably, here

this emerges as a consequence of stabilising selection on the

organismal phenotype and not due to selection imposed for

good binding affinity as in previous works [43].

We note that these results have been obtained by chang-

ing the population size whilst keeping the strength of selec-

tion on the organismal trait κF fixed. It would be tempting

to use these results to suggest that overall those traits in a

genome under weakest selection would give rise to the ear-

liest incompatibilities and hence dominate allopatric speci-

ation. However, the question of the how the dynamics of

hybrid incompatibilities changes as the strength of selection

changes is a subtle one, which we leave to future work; in

this model a reduction in κF has the effect of changing

the phenotypic regions of incompatibility, with non-trivial

consequences. It should also be noted, the role of sequence

entropy in giving a strong population size dependence to the

rate of reproductive isolation; if we consider only a peaked

phenotypic landscape without a sequence entropy bias, a

reduction in population size would only lead to a broaden-

ing of the phenotypic distribution and not a change in the
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mean of the distribution, and so a much weaker effect, as

the common ancestor will still be typically far from incom-

patible regions. On the other hand with strong (exponen-

tial) degeneracy biases, the mean phenotype of the common

ancestor changes strongly giving the large population size

effect seen, which is as demonstrated in Fig.2.

Another finding of significance is that pair-wise or 2-way

DMIs dominate compared with higher order DMIs (3- and

4-way in this model with 4 loci). This is in contrast to

Orr’s theoretical argument that predicts a very specific ra-

tio of 2-way: 3-way: 4-way DMIs, equal to 12 : 24 : 14,

which assumes that the fraction of viable paths from the

common ancestor to the current day species increases as

we consider higher order DMIs [64]. This argument partly

rests on the assumption that the number of inviable geno-

types remains fixed as a larger number of loci are consid-

ered, which would seem a very strong assumption. Despite

its simplicity, the genotype-phenotype map in this paper has

many of the key features required for higher levels of epista-

sis, with protein-DNA binding, protein-protein binding and

control of the morphogen steepness, all interacting in a non-

linear fashion to produce a single gene expression patterning

phenotype and so there is clearly the potential for the Orr

prediction to be verified; in contrast, we find the converse

and our results show there is no bias towards 3-way DMIs,

in fact showing instead that the ratio of 2-way to 3-way

DMIs is at short times many orders of magnitude larger.

This suggests, in this simple, but still relatively complex

model, that biophysical constraints are far more important

than a purely combinatorial argument would suggest. Evi-

dence could be obtained from more detailed studies similar

to [56, 57], where a power law with an exponent greater than

2 would indicate higher-order DMIs are dominant; currently

this evidence suggests a quadratic growth law, however, a

study with more time-points or species-pairs would provide

more confidence. An alternative approach would be to look

for linkage disequilibrium between unlinked regions of hybrid

genomes, such as was found with hybrids of two species of

swordtail fish [70], and though computationally challenging

and requiring large numbers of parallel datasets, compare

this against evidence for pervasiveness of higher order epis-

tasis. Although recent results of [81], would seem to con-

tradict our conclusions, their finding of extensive complex

epistasis relates to higher order interactions between sites

within a single locus, coding for protein stability or enzy-

matic activity, whereas our work relates to epistasis between

multiple loci. Similarly, the results of hybrid incompatibil-

ities within RNA molecules [41], which show a ‘spiralling

complexity’ of DMIs would appear to be of limited biolog-

ical relevance to allopatric speciation in higher organisms,

as these are related to epistasis within a single locus, which

are unlikely to segregate into different recombinants in a

hybrid.

Finally, for small populations we find clustering in the

behaviours of growth of different types of DMIs, in par-

ticular, 3-way DMIs (Supporting Information), which can

be explained by the different sequence entropy constraints

on different molecular phenotypes. This degeneracy is then

lifted at larger population sizes and each n-way DMI takes

on a different identity in their pattern of growth; this has

strong analogy to physical phenomenon in statistical physics

where constraints of symmetry dominate at large tempera-

tures, in a regime where noise is important, but at smaller

temperatures this symmetry is broken.

A clear future direction to investigate would be the effect

of multiple transcription factors binding to enhancer regions

to control gene expression [9, 50, 72] in large gene networks,

where there is potential scope for complex epistasis across

many loci coding for a large number of transcription factors.

However, as our results show, despite the possibility and a

prior expectation of a larger number of triplet interactions,

pair-wise interactions dominate; for complex transcriptional

control, if pair-wise interactions between proteins, and pro-

teins and DNA dominate, for example in determining the

binding affinity of transcriptional complexes, then our con-

clusions would hold. As we broaden the scope to large gene

regulatory networks, there is no strong and direct empir-

ical evidence for pervasive higher order epistasis in their
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function, which could give rise to higher order incompat-

ibilities being dominant [74]. Specifically, although there

is evidence that higher order incompatibilities have arisen

in natural populations [12, 24, 65, 67], nonetheless a sur-

vey of these findings suggest there is no evidence for their

dominance [24] as would be predicted by Orr and would be

consistent with our findings that point towards biophysics

providing a stronger constraint.

Overall, our results point to a basic principle, where devel-

opmental system drift or cryptic variation [26, 33, 76, 79],

play a key role in speciation; basic body plans or phenotypes

are conserved, but co-evolution of the components and loci

of complicated gene regulatory networks can change dif-

ferently in different lineages, giving incompatibilities that

grow in allopatry. Here, we suggest a universal mechanism,

where the rate of growth of incompatibilities is controlled

by the drift load, or distribution of phenotypic values, of the

common ancestor, which in turn is determined by a balance

between selection pushing populations towards phenotypes

of higher fitness and genetic drift pushing them towards

phenotypes that are more numerous (higher sequence en-

tropy); this basic mechanism would predict in general that

traits under weaker selection will dominant the initial de-

velopment of reproductive isolation. In particular, although

in principle more complicated regulation could give rise to

more complex patterns of epistasis [64], our findings sug-

gest that more simple, pair-wise, incompatibilities dominate

the development of reproductive isolation between allopatric

lineages under stabilising selection.

METHODS

Details of the GP map

We model the binding energies of proteins to DNA using

the “two-state” approximation [27, 80], which assumes that

the binding energy of each amino acid-nucleotide interac-

tion at the binding interface is additive and to a good ap-

proximation controlled by the number of mismatches, which

each have the same penalty in binding affinity. The vari-

ous protein-DNA binding energies in the main text are then

given by the Hamming distance between the respective se-

quences. For example, the binding energy between the mor-

phogen (M) and the first binding site (B) is given by

EMB = εpd ρ(gm, gB) (3)

where ρ(gm, gB) is the Hamming distance between the pro-

tein binding sequence (gm) for the morphogen and the

sequence for a first regulatory binding site (gB), where

εpd is the cost in energy for each mismatch. We assume

εpd = 2kBT as a typical value for the mis-match energy,

which are found to be in the range 1−3kBT [27, 80]. Sim-

ilarly the co-operative protein-protein binding energy, for

example between RNAP and the morphogen is ẼRM is

ẼRM = εpp(`pp − ρ(gR, ˘gM )) (4)

where gR is the sequence involved in protein-protein inter-

actions for the polymerase, and ˘gM represents the equiva-

lent binary sequence for the morphogen, flipped about its

centre, which mimics the chirality of real proteins and pre-

vents the co-operative stability from always being maximum

for homo-dimers. The parameter εpp is the stability added

for each favourable hydrophobic interaction between amino

acids, which we assume to be εpp = −kBT . Given `pp = 5

this gives interactions consistent with typical literature val-

ues of −2 to −7kBT for hydrophobic interactions between

proteins [11, 71].

The morphogen concentration profile is approximately ex-

ponential; the exact profile we use is

[M ](x) = [M0]
cosh(α(x− L))

sinh(αL)
(5)

where this arises from solving the reaction-diffusion equation

with reflecting boundary conditions and is valid for all α.
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Monte Carlo scheme for speciation simulations

We use a kinetic Monte Carlo scheme to simulate the

evolutionary process for the genome G and α on two in-

dependent lineages, assuming a fixed effective population

size of N , and that we are in the regime of small effective

population size (`Gµ0N � 1, where µ0 is the base-pair mu-

tation rate). This means the population is represented by a

single fixed sequence (or number for α) for all of the loci at

each time-point, where effectively mutations are either in-

stantly fixed or eliminated. Specifically, we use the Gillespie

algorithm [28], to simulate evolution as a continuous time

Markov process; at each step of the simulation the rate of

fixation of all one-step mutations from the currently fixed al-

leles (wild type) is calculated, and one of these mutations is

selected randomly in proportion to their relative rate. Time

is then progressed by K−1 ln(u), where K is the sum of

the rates of all one-step mutants and u is a random number

drawn independently between 0 and 1, which ensures the

times at which substitutions occur is Poisson distributed, as

we would be expected for a random substitution process.

The rates are based upon the Kimura probability of fixation

[45]:

k = µ0N
1− e−2δF

1− e−2NδF
≈ µ0

2NδF

1− e−2NδF
, (6)

where δF is the change of fitness of a mutation at a par-

ticular location, given by fitness function defined in the

main text, and µ0N is the rate at which mutations arise

in the population; the latter approximation in Eqn.6 as-

sumes δF � 1. Note that although in the simulations we

use the full form for the fixation probability, fitness effects

are typically small (δF � 1) in the simulations, so the sub-

stitution rates only depend on the population-scaled fitness

changes 2NδF which, for a given mutation, is proportional

to 2NκF . Finally, we allow continuous ‘mutations’ in the

morphogen steepness parameter α, chosen from a Gaussian

distribution of standard deviation δα = 0.5 and assign it

an 10 effective base-pairs, which are used when assigning

relative weight in the kinetic Monte Carlo scheme, where

the total number of base-pairs is `G = 60.

We determine the Malthusian or log fitness of the spa-

tial gene regulation, from the resulting concentration profile

[TF ](x) by use of a functional that promotes expression of

the TF in the anterior half, whilst penalising expression in

the posterior half, with truncation selection below a critical

value F ∗:

F =

{
κF ln(W) if κF ln(W) > F ∗

−∞ if κF ln(W) < F ∗
(7)

where,

W[[TF ](x)] =

∫ L/2
0

[TF ](x)dx−
∫ L
L/2[TF ](x)dx

L
2 maxx{[TF ](x)}

. (8)

where we use a value of F ∗ = −1.6 × 10−3, which corre-

sponds a value of W ≈ 0.2, when κF = 10−3. Strictly,

an inviability on a lineage or a hybrid should correspond to

W = 0 or F ∗ = −∞, however, these values were chosen to

so that a reasonable number of incompatibilities arise in a

simulation; for comparison the typical maximum of the in-

tegralW ≈ 0.6. In this paper, we explore how the changing

the population scaled strength of selection (2NκF ) affects

the rate of reproductive isolation, by keeping κF fixed and

varying N accordingly. Note that although here the ex-

act form of the fitness is slightly different to the one used

in [44], the qualitative behaviour is the same (Supporting

Information).

The speciation simulations consist of two replicate sim-

ulations starting with the same common ancestor and with

the same fitness function. We draw the common ances-

tor from the equilibrium distribution for G and α. To do

this we start from a random initial genome, and run one

long simulation for 100,000 substitutions for a fixed scaled

population size 2NκF , in order to effectively equilibrate the

system (typically 10,000 substitutions are required to adapt

to an ensemble of fit states). This represents a reference

equilibrium state; different random draws from the equilib-

rium distribution then consist of running the simulation for

a further 100 substitutions.
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Decomposing DMIs

Given a pattern of hybrid incompatibilities, for example,

as shown in Fig. 4, if there is a 2-way DMI (e.g. be-

tween C and α loci, which we denote ICa), then all four

hybrid-genotypes containing this DMI (e.g. RMCa, RmCa,

rMCa, rmCa) are inviable; these genotypes define a two-

dimensional subspace (or face) of the hypercube. Similarly,

the points (e.g. rmcA, RmcA, which we denote ImcA) con-

taining a 3-way DMI form a one-dimensional subspace (or

line), while a 4-way DMI takes up only a single point in the

four-dimensional hypercube. These different 2-way, 3-way

and 4-way DMIs are the fundamental incompatibility types

which we seek to explain the pattern of hybrid inviable geno-

types observed, for example, as in Fig.4a.

However, this decomposition is hugely underdetermined,

as there are only 24 − 2 = 14 possible hybrids (not includ-

ing the well-adapted genotypes of line 1 and line 2) and

a total of Imax = 3L + 1 − 2L+1 = 50, different funda-

mental incompatibilities, for L = 4 loci. This arises as the

total number of n−point DMIs is (2n − 2)
(
L
n

)
, as there

are
(
L
n

)
combinations of n loci amongst L total loci and

then considering a binary choice of alleles across both lines,

there are a total of 2n allelic combinations or states, 2 of

which are the fit allelic combinations where all alleles come

from one lineage or the other giving 2n − 2. For exam-

ple, between each pair of loci there are 22 − 2 = 2 mis-

matching combinations of alleles (e.g. rMand Rm) that

could give DMIs and
(
L
2

)
= L(L − 1)/2 = 6 pairwise in-

teractions. A similar argument would give a total of 24

3-way DMIs as there are 23 − 2 = 6 mismatching combi-

nations of alleles at 3 loci (e.g., excluding rmcand RMC)

and
(
L
3

)
= 4 3-way interactions and similarly, 14

(
L
4

)
= 14

for 4-way interactions. In total, the max number of DMIs

is Imax =
∑L
n=2(2n − 2)

(
L
n

)
= 3L + 1 − 2L+1, which for

L = 4 loci is Imax = 50.

The approach we take is to find only those combina-

tions of fundamental DMIs that have the smallest total

number that can explain the pattern of hybrid incompat-

ibilities, which from a Bayesian perspective would have

the smallest Occam factors [54]; for instance, as shown in

Fig.4b the list of 6 incompatible hybrid genotypes rmCa,

rMCa,RmCa,RMCa,Rmca,RMca, shown by red crosses, can

be explained most parsimoniously by three different minimal

combinations of fundamental DMIs, each with only 2 DMIs

(see main text).
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ẼMM have this property, as is evident by examining their

marginal distribution functions which follow the neutral ex-

pectation [44].

[64] Orr, H. A., 1995 The population genetics of speciation: the

evolution of hybrid incompatibilities. Genetics 139: 1805–

1813.

[65] Orr, H. A. and S. Irving, 2001 Complex epistasis and the

genetic basis of hybrid sterility in the drosophila pseudoob-

scura bogota-usa hybridization. Genetics 158: 1089–1100.

[66] Orr, H. A. and M. Turelli, 2001 The evolution of postzy-

gotic isolation: accumulating dobzhansky-muller incompat-

ibilities. Evolution 55: 1085–1094.

[67] Palopoli, M. F. and C.-I. Wu, 1994 Genetics of hybrid male

sterility between drosophila sibling species: a complex web

of epistasis is revealed in interspecific studies. Genetics 138:

329–341.

[68] Sawai, H., H. L. Kim, K. Kuno, S. Suzuki, H. Gotoh,

M. Takada, N. Takahata, Y. Satta, and F. Akishinonomiya,

2010 The origin and genetic variation of domestic chickens

with special reference to junglefowls gallus g. gallus and g.

varius. PloS one 5: e10639.

[69] Schaper, S. and A. A. Louis, 2014 The arrival of the fre-

quent: how bias in genotype-phenotype maps can steer pop-

ulations to local optima. PloS one 9: e86635.

[70] Schumer, M., R. Cui, D. L. Powell, R. Dresner, G. G. Rosen-

thal, and P. Andolfatto, 2014 High-resolution mapping re-

veals hundreds of genetic incompatibilities in hybridizing fish

species. Elife 3: e02535.

[71] Shea, M. A. and G. K. Ackers, 1985 The or control sys-

tem of bacteriophage lambda. a physical-chemical model

for gene regulation. J Mol Biol 181: 211–230.

[72] Spitz, F. and E. E. Furlong, 2012 Transcription factors:

from enhancer binding to developmental control. Nature

Reviews Genetics 13: 613–626.

[73] Stelkens, R. B., K. A. Young, and O. Seehausen, 2010 The

accumulation of reproductive incompatibilities in african ci-

chlid fish. Evolution 64: 617–633.

[74] Taylor, M. B. and I. M. Ehrenreich, 2015 Higher-order ge-

netic interactions and their contribution to complex traits.

Trends in genetics 31: 34–40.

[75] Ting, C.-T., S.-C. Tsaur, M.-L. Wu, and C.-I. Wu, 1998 A

rapidly evolving homeobox at the site of a hybrid sterility

gene. Science 282: 1501–1504.

[76] True, J. R. and E. S. Haag, 2001 Developmental system

drift and flexibility in evolutionary trajectories. Evolution &

development 3: 109–119.

[77] Tulchinsky, A. Y., N. A. Johnson, W. B. Watt, and A. H.

Porter, 2014 Hybrid incompatibility arises in a sequence-

based bioenergetic model of transcription factor binding.

Genetics 198: 1155–1166.

[78] Van Oppen, M. H., G. Turner, C. Rico, J. Deutsch,

K. Ibrahim, R. Robinson, and G. Hewitt, 1997 Unusually

fine–scale genetic structuring found in rapidly speciating

malawi cichlid fishes. Proceedings of the Royal Society of

London B: Biological Sciences 264: 1803–1812.

[79] Verster, A. J., A. K. Ramani, S. J. McKay, and A. G. Fraser,

2014 Comparative rnai screens in c. elegans and c. briggsae

reveal the impact of developmental system drift on gene

function. PLoS genetics 10: e1004077.

[80] von Hippel, P. H. and O. G. Berg, 1986 On the specificity

of dna-protein interactions. Proc Natl Acad Sci U S A 83:

1608–1612.

[81] Weinreich, D. M., Y. Lan, C. S. Wylie, and R. B. Heck-

endorn, 2013 Should evolutionary geneticists worry about

higher-order epistasis? Current opinion in genetics & devel-

opment 23: 700–707.

[82] Wittkopp, P. J., B. K. Haerum, and A. G. Clark, 2008

Regulatory changes underlying expression differences within

and between drosophila species. Nature genetics 40: 346–

350.

[83] Wolf, J. B., J. Lindell, and N. Backström, 2010 Speciation

genetics: current status and evolving approaches.

[84] Wray, G. A., 2007 The evolutionary significance of cis-

regulatory mutations. Nature Reviews Genetics 8: 206–216.

[85] Wright, S., 1931 Evolution in mendelian populations. Ge-

netics 16: 97–159.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted November 24, 2018. ; https://doi.org/10.1101/123265doi: bioRxiv preprint 

https://doi.org/10.1101/123265
http://creativecommons.org/licenses/by/4.0/


1

Supporting Information

EMERGENT PROPERTIES OF

GENOTYPE-PHENOTYPE MAP

The properties of this genotype-phenotype map have been

previously explored [S44]. So here we summarise its perti-

nent findings. Under a fixed environment (fixed fitness)

adaptation occurs in a manner which is insensitive to ini-

tial conditions and to the same ensemble of states[S62].

As shown in Fig.S1, the evolutionary simulations find so-

lutions to the patterning problem, where it is clear that

for a small scaled population size (2NκF = 1) the solu-

tions fixed at any one time are less constrained, while as

the population size increases (2NκF = 50) the solutions

are more constrained. This is reflected in the time series

of the fitness as shown in Fig.S2a, where we see that for

2NκF = 1 the fitness of solutions are low, with large fluc-

tuations and very often near the inviability threshold F ∗,

whereas for 2NκF = 50 the fitness is higher and far more

constrained. We see this also in the time series of the phe-

notype α (Fig.S2b), which shows that it is small with large

fluctuations for 2NκF = 1 and is larger and more con-

strained for 2NκF = 50, which reflects the fact that a

larger value of α corresponds to a more steep gradient of

the morphogen, which in turn allows sharper patterning.

As was found in [S44], there are a large number of geno-

typic states that give good patterning and they all belong to

the same solution to the patterning problem; the morphogen

binds cooperatively with the polymerase to promote tran-

scription when the morphogen concentration is large and

turn off transcription when the morphogen concentration is

small. As demonstrated by the histograms of the binding

energy phenotypes in Fig.S2c&d, this solution in general re-

quires EMB and ẼRM to be small (strong binding) and that

ERP isn’t too small, so that a switch-like mechanism exists

to allow the polymerase to be attracted to the promotor in

the presence of a large concentration of morphogen. The

exact state of G determines these binding energies and then

α is determined by the requirement that the threshold mor-

phogen concentration which switches on or off transcription

of TF occurs at the mid-point of the embryo. It is clear

from Fig.S2c&d that some of the energy phenotypes are

less important than others, in particular, EMP , ERB , ẼMM

& ẼRR all have broad peaked distributions, even for large

populations sizes, consistent with the neutral distribution of

the binding energies, given this Hamming model, following

a binomial distribution peaked about approximately about

`ε/2, and so indicating that the fitness constraints on these

phenotypes is relatively weak. Finally, an emergent prop-

erty of the solutions is that there is a division of genotype

space into a high sequence entropy region, where there are

many sequences that code for slightly sub-optimal solutions

corresponding to a small value of α, and a low sequence

entropy, higher fitness region, which corresponds to a large

value of α – this is what gives rise to the bistability visible

in α for 2NκF = 50 (see [S44] for more details). On long

timescales, we see transitions between these regions, whilst

on short timescales we mainly see exploration of each of

these basins of attraction.

DIFFERENT HYBRID GENOTYPES HAVE DIFFERENT

GROWTH RATES OF DMIS

To examine in more detail the overall trends in the num-

ber of incompatibilities for each hybrid type, we plot the

average number of DMIs as a function of divergence time

µt in Fig.S3, where we have averaged over pairs of com-

plementary genotypes (e.g. RmcA and rMCa), which have

identical statistical properties. In Fig.S3, we first note that

each hybrid-genotype behaves in a different, population size

dependent manner. In general, there is an initial growth in

the average number of DMIs as the divergence time in-

creases, followed by a plateau or a slowing down of the

growth. As denoted in the figure, we distinguish hybrid-

genotypes based on the types of potential mismatch: R-

type is characterised by a mismatch of the R locus with the

M and C loci, M -type is a mismatch of M with the R
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FIG. S1. Typical spatial patterning profile of the output transcription factor [TF ](x) over the course of the evolutionary

simulations, where early times are indicated by red, becoming progressively yellow at late times (as indicated by the colour

bars); a) large population size 2NκF = 50 and b) smaller population size 2NκF = 1. the results show evolution gives solutions

which are less well adapted.

and C loci (e.g., RmCa), C-type is a mismatch of C with

R and M (e.g. rmCa) and α-type is a mismatch of the

α locus with the rest of the loci. For each of the R-, M -

and C-types, we assume the interaction with the α locus is

relatively weak, so or example, the hybrid genotype Rmca

or RmcA are both R-type.

In addition to the general trends pointed out in the main

text, we see that the growth of DMIs is different for different

hybrids; for small population sizes (2NκF = 0.1 & 2NκF =

1), M -type, C-type and R-type dominate the growth of

DMIs, in this order and with only a small difference between

them, whilst α-type arise far more slowly; we might expect

this since substitutions in α only tend to shift the pattern

away from the mid-point of the embryo, which with the

model of fitness defined in Eqn.7 only moderately affects

fitness. As the population size increases, and at small times,

we see that initially M -type DMIs arise more slowly relative

to C-types and R-types, but at longer times there is a cross-

over where M -type DMIs dominate R-type, which moves to

longer times at increasing population sizes.

How can we understand this general behaviour? It is clear

from Eqns. 7&8 that we need co-evolution of the relevant

sequences to maintain these the important binding energies

within certain constraints; e.g. the binding energy of R to

the promoter P , ERP mustn’t be too strong and so on each

line the sequences will co-evolve to maintain this constraint.

From previous work on transcription factor DNA binding

[S42, S43] we expect that the rate at which incompatibil-
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FIG. S2. Equilibrium properties of phenotypes and fitness of genotype-phenotype map at the population sizes of 2NκF = 50

(purple) and 2NκF = 1 (yellow); a) Malthusian fitness (defined by Eqn.1&2 in the main text) over time, where we see whereas

at large population sizes fitness is near the optimum, at low population sizes the fitness of solutions are sub-optimal and very

commonly near the inviability boundary for functional vs non-functional spatial patterning; b) the morphogen steepness trait

α where we see there is generally a broad variation at small population sizes, against more constrained variation at the larger

population size; histogram of c) protein-DNA binding energy traits and d) of protein-protein binding energy traits, where we see

that different binding energies are constrained to greater or lesser extent (indicating their selective or functional importance),

which are further relaxed at smaller population sizes, indicating the increasing dominance of drift. In particular, as binding

energies are determined by a sum of mismatches, the neutral distribution is a binomial distribution centred on εpd`pd/2 or

εpp(`pp + 1)/2, so that deviations from this distribution are a measure of the selective constraint.

ities arise due a particular transcription factor binding site

interaction j, is controlled by the product of the population

size and the relative selection coefficient κj (which should

be distinguished from the overall selection coefficient for the

patterning phenotype κF ); so the binding energy EMB is

under very strong selection to give high binding affinity of

the morphogen to the 1st binding site, whilst for example,

the binding energy ERP is under weaker selection and so

as κRP > κMB , we would expect incompatibilities due to

this interaction to arise more slowly when 2NκMB � 1.

Similarly, since κMB > κj , for all other interactions j, we

would expect M -type hybrids to develop incompatibilities

more slowly at scaled large population sizes, as observed in

Fig.S3.

NULL SPECTRUM OF DMIS

To test whether the parsimony decomposition of DMIs

observed in Fig.5 of the main text, where 2-way DMIs are

dominant, is not due to an inherent bias to detect 2-way

DMIs of the method, we applied it to the case of randomly

assigning incompatibilities to the different hybrid genotypes.

This is easily accomplished by drawing random binary num-

bers from the Bernoulli distribution with a probability p that

any hybrid is incompatible. For each random collection of

incompatible hybrid genotypes the parsimony method is ap-

plied and the number of each type of n-way DMI is counted

(as detailed in the Material and Methods of the main text);

this is repeated 1000 times to calculate the average number

of n-way DMIs shown below. To allow some comparison
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FIG. S3. Plot of the number of DMIs for each hybrid genotype since divergence for different scaled population sizes. Comple-

mentary hybrid genotypes are summed over, since they have identical statistical properties.

to the results of Fig. 5 of the main text, the value of p

is varied according to the average fraction of incompatible

hybrids found at different time-points from the simulations

in the main text. Hence, the panels of Fig.S4 correspond to

the number of n-way DMIs expected at different time-points

for different scaled population sizes, where p is mapped into

time using the sum of all curves in Fig.4 of the main text to

calculate the fraction of incompatible hybrids at each time

point. This null spectrum shows the opposite behaviour to

that found in the simulations in the main text demonstrat-

ing that the results observed are not due to a random bias

to find 2-way DMIs using the parsimony method.

SPECTRUM OF DMI TYPES

Spectrum of 2-way DMIs

In Fig.S5 we have plotted the number of 2-way DMIs of

each type, where for example, Imc is a 2-way DMI caused by

an incompatibility between the M locus and C locus. First,

we note that at small population sizes the rate of increase of

the different 2-way incompatibilities seem to cluster into two

types; those that involve α and those that do not, where

the latter arise more rapidly; this suggests that sequence

entropy constraints are dominating for small populations,

particularly at short times, though for the latter group there

are some differences as discussed below. As the population

size increases, we see that differences arise in the rate of

growth between these different types of 2-way incompatibil-

ities. Below we discuss these properties.

For each type of 2-way incompatibility there are 2 bind-

ing energy traits that could contribute. So increases in Imc

could be due to an incompatibility in the hybrid that can

be traced to EMB or EMP ; in this case, as the binding

energy EMP is almost neutral [S44], we would expect in-

compatibilities to arise predominantly from EMB . Similarly,

we expect Irc to be dominated by ERP and not ERB and

Irm dominated by ẼRM and not ẼMM or ẼRR, as ERP is

under strongest selection of the traits coded by the R &

M loci. When it comes to incompatibilities involving the

α-locus, there is no clear phenotypic trait that can be iden-
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FIG. S4. Parsimony decomposition of DMIs when incompatibilities are assigned randomly with a probability p that changes

with time according to the fraction of hybrid genotypes that are incompatible from the simulations in main text.

FIG. S5. Plot of the spectrum 2-way DMIs vs divergence time for different scaled population sizes.

tified and as we will see the analysis of these DMIs will not

be so clear.

Examining Fig.S5, we see that as the scaled population

size increases, the time for Imc incompatibilities to arise

sharply increases, while the time for Irm increases less rapidly

and Irc even less rapidly. This corroborates a key prediction

of a simple model of transcription factor DNA binding de-

scribed in [S43], where traits under greatest selection should

generate incompatibilities less rapidly, since the distribution

of their trait values are further away from inviability in the
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common ancestor. As observed above, EMB , which con-

tributes most to Imc, is under the greatest selection pressure

and so as the population size changes these should change

most rapidly. So we see that for large population sizes, it is

not the phenotypic traits under the strongest selection that

give rise to significant DMIs at short times, but those under

a weaker selective constraint; traits under weaker selection

will be affected more by the sequence entropic pressure for

poorer binding affinities and so the common ancestor is more

likely to be closer to the inviability boundary [S63].

However, at small population sizes, 2NκF ≤ 1, all DMIs

grow approximately quadratically at short times with a sat-

urating form at long times, as also seen in Fig.5. For small

population sizes, the simple model of TF-DNA binding [S43]

predicts that for the same sequence length and assuming the

same threshold of inviability that the rate that incompatibil-

ities arise should be approximately independent of selection

and dominated by sequence entropy; if the sequence length

of the trait increases, or the effective region of incompatibil-

ity is smaller, then we would expect incompatibilities to arise

more quickly. As we see in Fig.S5, for small scaled popula-

tion sizes and short times, the incompatibilities not involv-

ing α have similar behaviour except Imc, which arrive more

quickly; this is as expected as the effective mutation rate for

Imc to arise, will be double that for Irm, since the binding of

the morphogen to DNA involves 10 sites (nucleotides), vs 5

sites for protein-protein interaction. On the other hand Irc

also has 10 nucleotides, but arises more slowly. We suggest

this could be due to a different effective region of incom-

patibility, which could confound simple expectations, it is

not clear how a single inviability threshold F ∗ effectively

maps to these pair-wise incompatibilities, complicating the

picture further.

The 2-way incompatibilities involving the α locus are

more difficult to interpret, since there is no clear trait in

the patterning model associated with an interaction solely

between the α locus and R, M , or C loci. As 2-way DMIs

involving α are typically an order of magnitude smaller than

the other DMIs they do not have a large impact on the

number of DMIs.

Spectrum of 3-way & 4-way DMIs

In Fig.S6, we have plotted the 3-way DMIs as a func-

tion of divergence time µt, where the panels from left to

right represent increasing scaled population size. We see

that for small population sizes, 3-way DMIs between the

R, M and C loci dominate at all times and in particular

that the different types of DMIs of this type are all roughly

equal, IRmc ≈ IrMc ≈ IrmC. In addition, we see that all

other DMIs arise more slowly and each of the 9 other types

of 3-way DMIs are all again approximately equal. However,

at larger population sizes this degeneracy is lifted amongst

the different types of DMIs and different 3-way DMIs grow

at different rates. How can we understand this general be-

haviour?

The patterning solution found in these evolutionary simu-

lations involves the morphogen binding strongly to the first

binding site recruiting the polymerase to bind to the pro-

motor to turn on transcription, through a high affinity in-

teraction between the morphogen and the polymerase; the

spatial position along the length of the embryo where the

transcription switches from on to off is controlled by an

interaction with the steepness of the morphogen gradient

α. Given this, incompatibilities between R, M and C loci

could arise through a 3-way interaction where the R locus

interacts with the parts of the C and M loci coding for

ERP and ẼRM , or where the M locus interacts with the

parts of the C and R loci coding for EMB and ẼRM . So in

analogy to 2-way DMIs, where a pair of loci give rise a sin-

gle phenotypic binding energy trait, whose value contributes

to fitness, here the triplet of loci, R, M and C, give rise

to two binding energy traits, which together contribute to

fitness. These two traits will co-evolve to maintain good

fitness, balanced by the constraints of sequence entropy on

the underlying 3 loci; at large population sizes, the effects

of sequence entropy will diminish. On the other hand 3-way

incompatibilities between, for example, M , C and α could
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FIG. S6. Plot of the spectrum 3-way DMIs vs divergence time for different scaled population sizes.

arise due to an interaction of the EMB binding energy trait

with α; in this model this is subject to a sequence entropy

constraint between only two loci. This is true for all the

3-way interactions that involve the α locus. Qualitatively,

this then explains the behaviour at low population sizes, as

sequence entropy dominates fitness, meaning that the be-

haviour of the different 3-way DMIs will be dominated by

their underlying sequence entropy constraints.

The sequence entropy constraints for the 3-way inter-

actions involving the α locus is straightforward and given

by a binomial degeneracy function Ω(E) =
(
`
E/ε

)
, so that

the sequence entropy function S(E) = ln(Ω) is approx-

imately quadratic in E, where here E represents one of

the binding energies that interacts with α [S42]. How-

ever, for the other 3-way interactions that don’t involve

α, but involve the R, M and C loci, the sequence en-

tropy constraint will be related to a degeneracy function

Ω(E, Ẽ) = Ω(E)Ω(Ẽ), where the joint number of se-

quences that give E and Ẽ is a product, since these en-

ergy traits are coded by different sequences, even though

they come from the same loci (the joint number of se-

quences Ω(EMB , EMP ) 6= Ω(EMB)Ω(EMP ) since the pro-

tein binding sequence of the morphogen that determines

EMB and EMP is the same in this case). Given that the

joint number of sequences that give E and Ẽ is a prod-

uct of two binomial coefficients, the sequence entropy func-

tion will approximately be a sum of two quadratic terms

S(E, Ẽ) ≈ − 2
`pd

(E/εpd − `pd/2)2 − 2
`pp

(Ẽ/εpp − `pp/2)2.

At small population sizes, where genetic drift dominates se-

lection, we expect the distribution of common ancestors to

be such that they are poised at the incompatibility boundary

for E and Ẽ; incompatibilities then arise when substitutions

arise that take hybrids across the boundary.

Given that a 3-way DMI between the R, M and C genetic

loci corresponds to co-evolution of a pair of binding energy

traits, instead of a single binding energy trait for 2-way and

3-way DMIs that involve α, means the fraction of substitu-

tions that lead to incompatibilities versus those that keep

the hybrids compatible/fit becomes larger when going from

one to two dimensions. This then explains why 3-way DMIs

between the R, M and C loci gives rise to incompatibilities

more quickly than those involving the α locus, as seen in
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Fig.S6.

4-way DMIs correspond to an interaction where all four

loci require a particular combination of alleles for good pat-

terning. As previously noted they are of much smaller num-

ber compared to 2- and 3-way DMIs, so here, we do not

examine these DMIs in detail. However, we note that the 4-

way DMIs shown in Fig.S7, show a similar pattern as found

with 3-way DMIs, where for small scaled population sizes

the DMIs tend to cluster, which suggests, as found for 2-

and 3-way DMIs, this is due to sequence entropy constraints

dominating the growth of DMIs; on the other hand, at large

scaled population sizes this degeneracy is lifted and each

hybrid has a different growth rate of DMIs, depending on

their particular contribution to fitness and how that balances

against the constraints of sequence entropy.
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FIG. S7. Plot of the spectrum 4-way DMIs vs divergence time for different scaled population sizes.
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