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The process of molecular evolution has been dominated by the Kimura paradigm for nearly 60 years; mutations
arise at a certain rate in the population and they go to fixation with a probability given by Kimura’s classic
formula, which assumes there are no further mutations that interfere with the fixation process. An alternative
view is that rare variants exist in the population in a mutation-drift-selection balance and rise to fixation through
a combination of chance (genetic drift), selection and mutation. When mutations increase in strength, but still in
the weak regime, we would expect the Kimura rate approximation to be an overestimate, as a rare variant which
grows in frequency will suffer a greater backward flux of mutations, slowing progress to fixation. However, to date
calculating important quantities for a general model of selection and mutation, like the rate of fixation of these
rare variants has not been tractable in the conventional diffusion approximation of population genetics. Here, we
use Fisher’s angular transformation to convert the frequency-dependent diffusion inherent in population genetics
to simple diffusion in an effective potential, which describes the forces of selection, drift and mutation. Once this
potential is defined it is simple to show that the mean first passage time is given by a double integral which relate
to populations at the barrier. Exact numerical integration shows excellent agreement with discrete Wright-Fisher
simulations, which do show a slowing down of the fixation of mutants at higher mutation rates and for strong
positive selection, compared to the Kimura prediction. We then seek a closed-form analytical expression for the
rate of fixation of mutants, by adapting Kramer’s approximation for the mean first passage time. This overall gives
an accurate approximation, but however, does not improve on the Kimura rate.

I. INTRODUCTION

The probability of fixation of a mutant in a wild-type pop-
ulation is a key quantity in population genetics; given some
initial frequency x0 in a population of finite size N , what
is the probability that the frequency of this mutant vari-
ant reaches x = 1. In the simple case with no mutations,
Kimura calculated his famous equation1, which describes a
probability of fixation which has a saturating form, in the
diffusion limit of the Wright-Fisher model. This has formed
the basis of understanding the substitution process in stud-
ies of molecular evolution in the weak mutation regime,
where mutations arise do novo and fix with a probability
given by Kimura’s equation; the overall rate of substitution
of different mutants is simply the per individual mutation
rate multiplied by the population size and Kimura’s fixation
probability.

However, in reality when mutations are of sufficient
strength, but still in the weak regime (Nµ < 1), we would
expect even when one variant is nominally “fixed”, there
will be polymorphisms that co-exist at low frequency in the
population. Further, as a variant goes towards fixation,
back mutations should retard its progress, causing a slow-
ing of the rate of fixation, compared to the Kimura rate.
If mutations are included in the diffusion approximation of
a Wright Fisher process, it is not possible to calculate the
mean time to fixation in simple closed-form. A key diffi-
cultly of the diffusion approximation is that the effective
diffusion constant for variant frequencies, depends on the

frequency of the variant. When a variant is close to fixa-
tion or loss, diffusion slows down compared to intermediate
frequencies since the variance in the change in variant fre-
quency has a characteristic binomial form. Fisher found a
transformation to an angular frequency, where diffusion is
independent of angular frequency, which, however, comes
at the cost of introducing an effective non-linear potential
that describes the flux of diffusers to the boundaries2. This
non-linearity makes any exact calculations of the dynam-
ics difficult, but Khatri2, developed a heuristic method to
find accurate asymptotic Gaussian Greens functions in the
short-time limit. Here we show that given this potential,
a standard technique can be used to calculate the MFPT,
where it is given as a double intergral over the barrier and
well populations. When compared to discrete Wright-Fisher
simulations, numerical evaluation of this integral gives very
accurate estimates of the MFPT and confirms that vari-
ants at higher mutation rates have their fixation rate re-
tarded, compared to the Kimura rate. We also calculate a
Kramers-type approximation3, which is classically used for
the MFPT of chemical reactions, where the potential en-
ergy barrier impeding a reaction is large; comparing to the
discrete Wright-Fisher simulations we find the calculation is
accurate, but does not improve on the Kimura rate. In addi-
tion, the Kramers approximation, as for Kimura theory, fails
to predict the reduction of fixation rate at higher mutation
rates and strong positive selection.
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II. FISHER’S ANGULAR TRANSFORMATION
FOR 2-VARIANTS

In the diffusion approximation the stochastic dynamics of
gene frequency x (= n/N , where n is the number of copies
of the mutant variant a1 and N the total population) is
given by

∂p(x, t)

∂t
= − ∂

∂x
(A(x)p(x, t))+

1

2

∂2

∂x2
(B(x)p(x, t)) , (1)

where p(x, t) is the probability density of gene frequency
and A(x) is the mean change in gene frequency per genera-
tion and B(x) is the variance of gene frequency change per
generation - we assume these only have a time-dependence
though x(t). This is the forward Fokker-Planck equation
whose solutions represent a progression forward though time
given an initial condition p(x, 0) = δ(x−x0) - i.e. we know
the initial gene frequency at time zero. For selection and
arbitrary mutation:

A(x) = ∆fx(1− x) + µ21(1− x)− µ12x (2)

where ∆f = f(a2) − f(a1), so ∆F > 0 means selection
favours variant a2, µ12 is the mutation rate from variant
1→ 2 and µ21 the mutation rate from variant 2→ 1 and

B(x) =
1

N
x(1− x). (3)

They key difficulty with Eqn.1 is that the variance of gene
frequency change per generation depends on the frequency
x. Fisher proposed a transformation to a different co-
ordinate θ:

θ = cos−1(1− 2x). (4)

It is simple to show that the resultant Fokker-Planck equa-
tion is a diffusion equation in an effective potential

∂q

∂t
=

1

2N

∂2q

∂θ2
+

∂

∂θ

(
∂U(θ)

∂θ
q

)
(5)

where the derivative of the effective potential in the above
equation is given by,

2N
∂U

∂θ
= −

(
N∆f sin(θ)

+ (2N(µ12 + µ21)− 1) cot(θ)

+
2N(µ21 − µ12)

sin(θ)

)
. (6)

so that the potential is found on integration to be

2NU(θ) =
(
N∆f cos(θ)− (2N(µ12 + µ21)− 1) ln(sin(θ))

− 2N(µ21 − µ12) ln(tan(θ/2))
)
. (7)

From Eqn.5 it is then simple to show that the equilibrium
pdf is given by

p∗(θ) =
1

Z
e−2NU(θ). (8)

In Fig.1, we have a plot of the potential for 2Nµ12 = 0.1
and µ21 = 2µ12 for various values of 2N∆F .

III. MEAN FIRST PASSAGE TIME FOR
2-VARIANTS

The first passage time is the time it takes for a diffuser to
first reach a boundary – this will have a distribution and we
want to calculate it’s mean, which is the mean first passage
time (MFPT). There are a number of ways to do this, one of
which is to solve the corresponding backward Fokker-Planck
equation4,5 for the mean first passage time for an initial fre-
quency; however, under selection and mutation, no-known
closed form solution is known. Here, we will assume that the
initial frequency of the rare variant is not known, but that
it is in quasi-equilibrium due to a mutation-selection-drift
balance near x = 0 or θ = 0. After some period of time
the rare variant will drift in frequency to a critical value,
after which a combination of selection and mutation take
the variant to fixation. The critical frequency θ∗ will be
given by the maximum in the effective potential U(θ). A
method to solve such problems was developed by Kramers3.
Here, the simplest exposition is to consider that we inject
rare variants into the system at θ = 0, at a rate J , and then
remove them when they reach fixation. From Eqn.5 the net
flux in the system must equal to a constant, the number we
inject per generation J :

− 1

2N

∂q̃

∂θ
−
(
∂U(θ)

∂θ
q̃

)
= J (9)

where q̃(θ) is the non-equilibrium steady-state distribution
when there is a net flux through the system. Its integral is
the number of diffusers in the system and so the MFPT τ
simply obeys

τ =

∫ π
0

dθq̃(θ)

J
, (10)

An expression for the steady-state distribution can be ob-
tained by integrating Eqn.9:

q̃(θ) = 2NJe−2NU(θ)

∫ θ†

θ

dθ′e2NU(θ′) (11)
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FIG. 1. The effective potential U(θ) that arises after Fisher’s angular transformation Eqn.4, for 2Nµ12 = 0.1 and µ21 = 2µ12

for various values of 2N∆F .

where θ† is the angular frequency, which corresponds to fix-
ation - as we shall see our answer will not be very critical on
the exact value of θ†. Using Eqn.10 and 11, and swapping
the order of integration, we find the MFPT is given by the
following double integral:

τ = 2N

∫ θ†

0

dθ′e2NU(θ′)

∫ θ′

0

dθe−2NU(θ). (12)

This expression is exact and can be numerically inte-
grated for given values of ∆f , N , µ12, and µ21. How-
ever, the potential is singular at θ = 0 and θ = π, which
requires a careful numerical integration scheme that essen-
tially integrates a modified integrand, where the singular-
ity is removed by choice of a function that has the same
limiting form at the singular points and is itself is inte-
grable over the region of interest. Using the limiting form
limθ→0{e−2NU} → e−N∆f2−2N∆µθ4Nµ21−1 as a function
that is simple to integrate, we perform this numerical inte-
gration using a standard numerical routine in Matlab. The
results are shown in Fig.2 and show excellent agreement
with the MFPTs calculated from simulations of the discrete
Wright-Fisher process.

We can also develop an approximation of the integral as
follows, which is a modification of Kramer’s approximation3:

the outer integral is of the form
∫ θ†

0
dθ′P (θ < θ′)e2NU

and so will be dominated by values of theta where U
is maximum, which when mutation is weak, will corre-
spond to the top of the barrier of U – at the barrier the
function P (θ < θ′) (which comes from the inner inte-
gral above) will vary slowly as most of the density will

be to the “left” of the barrier, so we can take this fac-
tor out of the integral, evaluated at the barrier θ∗, to give
τ ≈ 2NP (θ < θ∗)

∫
dθe2NU . To evaluate P (θ < θ∗),

we make the approximation that θ � 1, 2NU(θ) ≈
Ns(1− θ2/2)− (2NµΣ− 1) ln(θ)− 2N∆µ ln(θ/2) (where
µΣ = µ12 + µ21 and ∆µ = µ21 − µ12). The resultant in-
tegral that defines P (θ < θ∗) can then be rearranged by
change of variable to give the definition of the lower incom-
plete gamma function γ(z, a) =

∫ a
0

duuz−1e−u, so that the
inner integral is given by

P (θ < θ∗) ≈ e−N∆f2−2N∆µ

∫ θ∗

0

dθe
1
2N∆fθ2θ4Nµ21−1

= 22Nµ12−1e−N∆f (−N∆f)−2Nµ21

γ(2Nµ21,−N∆f(θ∗)2/2). (13)

Next to evaluate the outer integral, we approximate the
potential around the maximum of the barrier by a quadratic,
so U(θ) ≈ U(θ∗)− 1

2κ(θ− θ∗)2, where κ = |d2U/dθ2|θ=θ∗
so that,

∫ θ†

0

dθ′e2NU(θ′) ≈ e2NU(θ∗)

∫ θ†

0

dθ′e−Nκ(θ′−θ∗)2

≈ e2NU(θ∗)

√
π

Nκ
, (14)

where we have extended the upper and lower limits to ±∞,

so we can use the standard integral
∫∞
−∞ dze−αz

2

=
√
π/α.
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FIG. 2. Comparison of discrete Wright Fisher simulations
of MFPT (squares) to numerical integration of Eqn.14 (solid
line) and Kimura’s approximation (dashed line) and Kramer’s
method (dotted line). Top graph is for µ12 = µ21 and bottom
graph is for µ21 = 2µ12.

This last approximation assumes that 1/
√

2Nκ� π, which
as we can see from Fig.1 will not be very good for 2N∆f �
1; we will see in Fig.2 that if we replace this approximation
for the barrier integral with a numerical integration, this
regime is where this calculation is less accurate. The final
expression for the MFPT is then

τ ≈ e−N∆f2−2Nµ12

√
4Nπ

κ
e2NU(θ∗) (15)

(−N∆f)−2Nµ21γ(2Nµ21,−
1

2
N∆f(θ∗)2).

The rate of fixation of the rare variants is then k = 1/τ .
The only task left is to calculate the position of the barrier,
θ∗ and the curvature at the barrier, κ = |d2U/dθ2|θ=θ∗ .
The first is done by solving for dU/dθ = 0, which gives a
quadratic equation for cos θ∗, which has solution:

cos(θ∗) =
2NµΣ − 1 + 2Nκ

2N∆f
. (16)

where κ is calculated directly from the second derivative of
the potential as:

2Nκ =
√

(2NµΣ − 1)2 + 4N∆f(N∆f + 2N∆µ)).
(17)

We can see that comparing to simulations in Fig.2, Eqn.15
is generally quite accurate, where this accuracy diminishes
somewhat for 2Nµ = 0.1 and 2N∆f = 5, where the calcu-
lation underestimates the MFPT. Finally, we compare this
calculation to the Kimura rate:

k = µ21
1− e−2∆f

1− e−2N∆f
, (18)

where τ = 1/k and we assume the net mutational input
only depends on µ21. We see that the Kimura rate (dashed
lines in Fig.2 very accurately predicts the mean first passage
time, including the regime 2N∆f � 1, where Eqn.15, in
contrast, is less accurate. However, for large and positive
2N∆f the Kimura formula underestimates the MFPT, as
also found with Eqn.15.

These results support the original hypothesis that when
mutations begin to increase in strength (but still in the weak
mutation regime Nµ� 1), we should expect to see that the
Kimura approximation will overestimate the rate of fixation
due to the retardation effect of back mutations as a variant
approaches fixation; this is consistent with the observation
that the effect is stronger when the difference in mutation
rates ∆µ > 0, such that back mutations are stronger. How-
ever, we find that this retardation effect is only significant
when 2N∆f > 1.

IV. CONCLUSIONS

Calculating the rate of fixation of rare variants or poly-
morphisms in population is an important quantity to under-
stand the rate of molecular evolution. Although, the Kimura
approximation for the rate of fixation of mutants is widely
popular, it ignores the effect of mutations, as a mutant rises
to fixation. We should expect it to overestimate the rate
of fixation for large mutation rates, due to an increasing
flux of mutations back to the wildtype, as the mutant al-
lele approaches fixation. To investigate this effect, we show
that techniques from chemical reaction kinetics for calcu-
lating the rate of crossing a potential energy barrier, can be
adapted to this canonical population genetics problem; first
the frequency-dependent diffusion of the Wright-Fisher pro-
cess is removed by Fisher’s angular transformation6, which
results in simple diffusion or Brownian motion in an effec-
tive potential, which is analogous to the potential energy in
a chemical reaction. The mean first passage time is then
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expressed as a double integral over the potential surface;
we show that careful numerical integration of this integral
gives excellent agreement with the MFPT calculated from
discrete Wright-Fisher simulations. In comparison, we see
the Kimura approximation does underestimate the MFPT,
but only for larger mutation rates and for strong positive
selection. The failure of the Kimura theory is likely due to
the effect of back mutations retarding increase in frequency
of the allele, as it approaches fixation; in support of this we
find that the magnitude of the discrepancy between Kimura
and Wright-Fisher simulations, increases as the ratio of the
backward to forward mutation rate increases. We also eval-
uated this integral approximately using a modification of
Kramers’ theory3, although overall this does not improve
on Kimura’s theory.

In general, these results point to a new calculational tech-
nique, where Fisher’s transformation converts classic prob-
lems in population genetics to one of simple Brownian mo-
tion in a potential, which from the literature in physics and
chemistry4,7 exist many approximate methods to find solu-
tions.
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