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ABSTRACT
Understanding the origin of species is as Darwin called it “that mystery of mysteries”. Yet, how the processes of
evolution give rise to non-interbreeding species is still not well understood. In an empirical search for a genetic basis,
transcription factor DNA binding has been identified as an important factor in the development of reproductive isolation.
Computational and theoretical models based on the biophysics of transcription factor DNA binding have provided a
mechanistic basis of such incompatibilities between allopatrically evolving populations. However, gene transcription
by such binding events occurs embedded within gene regulatory networks, so the importance of pair-wise interactions
compared to higher-order interactions in speciation remains an open question. Theoretical arguments suggest that
higher-order incompatibilities should arise more easily. Here, we show using simulations based on a simple biophysical
genotype phenotype map of spatial patterning in development, that biophysics provides a stronger constraint, leading to
pair-wise incompatibilities arising more quickly and being more numerous than higher-order incompatibilities. Further,
we find for small, drift dominated, populations that the growth of incompatibilities is largely determined by sequence
entropy constraints alone; small populations give rise to incompatibilities more rapidly as the common ancestor is more
likely to be slightly maladapted. This is also seen in models based solely on transcription factor DNA binding, showing
that such simple models have considerable explanative power. We suggest the balance between sequence entropy and
fitness may play a universal role in the growth of incompatibilities in complex gene regulatory systems.
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Introduction1

The detailed genetic mechanisms by which non-interbreeding2

species arise is still largely not understood. Darwin called it that3

“mystery of mysteries” (Darwin 1859); he struggled to under-4

stand how natural selection could give rise to hybrid inviability5

or infertility. In a modern setting, Darwin’s conundrum can be6

stated as follows: if a hybrid incompatibility were due to a single7

locus, how could two species, fixed for AA and aa, respectively,8
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evolve from a common ancestor, if the only evolutionary path-9

way is via the inviable genotype Aa? A solution to this problem10

was conceived independently by Dobzhansky (1936), Muller11

(1942), Bateson (1909), by which neither population need pass12

through a bottleneck. If instead incompatibilities arise due to13

non-linear or epistatic fitness interactions between different loci,14

it is possible, for example, that two lines that are geographically15

isolated from each other, evolve independently from a common16

ancestor ab (allopatric evolution), fix the allelic combinations aB17

and Ab respectively, yet the hybrid genotype AB is inviable.18

The work of Orr provided a framework to understand how in-19

compatibilities might arise in allopatry (Orr 1995; Orr and Turelli20

2001), when populations are small and essentially monomorphic21

(µN � 1, where µ is the mutation rate for a typical loci and N22

the effective population size). Orr suggested that as two lines fix23
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independent substitutions from a common ancestor, any com-1

bination of alleles that may arise in hybrids that have not been2

‘tested’ or explicitly fixed by the process of evolution, represents3

a potential incompatibility. Assuming an infinite number of loci4

and that back-substitutions or multiple substitutions at the same5

loci are not possible, Orr showed that the number of incompat-6

ibilities involving n-loci increases as ∼ Kn, for K substitutions7

separating the two lines and assuming n � K. This has been8

likened to a “snowball” effect as the number of incompatibilities9

rises rapidly with the number of substitutions that separate the10

lines. Orr also argued that more complex DMIs, which involve11

more than 2 loci, should be easier to evolve as there is a larger12

fraction viable evolutionary paths between the common ancestor13

genotype and the genotypes of the two present day species, for14

a fixed number of incompatible genotypes (Orr 1995). It is, how-15

ever, an open question, as this argument predicates, whether the16

number of incompatible genotypes remains fixed as the number17

of loci increases, for more realistic fitness landscapes.18

To address the question of how incompatibilities develop19

in more realistic fitness landscapes, Tulchinsky et al, devel-20

oped sequence-based simulations that investigated the mecha-21

nistic basis of the evolution of hybrid incompatibilities for tran-22

scription factor-DNA binding, showing decreased hybrid fit-23

ness for smaller populations (Tulchinsky et al. 2014b) and that24

the pleiotropic constraint of binding two sites does not signifi-25

cantly affect how quickly incompatibilities arise (Tulchinsky et al.26

2014a). Khatri and Goldstein (2015a,b) used a similar model,27

based on a simple biophysically motivated genotype-phenotype28

map of a single transcription factor binding to DNA; they no-29

tably found that incompatibilities arose more quickly for smaller,30

drift-dominated, populations as they are already more slightly31

maladapted. This arises as there are exponentially more se-32

quences that bind poorly than well, which means drift pushes33

common ancestors on average closer to incompatible regions34

and so fewer substitutions are needed for incompatibilities to35

arise in hybrids. In this low population size limit DMIs arise36

quadratically with divergence time, in agreement with Orr’s pre-37

dictions, however, the underlying mechanism for this power law38

is very different to Orr’s. Conversely, larger population sizes39

are on average more optimal with respect to binding and so40

more substitutions are required in order for hybrids to become41

incompatible. In addition, these substitutions themselves arise42

more slowly as the number of neutral substitutions decrease43

with increasing population size, in accordance with predictions44

of the nearly neutral theory (Ohta 1973, 1992; Lanfear et al. 2014).45

In this case the growth of DMIs has a characteristic non-power46

law form, with negative curvature on a log-log plot, indicating47

that the hybrid binding energies change diffusively (Khatri and48

Goldstein 2015a,b). However, real gene regulatory systems are49

more complex than a single TF binding to DNA, so again the50

question arises do these predictions hold for more complex gene51

regulatory systems with more realistic fitness landscapes?52

Although there has been much progress in understanding53

evolution in terms of selection, mutation and genetic drift, the54

majority of this work has been reliant on phenomenological fit-55

ness landscapes, which encompass in a heuristic manner smooth-56

ness, epistasis and neutrality (Higgs and Derrida 1992; Kauffman57

and Levin 1987). In recent years, the question of the structure58

of real fitness landscapes has gained prominence, where the59

redundancy of the mapping from genotype to phenotype can60

give rise to non-trivial properties of the evolution of phenotypes61

(Fontana 2002; Khatri et al. 2009; Hayden et al. 2011; Goldstein62

2011; Schaper and Louis 2014; Greenbury et al. 2014; Manrubia63

and Cuesta 2015; Greenbury et al. 2016). In particular, (Khatri64

et al. 2009) introduced a simple genotype-phenotype map for65

spatial gene expression regulation in development, from which66

emerged a number of non-trivial features such as a balance be-67

tween selection and sequence entropy deciding the course of68

evolution at small population sizes and a partitioning of the69

effective phenotypic landscape into neutral and selective de-70

grees of freedom; none of these emergent phenomena could be71

predicted on the basis of purely phenotypic considerations.72

In this paper, we will use a slightly modified version of the73

spatial patterning model in Khatri et al. (2009), which has explicit74

sequence representation of each loci, to examine the growth of75

Dobzhansky-Muller incompatibilities in allopatry as a function76

of population size and under stabilising selection in each lineage.77

Our results show that smaller populations develop incompati-78

bilities more quickly and in a manner mostly predicted based79

solely on simple models of transcription factor DNA binding,80

showing the power of these simple approaches (Khatri and Gold-81

stein 2015a,b; Tulchinsky et al. 2014b,a); the main difference we82

find is that for large populations hybrid binding energies are83

sub-diffusive, indicative of kinetic traps in the molecular sub-84

stitution process due to an underlying roughness to the fitness85

landscape (Khatri et al. 2009). However, our main finding is86

that unlike Orr’s prediction, pair-wise interactions between loci87

dominate the growth of DMIs, suggesting that biophysics pro-88

vides a stronger constraint on their evolution than the simple89

combinatorics of pathways between the common ancestor and90

present day lineages.91

Materials and Methods92

Genotype-Phenotype map93

The genotype-phenotype map we use is a slight modification of94

the one described in detail by Khatri et al. (2009); we summarise95

its basic elements and recapitulate the main results in the Sup-96

porting Information. The evolutionary task set for the gene reg-97

ulation module is to turn an exponentially decaying morphogen98

gradient across a field of cells in an embryo (M), into a sharp step99

function profile of a downstream transcription factor TF with its100

transition at the mid-point of the embryo, as shown in Fig.1. The101

binding affinity of the different protein species to themselves or102

to the regulatory region of TF is determined by matching binary103

sequences, generating the genotype-phenotype map; there are104

two types of binding energies, protein-DNA binding energies105

denoted by E and protein-protein denoted by δE. More specif-106

ically, gene regulation is controlled by two non-overlapping107

binding sites, the promoter P and an adjacent binding site B,108

together with two protein species, the morphogen M and RNA109

Polymerase R, where the length of each of these sequences,110

rpd, mpd, tP, tB is `pd = 10. Co-operative protein-protein in-111

teractions between the morphogen M and RNA Polymerase112

R, or themselves, are determined by the sequences, rpp, mpp,113

each of length `pp = 5. The various binding energies are pro-114

portional to the Hamming distance between the relevant se-115

quences, where for protein-DNA binding the cost of a mismatch116

is εpd = 2kBT and for protein-protein interactions εpp = 1kBT.117

In total this gives a genome G = [rpd, rpp, mpd, mpp, tP, tB], of118

total length |G| = 50, producing 4 protein-DNA binding en-119

ergy traits (ERP, ERB, EMP, EMB) and 3 protein-protein binding120

energy traits (δERR, δERM, δEMM).121

Given an exponential morphogen concentration profile122
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Figure 1 An overview of the genotype-phenotype map. The gene regulatory module has input a morphogen gradient [M](x) across
a 1-dimensional embryo of length L and outputs a transcription factor TF(x). Gene regulation of TF using a morphogen and RNAP
(R) is controlled in a bottom-up manner, by binding to its regulatory region consisting of a promoter P and adjacent binding site
B; E represents binding free energies of proteins to one of the two binding sites of the regulatory region of the transcription factor
T, δE are protein-protein free energies to aid in co-operative binding of paired protein complexes. Each energy is calculated by the
number of mismatches ρ (Hamming distance), shown in red, between relevant binary sequences, together with mismatch energies
εpd and εpp for protein-DNA and protein-protein energies respectively. Transcription of T is controlled by the probability of RNAP
being bound to the P, pRP.

[M](x, α) as a function of the position of embryonic cells, x,1

and a fixed concentration [R] of RNAP, in each cell, we follow2

Shea and Ackers (1985) to calculate the TF concentration profile3

[TF](x), which assumes the steady state concentration profile4

is simply proportional to the probability of RNAP being bound5

to the promoter: [TF](x) ∝ pRP(G, R, M(x, α)). The proportion-6

ality constant is given by the ratio of the rate of transcription7

and translation to the rate of degradation of TF, which is not8

important in our study, since we are only interested in the shape9

or contrast of [TF](x) that can be achieved.10

Monte Carlo Scheme for speciation simulations11

We use a kinetic Monte Carlo scheme to simulate a Wright-Fisher12

evolutionary process for the genome G and α on two indepen-13

dent lineages, as detailed in Khatri and Goldstein (2015b). The14

rate of fixation of one-step mutants are calculated based on15

Kimura’s probability of fixation (Kimura 1962), where we as-16

sume a regime of small effective population size (|G|µ0N � 1,17

where µ0 is the base-pair mutation rate and N is effective pop-18

ulation size). Here, we determine the Malthusian or log fitness19

of the spatial gene regulation, from the resulting concentration20

profile [TF](x) by use of a functional that promotes expression21

of the TF in the anterior half, whilst penalising expression in the22

posterior half, with truncation selection below a critical value23

W∗:24

F =

{
κF ln(W) ifW > W∗

−∞ ifW < W∗
(1)

where,25

W [[TF](x)] =

∫ L/2
0 [TF](x)dx−

∫ L
L/2[TF](x)dx

L
2 maxx{[TF](x)}

. (2)

where W∗ is related to the threshold for inviability and κF is26

the strength of selection for the trait represented by the spatial27

patterning process; when the hybrid’s log-fitness drops below28

F∗ = κF log(W∗) an incompatibility or DMI arises. We choose29

W∗ = 0.2 to give a reasonable number of incompatibilities that30

arise in a simulation, where typically the maximum ofW ≈ 0.6.31

Note that although here the exact form of the fitness is slightly32

different to the one used in Khatri et al. (2009), the qualitative33

behaviour is the same (Supporting Information).34

The speciation simulations consist of two replicate simula-35

tions starting with the same common ancestor and with the36

same fitness function. We draw the common ancestor from the37

equilibrium distribution for G and α. To do this we start from a38

random initial genome, and run one long simulation for 100,00039

substitutions for a fixed scaled population size 2κF N, in order40

to effectively equilibrate the system (typically 10,000 substitu-41

tions are required to adapt to an ensemble of fit states). This42

represents a reference equilibrium state; different random draws43

from the equilibrium distribution then consist of running the44

simulation for a further 100 substitutions.45

Decomposing DMIs46

Our genome is composed of 4 loci: 1) RNAP, (whose sequence47

is gR = [rpd, rpp]), 2) Morphogen (sequence, gM = [mpd, mpp]),48

3) Regulatory region of TF (gT = [tP, tB]) and 4) the morphogen49

gradient steepness α. Hybrids between the two lines are con-50

structed by independent reassortment of these loci and assuming51
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complete linkage within each loci. We define a hybrid genotype1

by a 4 digit string where each digit corresponds to one of the loci2

defined above and takes one of two values, which correspond3

to the allele from the 1st line or 2nd line; for example, the hy-4

brid rMTa corresponds to R locus having an allele from the 1st5

lineage, M locus with the allele from the 2nd lineage, T locus6

from the 2nd lineage and α locus the allele from the 1st lineage.7

Note that the underlying sequence of each hybrid changes as8

different substitutions are accepted in each lineage; the notation9

only refers to alleles fixed at any point in time. As α is a continu-10

ous variable, we only count substitutions in α when it makes a11

transition between the two basins of attraction as discussed in12

Khatri et al. (2009) and the Supporting Information.13

We can represent all combinations of the four loci drawn14

from the two parents (RMTA, RMTa, RMtA, etc.) as points on15

a four-dimensional Boolean hypercube (Fig.2). If there is a 2-16

point DMI (e.g. between T and α loci, which we denote ITa),17

then all four hybrid-genotypes containing this DMI (e.g. RMTa,18

RmTa, rMTa, rmTa) are inviable; these genotypes define a two-19

dimensional subspace (or face) of the hypercube. Similarly, the20

points (e.g. rmtA, RmtA, which we denote ImtA) containing a21

3-point DMI form a one-dimensional subspace (or line), while a22

4-point DMI takes up only a single point in the four-dimensional23

hypercube. These different 2-point, 3-point and 4-point DMIs24

are the fundamental incompatibility types which we seek to25

explain the pattern of hybrid inviable genotypes observed, for26

example, as in Fig.2a.27

However, this decomposition is hugely underdetermined,28

as there are only 24 − 2 = 14 possible hybrids (not including29

the well-adapted genotypes of line 1 and line 2) and a total30

of Imax = 3L + 1− 2L+1 = 50, different fundamental incom-31

patibilities, for L = 4 loci 1. The approach we take is to find32

only those combinations of fundamental DMIs that have the33

smallest total number that can explain the pattern of hybrid34

incompatibilities, which from a Bayesian perspective would35

have the smallest Occam factors (MacKay 2007); for instance,36

as shown in Fig.2a the list of 6 incompatible hybrid genotypes37

rmTa, rMTa,RmTa,RMTa,Rmta,RMta, shown by red crosses, can38

be explained most parsimoniously by three different minimal39

combinations of fundamental DMIs, each with only 2 DMIs: 1)40

ITa + IRta, 2) IRa + IrTa, 3) ITa + IRa. We assume each of these41

minimal combinations of DMIs is a priori equally likely, so we42

count the number of type ITa DMIs as the average times they43

appear across this set of minimal combinations of DMIs; in the44

example in Fig.2a, the number of each type of fundamental DMI45

would be nTa = 2/3, nRa = 2/3, nRta = 1/3, nrTa = 1/3, so46

the total number of 2-point DMIs is n2 = 4/3 and 3-point DMIs47

n3 = 2/3, giving a total number of n = n2 + n3 = 2 DMIs, which48

is the minimum number of DMIs needed to explain the pattern49

of hybrid incompatibilities. In Fig.2b is shown a more compli-50

cated pattern of hybrid DMIs and the parsimonious minimal51

combinations of fundamental DMIs.52

1 The total number of n−point DMIs is (2n − 2)(L
n), as there are (L

n) combinations
of n loci amongst L total loci and then considering a binary choice of alleles
across both lines, there are a total of 2n allelic combinations or states, 2 of which
are the fit allelic combinations where all alleles come from one lineage or the
other giving 2n − 2. For example, between each pair of loci there are 22 − 2 = 2
mismatching combinations of alleles (e.g. rM and Rm) that could give DMIs and
(L

2) = L(L− 1)/2 = 6 pairwise interactions. A similar argument would give a
total of 24 3-point DMIs as there are 23 − 2 = 6 mismatching combinations of
alleles at 3 loci (e.g., excluding rmt and RMT) and (L

3) = 4 3-point interactions
and similarly, 14(L

4) = 14 for 4-point interactions. In total, the max number
of DMIs is Imax = ∑L

n=2(2n − 2)(L
n) = 3L + 1 − 2L+1, which for L = 4 loci is

Imax = 50.

Results53

Evolutionary properties of genotype-phenotype map on each54

lineage55

The properties of this genotype-phenotype map have been pre-56

viously explored (Khatri et al. 2009). An important property57

of this genotype-phenotype map is that only a single mecha-58

nism of patterning is found, which is that RNAP (R) binds with59

intermediate affinity to the promoter (P), but through a high60

affinity protein-protein interaction with the morphogen (M),61

the morphogen binds to the first binding site (B) only above62

a critical morphogen concentration, thereby giving a spatial63

switch once the morphogen falls below this concentration; evo-64

lution then fine tunes the relationship between the protein-DNA65

binding energies (E’s), protein-protein energies (δE’s) and the66

steepness of the morphogen gradient α to turn off transcription67

at the mid-point of the embryo. Despite a single global solu-68

tion there are many different combinations of the binding and69

glue energies and α that give good patterning, and for each of70

these many underlying genotypes (G). A further key property71

is that despite this redundancy some energy phenotypes such72

as EMB, δERM and ERP are under strong stabilising selection,73

whilst the remaining energy phenotypes, ERB, EMP, δERR and74

δEMM are under weak stabilising selection (see Supporting In-75

formation and Khatri et al. (2009)). Finally, at large population76

sizes it is found that the evolutionary dynamics exhibits what77

is known as quenched-disorder in statistical physics, where en-78

ergy phenotypes that are less constrained take different random79

values between independent evolutionary runs; this indicates80

an underlying roughness to the fitness landscape (Khatri et al.81

2009).82

Different hybrids genotypes have different growth rates of83

DMIs84

In Fig.3, we plot a typical time series of how the fitness of two85

different hybrids (Rmta a & b and RMtA c & d) changes over a86

divergence time t separating a pair of lines, for scaled popula-87

tion sizes of 2NκF = 1 and 2NκF = 10. A scaled population size88

2NκF > 1 indicates strong selection, whilst 2NκF ≤ 1 indicates89

weak selection, where genetic drift dominates over selection; for90

example, in human populations it has been estimated that≈ 20%91

of mutations are weakly selected (Eyre-Walker et al. 2006). We92

see that the fitness of hybrids generally decreases in a stochastic93

fashion; when the fitness of a hybrid drops below the threshold94

F∗ (indicated by the dashed line), a DMI arises and is indicated95

by a vertical fitness line (F = −∞) for that hybrid and so as96

we see from Fig.3, at any given time only a subset of all pos-97

sible hybrids might be incompatible. We also see that as the98

fitness of hybrids is stochastic, DMIs that arise do not stay, as99

one might expect within the Orr framework (Orr 1995; Orr and100

Turelli 2001). A further observation is that for smaller scaled101

population sizes the common ancestor fitness is lower and in-102

compatibilities appear to arise more quickly; this is a consistent103

with previous studies of a more simple genotype-phenotype104

map of a transcription factor binding a single binding site (Kha-105

tri and Goldstein 2015a,b), where the smaller populations have106

a larger genetic drift load and so common ancestors are more107

likely to be closer to the inviable binding threshold.108

To examine the overall trends in the number of incompatibili-109

ties for each hybrid type, as a function of divergence time µt, we110

plot the average number of DMIs in Fig.4, where we have av-111

eraged over pairs of complementary genotypes (e.g. RmtA and112

rMTa), which have identical statistical properties. As denoted in113
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Figure 2 Decomposition of hybrid DMIs on a Boolean hyper 4-cube. Each point on the 4-cube represent each possible hybrid geno-
type across 4 loci, including the genotype of each parental lineage, where each red cross represents an incompatible hybrid geno-
type. As shown in a) the pattern of DMIs can be explained by different combinations of fundamental types of DMIs, where a blue
square or face identify a subspace of genotypes that correspond to a 2-point DMI and a single green edge or line corresponds to a
3-point DMI. b) A more complicated pattern of hybrid DMIs and their decomposition into fundamental types, where a red open
circle corresponds to a single isolated 4-point DMI.

the figure, we distinguish hybrid-genotypes based on the types1

of potential mismatch: R-type is characterised by a mismatch of2

the R loci with M and T loci, M-type is a mismatch of M with R3

and T loci, T-type is a mismatch of T with R and M and α-type4

is a mismatch of the α loci with the rest of the loci. In Fig.4, we5

first note that each hybrid-genotype behaves in a different way6

in a population size dependent manner. In general, there is an7

initial growth in the average number of DMIs as the divergence8

time increases, followed by a plateau or a slowing down of the9

growth. We also see that for small population sizes the initial10

growth of DMIs is power law and approximately quadratic, as11

predicted by Orr (1995); Orr and Turelli (2001), but as argued12

previously (Khatri and Goldstein 2015b) the underlying mech-13

anism is very different. On the other hand, as the population14

size increases, DMIs take longer to arise, which is also consistent15

with previous work on the dynamics of incompatibilities due to16

transcription factor DNA binding (Khatri and Goldstein 2015b);17

this is caused by a slowing of the substitution rate as in a sta-18

bilising discrete fitness landscape more deleterious changes are19

needed for any evolutionary change. Further, there is no clear20

power law, which is again consistent with previous simulations21

(Khatri and Goldstein 2015b) and also theoretical calculations22

(Khatri and Goldstein 2015a) that predict that as common ances-23

tor populations are further away, the growth of DMIs follows a24

diffusive law, which has a characteristic negative curvature on a25

log-log plot.26

However, in addition to these general trends, we see that27

the growth of DMIs is different for different hybrids; for small28

population sizes (2NκF = 0.1 & 2NκF = 1), M-type, T-type29

and R-type dominate the growth of DMIs, in this order and30

with only a small difference between them, whilst α-type arise31

far more slowly; we might expect this since substitutions in α32

only tend to shift the pattern away from the mid-point of the33

embryo, which with the model of fitness defined in Eqn.1 only34

moderately affects fitness. As the population size increases, and35

at small times, we see that initially M-type DMIs arise more36

slowly relative to T-types and R-types, but at longer times there37

is a cross-over where M-type DMIs dominate R-type; although38

the simulations do not run out to sufficiently long times for39

the largest population sizes, this cross-over appears to move to40

longer times at increasing population sizes.41

How can we understand this general behaviour? It is clear42

from Eqns. 1&2 that good patterning or fitness is only dependent43

on the protein-DNA and protein-protein energy phenotypes (as44

well as α) and so this in general requires co-evolution of the45

relevant sequences to maintain these energies within certain46

constraints; e.g. the binding energy of R to the promoter of T,47

ERP mustn’t be too strong and so on each line the sequences48

will co-evolve to maintain this constraint. From previous work49

(Khatri and Goldstein 2015a,b) we expect that it is not only the50

population size that determines how quickly hybrid incompat-51

ibilities arise, but its product with the strength of selection κj52

maintaining a particular interaction j; so the energy EMB is un-53

der very strong selection for strong binding of the morphogen54

to the 1st binding site and we would expect incompatibilities55

due to this interaction to arise more slowly when 2NκMB � 1,56

due to κMB > κj, for other interactions j, even when the effective57

population size N is fixed.58
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Figure 3 Plot of the times series of two hybrids Rmta (a & b) and RMtA (c & d) at scaled population sizes of 2NκF = 1 (a & c) and
2NκF = 10 (b & d).

Figure 4 Plot of the number of DMIs for each hybrid genotype since divergence for different scaled population sizes. Complemen-
tary hybrid genotypes are summed over, since they have identical statistical properties.
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Decomposition of DMIs1

As discussed in the model section the DMIs shown in Fig.4 will2

have contributions from many different fundamental incompati-3

bility types, which can be 2-point, 3-point and 4-point in nature.4

Using the method described above to decompose DMIs into fun-5

damental types, we plot the total number of each type of DMI6

versus divergence time in Fig.5, where the panels correspond7

to different scaled effective population sizes from 2NκF = 0.18

to 2NκF = 100. We see clearly that pair-wise DMIs are domin-9

inant at all population sizes and divergence times, though the10

difference is diminished at larger population sizes. These results11

show that contrary to the prediction of Orr, that higher order12

DMIs should be easier to evolve, higher order DMIs evolve more13

slowly and are in smaller number compared to pair-wise DMIs.14

As mentioned in the introduction the Orr model also predicts15

that n-point DMIs should increase as ∼ tn. Here, we find that16

for small population sizes 2-point, 3-point and 4-point DMIs all17

increase as a power law at small times, indicated by a straight18

line on a log-log plot, with a larger exponent for 3-point and19

4-point DMIs. To more quantitatively assess the exponent, we fit20

the data for 2NκF ≤ 20 using the phenomenological equation:21

I(t) =
I0t

T + t

(
1− exp (−t/τ)γ−1

)
(3)

which has the asymptotic form of I(t) ∼ tγ for t� τ and t� T22

and an opposite limit of I(t → ∞) = I0. We see that for the23

total number of DMIs and for 2-point, 3-point and 4-point DMIs,24

this form fits the data well at intermediate and small population25

sizes. We tabulate the power law exponent derived from these26

fits in Table 1. We see that the total number of DMIs and 2-point27

DMIs have a power law exponent close to γ = 2, which is con-28

sistent with the Orr model and with Fig.4 which shows a similar29

power law, further showing that 2-point DMIs are dominant30

in determining the growth of hybrid incompatibilities. How-31

ever, the higher order incompatibilities do not quite follow the32

Orr prediction, where n-point DMIs should have an exponent33

γ = n, although 4-point DMIs have a larger exponent than 3-34

point DMIs; 3-point DMIs have an exponent that varies between35

γ = 2 and γ = 3, while 4-point DMIs have an exponent between36

γ = 3 to γ = 3.5. In all these cases an alternative model for37

the power law behaviour, as argued in Khatri and Goldstein38

(2015b), is that at small population sizes, where genetic drift39

is dominant and there is a large drift load, common ancestor40

populations are poised at the incompatibility boundary (trunca-41

tion selection threshold) and the growth of DMIs at short times42

is due to how likely a few critical substitutions are to arrive43

very quickly, which is given by a Poisson process; if the critical44

number of substitutions is K∗ then for short times we would ex-45

pect PI(t) ∼ (µt)K∗ and so given that at least n substitutions are46

needed for a n-point incompatibility, we would expect K∗ ≥ n.47

It is possible the inconsistency here could be resolved by more48

accurate measurement of the power law, by exploring simula-49

tions at even shorter times, using a larger number of replicate50

simulations (here there are 106 replicate simulations at short51

times).52

At larger population sizes (2NκF ≥ 50), Fig.5 shows that53

there is no clear power law and instead there is a negative curva-54

ture in the growth of DMIs on a log-log plot. This is consistent55

with a model of DMI growth where high fitness corresponds to56

high binding affinity, so that the common ancestor distribution57

is peaked away from the inviability boundary; this would arise58

with large populations that have a small drift load, meaning that59

2NκF 0.1 1 10 20

Total 1.94± 0.05 1.99± 0.05 1.95± 0.05 2.00± 0.12

2-point 1.93± 0.05 1.98± 0.06 1.84± 0.06 1.97± 0.13

3-point 2.66± 0.13 2.81± 0.17 2.76± 0.24 2.14± 0.15

4-point 3.17± 0.19 3.43± 0.41 3.14± 0.24 2.93± 0.19

Table 1 Table of values of the exponent γ characterising the
power law of growth of DMIs at short times and small scaled
population sizes.

DMIs arise as hybrid energy traits diffuse to the boundary. One60

such analytically tractable model was investigated in Khatri and61

Goldstein (2015a) and predicted that the number of DMIs is a62

complementary error function, which has an asymptotic form63

I(t) ∼
√

4µt
K∗ e−(K

∗)2/4µt, which due to the essential singularity64

as t → 0 has the property of negative curvature on a log-log65

plot. However, this form does not fit the simulation data well66

(not shown). Given the multidimensional nature of this spatial67

patterning model, it is possible that we need to consider the anal-68

ogous result to the effective one-dimensional diffusion studied69

in Khatri and Goldstein (2015a), which results in a multidimen-70

sional generalisation of the error function Brown (1963), where in71

n dimensions erfn(x) = Γ(x2, n/2)/Γ(n/2), so that the number72

of DMIs has asymptotic form I(t) ∼ (
4µt
K∗ )

1− n
2 e−(K

∗)2/4µt; this73

again, however, does not fit the data in Fig.5 well. A functional74

form that is a good fit to the data at large populations sizes is75

I(t) =

√
4(µt)β

K∗
e−(K

∗)2/4(µt)β
, (4)

which arises when considering fractional Brownian processes76

with exponent β; normal diffusion or Brownian motion arises77

when β = 1, while β < 1 corresponds to subdiffusive behaviour,78

while β > 1 is superdiffusive. It is clear by examining the expo-79

nent β in Table 2 from fits of the data in Fig.5 at large population80

size (2NκF ≥ 50) that the DMIs arise as a result of a subdiffu-81

sive process, where 2-point, 3-point and 4-point DMIs have an82

exponent β ≈ 1/3 for 2NκF = 50 and β ≈ 1/4 for 2NκF = 100.83

The most likely mechanism that would give rise to subdiffusive84

behaviour is a broad spectrum of times between substitutions;85

even though in the simulations the kinetic Monte carlo scheme86

is based on a Poisson process for a given genotypic state G, the87

distribution of rates could vary significantly as populations ex-88

plore the fitness landscape. This would be consistent with the89

results in Khatri et al. (2009), which reveal the underlying fitness90

landscape of this spatial patterning genotype-phenotype map to91

be rough, which could lead to broad distribution of substitution92

rates in each lineage and effective subdiffusive behaviour of the93

hybrids (Bertin and Bouchaud 2003). Finally as expected the av-94

erage number of substitutions needed at large population sizes95

is large, with values of K∗ ranging from 6 to 9, and increases with96

increasing population size, as expected; it also increases very97

moderately with increasing n, which would be consistent an98

increase in dimensionality of higher order DMIs. Interestingly,99

these values of K∗ would indicate that the fraction of viable100

genotypes is very small, ∼ 2K∗/2|G| ∼ 10−13, where |G| = 50 is101

the number of binary sites in this genotype-phenotype map.102
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Figure 5 Plot of the total number of DMIs vs divergence time, together with their decomposition into the total number of 2-point,
3-point, 4-point DMIs, for various scaled populations sizes. For 2NκF ≤ 20 the solid lines correspond to fits of the simulation data
to Eqn.3, while for 2NκF ≥ 50 correspond to fits to Eqn.4.

2NκF 50 100

Total β 0.47± 0.03 0.33± 0.02

K∗ 6.58± 0.12 7.37± 0.26

2-point β 0.32± 0.01 0.25± 0.01

K∗ 6.71± 0.07 7.51± 0.18

3-point β 0.33± 0.01 0.22± 0.01

K∗ 7.53± 0.10 8.09± 0.27

4-point β 0.31± 0.02 0.25± 0.02

K∗ 7.50± 0.28 8.66± 0.39

Table 2 Table of values of the parameters characterising the
sub-diffusive growth of DMIs for large scaled population sizes;
β = 1 corresponds to normal diffusive motion, β < 1 to sub-
diffusion and β > 1 super-diffusion, while K∗ corresponds
roughly to the number of substitutions required to reach the
invaible region.

2-point DMIs In Fig.6 we have plotted the number of 2-point1

DMIs of each type, where for example, Imt is a 2-point DMI2

caused by an incompatibility between the M locus and T locus.3

First, we note that at small population sizes the rate of increase4

of the different 2-point incompatibilities seem to cluster into two5

types; those that involve α and those that do not, which arise6

more rapidly; this suggests that sequence entropy constraints are7

dominating for small populations, particularly at short times,8

though for the latter group there are some differences as dis-9

cussed below. As the population size increases, we see that10

differences arise in the rate of growth between these different11

types of 2-point incompatibilities. Below we discuss below these12

properties.13

For each type of 2-point incompatibility there are 2 binding14

energy traits that could contribute. So increases in Imt could be15

due to an incompatibility in the hybrid of EMB or EMP; in this16

case, as the binding energy EMP is almost neutral (Khatri et al.17

2009), we would would expect incompatibilities to arise predom-18

inantly from EMB. Similarly, we expect Irt to be dominated by19

ERP and not ERB and Irm dominated by δERM and not δEMM or20

δERR. When it comes to incompatibilities involving the α-locus,21

there is no clear phenotypic trait that can be identified and as22

we will see the analysis of these DMIs will not be so clear.23

Examining Fig.6, we see at small population sizes, 2NκF ≤ 1,24

that all the DMIs grow approximately quadratically at short25

times with a saturating form at long times, as also seen in Fig.5.26

In addition, we see that when population sizes are small, the27

number of DMIs for a particular pair-wise interaction correlates28

with the strength of selection on that trait, though the differences29

are relatively small as noted above; for example, the binding30

energy trait EMB, which has the strongest selective constraint,31

gives rise to the most number of DMIs (Imt) at all times; the next32

most critical energy trait in terms of selective constraint is δERM,33

8 Khatri et al.

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted April 29, 2017. ; https://doi.org/10.1101/123265doi: bioRxiv preprint 

https://doi.org/10.1101/123265
http://creativecommons.org/licenses/by/4.0/


Figure 6 Plot of the spectrum 2-point DMIs vs divergence time for different scaled population sizes.

which has the next highest number of DMIs (Irm). Although,1

this observation would appear to be intuitive, interpreting it in2

light the results of a simple model of transcription factor DNA3

binding (Khatri and Goldstein 2015b) are not straightforward;4

the results of this work suggest that for small population sizes,5

the rate that incompatibilities arise decreases with increasing6

strength of selection, since their common ancestors are on av-7

erage better adapted. However, the same model also predicts8

that the rate of growth of incompatibilities decreases with se-9

quence length, as phenotypes coded by longer sequences evolve10

more quickly, so it is possible these two effects could confound11

each other. Here for example, EMB has a stronger selective con-12

straint compared to δERM, but a longer sequence length, as each13

DNA-protein interaction interface has 10 binary digits versus14

each protein-protein interaction interface that has 5. Also it is15

not clear how a single inviability threshold F∗ effectively maps16

to these pair-wise incompatibilities, complicating the picture17

further.18

However, as the scaled population size increases, we see19

that the time for Imt incompatibilities to arise sharply increases,20

while the time for Irm increases less rapidly and Irt even less21

rapidly. This is consistent with the simple model of transcription22

factor DNA binding described in Khatri and Goldstein (2015b)23

and as observed with the hybrid DMIs in Fig.4, as EMB, which24

contributes most to Imt is under the greatest selection pressure25

and so as the population size changes these should change most26

rapidly. We see that for large population sizes, it is not the27

phenotypic traits under the strongest selection that give rise to28

significant DMIs at short times, but those under a weaker se-29

lective constraint; traits under weaker selection will be affected30

more by the sequence entropic pressure for poorer binding affini-31

ties and so the common ancestor is more likely to be closer to the32

inviability boundary. However, if a trait is effectively neutral,33

i.e. that selection is sufficiently weak that for no trait values can34

incompatibilities arise, then these will not give rise to incom-35

patibilities; the energy traits ERB, EMP, δERR and δEMM have36

this property, as is evident by examining their marginal distribu-37

tion functions which follow the neutral expectation (Khatri et al.38

2009).39

The 2-point incompatibilities involving the α locus are more40

difficult to interpret, since there is no clear trait in the pattern-41

ing model associated with an interaction solely between the α42

locus and R, M, or T loci; if α was resolved into a sequence for a43

protease and its interaction with a 3rd sequence of the M loci, in44

addition to the sequences for protein-DNA and protein-protein45

binding, then the value of α itself would be a trait determined46

by a pair-wise interaction between this 3rd sequence of M and47

the protease loci, but the current model does not include this48

feature. The most identifiable phenotype associated with α is the49

position of the mid-point of the embryo, but this trait involves a50

co-evolution of EMB and α and so represents a 3-point interac-51

tion between M, T and α loci, which will be discussed below. It52

is likely that the 2-point DMIs involving α are spurious and a53

consequence of the parsimonious DMI decomposition method54

used, which assumes an equal prior on all possible DMIs that55

have a minimum number of DMI types. This could be rectified56

by having a zero-prior on all pair-wise incompatibilities involv-57

ing the α locus; however, here we have not implemented this as58

2-point DMIs involving α are typically an order of magnitude59

smaller than the other DMIs.60

3-point & 4-point DMIs In Fig.7, we have plotted the 3-point61

DMIs as a function of divergence time µt, where the panels62

from left to right represent increasing scaled population size.63

We see that for small population sizes, 3-point DMIs between64

the R, M and T loci dominate at all times and in particular that65

the different types of DMIs of this type are all roughly equal,66

IRmt ≈ IrMt ≈ IrmT . In addition, we see that all other DMIs arise67

more slowly and each of the 9 other types of 3-point DMIs are all68

again approximately equal. However, at larger population sizes69
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Figure 7 Plot of the spectrum 3-point DMIs vs divergence time for different scaled population sizes.

this degeneracy is lifted amongst the different types of DMIs1

and different 3-point DMIs grow at different rates. How can we2

understand this general behaviour?3

The patterning solution found in these evolutionary simu-4

lations involves the morphogen binding strongly to the first5

binding site recruiting RNAP to bind to the promotor to turn6

on transcription, through a high affinity interaction between the7

morphogen and RNAP; the spatial position along the length8

of the embryo where the transcription switches from on to off9

is controlled by an interaction with the steepness of the mor-10

phogen gradient α. Given this, incompatibilities between R, M11

and T loci could arise through a 3-point interaction where the R12

loci interacts with the parts of the T and M loci coding for ERP13

and δERM, or where M loci interacts with the parts of the T and14

R loci coding for EMB and δERM. So in analogy to 2-point DMIs,15

where a pair of loci give rise a single phenotypic binding energy16

trait, whose value contributes to fitness, here the triplet of loci, R,17

M and T, give rise to two binding energy traits, which together18

contribute to fitness. These two traits will co-evolve to maintain19

good fitness, balanced by the constraints of sequence entropy20

on the underlying 3 loci; at large population sizes, the effects21

of sequence entropy will diminish. On the other hand 3-point22

incompatibilities between, for example, M, T and α could arise23

due to an interaction of the EMB binding energy trait with α;24

in this model this is subject to a sequence entropy constraint25

between only two loci. This is true for all the 3-point interac-26

tions that involve the α loci. Qualitatively, this then explains the27

behaviour at low population sizes, as sequence entropy domi-28

nates fitness, meaning that the behaviour of the different 3-point29

DMIs will be dominated by their underlying sequence entropy30

constraints.31

The sequence entropy constraints for the 3-point interactions32

involving the α loci is straightforward and given by a bino-33

mial degeneracy function Ω(E) = ( `
E/ε), so that the sequence34

entropy function S(E) = ln(Ω) is approximately quadratic in35

E, where here E represents one of the binding energies that36

interacts with α. However, for the other 3-point interactions37

that don’t involve α, but involve the R, M and T loci, the se-38

quence entropy constraint will be related to a degeneracy func-39

tion Ω(E, δE) = Ω(E)Ω(δE), where the joint number of se-40

quences that give E and δE is a product, since these energy traits41

are coded by different sequences, even though they come from42

the same loci (the joint number of sequences Ω(EMB, EMP) 6=43

Ω(EMB)Ω(EMP) since the protein binding sequence of the mor-44

phogen that determines EMB and EMP is the same in this case).45

Given that the joint number of sequences that give E and δE46

is a product of two binomial coefficients, the sequence entropy47

function will approximately be a sum of two quadratic terms48

S(E, δE) ≈ − 2
`pd

(E/εpd − `pd/2)2 − 2
`pp

(δE/εpp − `pp/2)2. At49

small population sizes, where genetic drift dominates selection,50

we expect the distribution of common ancestors to be such that51

they are poised at the incompatibility boundary for E and δE;52

incompatibilities then arise when substitutions arise that take53

hybrids across the boundary.54

Given that a 3-point DMI between the R, M and T genetic55

loci corresponds to co-evolution of a pair of binding energy56

traits, instead of a single binding energy trait for 2-point and57

3-point DMIs that involve α, means the fraction of substitutions58

that lead to incompatibilities versus those that keep the hybrids59

compatible/fit becomes larger when going from one to two60

dimensions. This then explains why 3-point DMIs between the61

R, M and T loci gives rise to incompatibilities more quickly than62

those involving the α loci, as seen in Fig.7. Also since at small63

population sizes the only influence that fitness will have is in64

defining the region of incompatibility for the traits of interest,65

we see that for each type of DMI there are very little differences66

in the rate of growth of DMIs.67

4-point DMIs correspond to an interaction where all four loci68

require a particular combination of alleles for good patterning.69

As previously noted they are of much smaller number compared70
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Figure 8 Plot of the spectrum 4-point DMIs vs divergence time for different scaled population sizes.

to 2- and 3-point DMIs, so here, we do not examine these DMIs1

in detail. However, we note that the 4-point DMIs shown in2

Fig.8, show a similar pattern as found with 3-point DMIs, where3

for small scaled population sizes the DMIs tend to cluster, which4

suggests, as found for 2- and 3-point DMIs, this is due to se-5

quence entropy constraints dominating the growth of DMIs; on6

the other hand, at large scaled population sizes this degeneracy7

is lifted and each hybrid has a different growth rate of DMIs,8

depending on their particular contribution to fitness and how9

that balances against the constraints of sequence entropy.10

Discussion11

There is still very little understood about the underlying genetic12

basis that gives rise to reproductive isolation between lineages.13

Gene expression divergence is thought to be a strong determi-14

nant of the differences between species (King and Wilson 1975;15

Wolf et al. 2010; Wray 2007; Abzhanov et al. 2006; Wittkopp et al.16

2008) with a growing body of evidence for their direct role in17

speciation, particularly through transcription factors (Ting et al.18

1998; Brideau et al. 2006; Mack and Nachman 2016). Here build-19

ing on previous works which modelled the mechanistic basis20

and growth of DMIs in models of transcription factor DNA bind-21

ing (Tulchinsky et al. 2014b,a; Khatri and Goldstein 2015a,b), we22

have investigated the growth of DMIs for a simple genotype-23

phenotype map of gene regulation for spatial patterning in em-24

bryonic development, previously studied in Khatri et al. (2009).25

Our results in this more complicated gene regulatory system26

confirm the basic conclusions from simple models of transcrip-27

tion factor binding (Khatri and Goldstein 2015a,b) that 1) as the28

population size decreases below the inverse of the characteristic29

scale of fitness (2NκF � 1) incompatibilities arise more quickly,30

2) they grow in this regime as a quadratic power law with di-31

vergence time (PI ∼ (µt)2) and 3) for large scaled population32

sizes incompatibilities arise more slowly with a characteristic33

negative curvature on a log-log plot indicative of a diffusive34

process. We note that although we find a quadratic growth of35

DMIs with divergence time (only at small scaled population36

sizes), which is as predicted by Orr’s framework (Orr 1995), the37

underlying reason is very different in these models and arises as38

the common ancestor is likely to be close to the inviable region39

that gives non-functional binding (Khatri and Goldstein 2015b).40

In the case of simple models of transcription factor DNA41

binding (Khatri and Goldstein 2015a,b), smaller diverging popu-42

lations, or traits under weaker selection, were found to develop43

incompatibilities more quickly, as their common ancestor is al-44

ready less well adapted due to sequence entropic pressures45

dominating fitness at smaller population sizes. Here we see that46

this basic principle that incompatibilities arise more quickly due47

to a higher drift load of the common ancestor remains valid48

for a more complicated gene regulatory system. Although this49

question requires greater empirical attention, there is direct and50

indirect evidence that smaller populations develop incompati-51

bilities more quickly; for example, the greater species diversity52

in smaller habitats, such as Hawaii Mayr (1970), the island of53

Cuba Glor et al. (2004) and East African Great Lakes (Santos and54

Salzburger 2012; Owen et al. 1990), contrasted with the much55

slower speciation rate for animals with large ranges or popula-56

tion sizes (Mayr 1970, 1954; Rubinoff and Rubinoff 1971; Cooper57

and Penny 1997). In addition, there is more direct evidence from58

the net rates of diversification (Coyne and Orr 2004) inferred59

from phylogenetic trees (Nee 2001; Barraclough and Nee 2001),60

which support this population size trend.61

The results of this model have also revealed a number of other62

emergent properties for the growth of hybrid incompatibilities,63

not obtainable by simply modelling transcription factor DNA64

binding. For example, for small populations we find clustering65

in the behaviours of growth of different types of DMIs, in par-66

ticular, 3-point DMIs, which can be explained by the different67

sequence entropy constraints on different binding energies. Also68

we found that although the growth of DMIs at large population69
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sizes has a characteristic negative curvature on a log-log plot,1

predicted theoretically by Khatri and Goldstein (2015a), indi-2

cating that hybrid traits randomly diffuse, a simple model of3

diffusion does not fit the simulation data well; instead a model4

of sub-diffusion, that would arise if there are a number of kinetic5

traps giving a broad distribution of substitution times, does6

fit the data well. This is consistent with the finding that the7

genotype-phenotype map has a rough fitness landscape, which8

is only revealed at sufficiently large population sizes (Khatri et al.9

2009). These predictions can be tested empirically by more de-10

tailed studies of the divergence of species and their population11

size dependence, such as in Matute and Coyne (2010); Moyle12

and Nakazato (2010), which were used to test Orr’s original13

prediction of quadratic growth of DMIs with divergence time.14

However, most importantly we find that pair-wise or 2-point15

DMIs dominate compared higher order DMIs (3- and 4- point16

in this model with 4 loci). This is in contrast to Orr’s theoretical17

argument that the fraction of viable paths from the common18

ancestor to the current day species increases as we consider19

higher order DMIs (Orr 1995). This argument partly rests on20

the assumption that the number of inviable genotypes remains21

fixed as a larger number of loci are considered, which would22

seem a very strong assumption. In the same paper Orr also23

argues that since there are (L
n) possible n−point DMIs (the num-24

ber of combinations of n loci amongst L loci), so as long as25

n < L/2, we would expect an increase in the number of DMIs26

as n increases; for L = 4 as in this paper, this would suggest27

2-point DMIs are most numerous, potentially explaining the28

results we find. However, Orr’s calculation in fact undercounts29

the number of DMIs, which as we showed above (see footnote)30

increases as (2n − 2)(L
n), in which case 3-point DMIs, would a31

priori be more numerous for 4 loci. Our results would then sug-32

gest, at least in this simple, but still relatively complex model,33

that biophysical constraints provide a stronger constraint on34

the relative number of DMIs of different orders than a purely35

combinatorial argument would suggest. Again evidence could36

be obtained from more detailed studies similar to Matute and37

Coyne (2010); Moyle and Nakazato (2010), where a power law38

with an exponent greater than 2 would indicate higher-order39

DMIs are dominant; currently this evidence suggests a quadratic40

growth law, however, a study with more time-points or species-41

pairs would provide more confidence. An alternative approach42

would be to look for linkage disequilibrium between unlinked43

regions hybrid genomes, such was found with hybrids of two44

species of swordtail fish Schumer et al. (2014), and though com-45

putationally challenging, compare this against evidence for and46

pervasiveness of higher order epistasis. Although recent results47

of Weinreich et al. (2013), would seem to contradict our con-48

clusions, their finding of extensive complex epistasis relates to49

higher order interactions between sites within a single loci, cod-50

ing for protein stability or enzymatic activity, whereas our work51

relates to epistasis between multiple loci.52

There is an inherent simplicity with our gene regulatory mod-53

ule for spatial patterning, which requires only two proteins to54

bind to a regulatory region to turn on transcription; a key direc-55

tion to investigate would be the effect of multiple transcription56

factors binding to enhancer regions to control gene expression57

(Bintu et al. 2005; Spitz and Furlong 2012; Levo and Segal 2014),58

where there could be a large scope for complex epistasis across59

many loci coding for a large number of transcription factors.60

However, as our results show, despite the possibility and a prior61

expectation of a larger number of triplet interactions, pair-wise62

interactions dominate; for complex transcriptional control, if63

pair-wise interactions between proteins, and proteins and DNA64

dominate, for example in determining the binding affinity of65

transcriptional complexes, then our conclusions would hold.66

Overall, our results point to a basic principle, where devel-67

opmental system drift or cryptic variation (True and Haag 2001;68

Haag 2014; Gavin-Smyth and Matute 2013), play a key role in69

speciation; basic body plans or phenotypes are conserved, but70

co-evolution of the components and loci of complicated gene71

regulatory networks can change differently in different lineages,72

giving incompatibilities that grow in allopatry. Here, we suggest73

a universal mechanism, where the rate of growth of incompatibil-74

ities is controlled by the drift load, or distribution of phenotypic75

values, of the common ancestor, which in turn is determined76

by a balance between selection pushing populations towards77

phenotypes of higher fitness and genetic drift pushing them78

towards phenotypes that are more numerous (higher sequence79

entropy). In particular, although in principle more complicated80

regulation could give rise to more complex patterns of epistasis81

(Orr 1995), our findings suggest that more simple, pair-wise,82

incompatibilities dominate the development of reproductive83

isolation between allopatric lineages under stabilising selection.84
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