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Abstract

Each individual cell produces its own set of transcripts, which is the combined
result of genetic variation, transcription regulation and post-transcriptional
processing. Due to this combinatorial nature, obtaining the exhaustive set of
full-length transcripts for a given species is a never-ending endeavor. Yet, each
RNA deep sequencing experiment produces a variety of transcripts that depart
from the reference transcriptome and should be properly identified. To address
this challenge, we introduce a k-mer-based software protocol for capturing local
RNA variation from a set of standard RNA-seq libraries, independently of a
reference genome or transcriptome. Our software, called DE-kupl, analyzes k-mer
contents and detects k-mers with differential abundance directly from the raw
data files, prior to assembly or mapping. This enables to retrieve the virtually
complete set of unannotated variation lying in an RNA-seq dataset. This
variation is subsequently assigned to biological events such as differential
lincRNAs, antisense RNAs, splice and polyadenylation variants, introns, expressed
repeats, and SNV-harboring or exogenous RNA. We applied DE-kupl to public
RNA-seq datasets, including an Epythelial-Mensenchymal Transition model and
different human tissues. DE-kupl identified abundant novel events and showed
excellent reproducibility when applied to independent deep sequencing
experiments. DE-kupl is a new paradigm for analyzing differential RNA-seq data
with no preconception on target events, which can also provide fresh insights into
existing RNA-seq repositories.

Background
Successive generations of RNA sequencing technologies have established since the

1990’s that organisms produce a highly diverse and adaptable set of RNA molecules.

Modern transcript catalogs such as Gencode[1] now reach hundreds of thousands

of transcripts, reflecting widespread pervasive transcription and alternative RNA

processing. However, in spite of years of high throughput sequencing efforts and

bioinformatics analysis, we contend that large areas of transcriptomic information

remain essentially disregarded.

To illustrate this point, let us consider the biological events that drive transcript

diversity. Firstly, transcripts result from transcription initiation events either at

promoters of protein-coding and non-coding genes, or at multiple antisense or in-

ter/intra genic loci. Secondly, transcripts are processed by a large variety of mech-

anisms, including splicing and polyadenylation, editing [2], circularization [3] and

cleavage/degradation by various nucleases [4, 5]. Thirdly, an essential, yet often over-

looked, source of transcript diversity, is genomic variation. Polymorphism and struc-
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tural variations within transcribed regions produce RNAs with single nucleotide

variations (SNVs), tandem duplications or deletions, transposon integrations, un-

stable microsatellites or fusion events. These events are major sources of transcript

variation that can strongly impact RNA processing, transport and coding potential.

Current bioinformatics protocols for RNA-seq analysis do not properly account

for this vast diversity of transcripts. Prevalent computing strategies can be roughly

classified into two categories: reference-based tools [6, 7, 8, 9] rely on the alignment

(or pseudo-alignment) of RNA-seq reads to a reference genome or transcriptome,

while de novo assembly tools [10] reconstruct full-length transcripts based on the

analysis of RNA-seq reads. These protocols fail to account for true transcriptional

diversity in several respects: (i) they ignore small-scale variations such as SNP or

indels (ii) they rely on full-length transcripts that cannot represent the full range of

variation observed in organisms and (iii) they misrepresent transcripts containing

repeats due to ambiguity in alignment or assembly.

We propose a new approach to RNA-seq analysis that facilitates the discovery of

any type of event occurring in an RNA-seq library independently of alignment or

transcript assembly. Our approach relies on k-mer indexing of sequence files, a tech-

nique that recently gained momentum in NGS data analysis [8, 9, 11, 12, 13]. To

identify biologically meaningful transcript variation, our method selects k-mers with

differential expression (DE) between two experimental conditions, hence its name:

DE-kupl. Using public human RNA-seq datasets, we show that a large amount of

RNA variation can be captured that is not represented in existing transcript cata-

logs. As proofs of concept, we applied DE-kupl to RNA-seq data from an Epythelial-

Mensenchymal Transition (EMT) model and from different human tissues. DE-kupl

identified abundant novel events and showed excellent reproducibility when applied

to independent deep sequencing experiments.

Results
Reference datasets are an incomplete representation of actual transcriptomes

First, we analyzed k-mer diversity in different human references and high-

throughput experimental sequences. To this aim, we extracted all 31-nt k-mers from

sequence files using the Jellyfish program [14]. Figure 1A-B compares k-mers from

Gencode transcripts, the human genome reference and RNA-seq libraries from 18

different individuals [15] corresponding to three primary tissues (6 libraries/tissue).

To minimize the risk of including k-mers containing sequencing errors, we retained

for each tissue only the set of k-mers that appear in 6 or more individuals.

Measures of k-mer abundance show that k-mers are overwhelmingly associated

to Gencode transcripts (Fig 1B1). However, when considering k-mer diversity, a

large fraction of k-mers are tissue-specific and not found in the Gencode reference

(Fig 1A). These tissue-specific k-mers may result from sequencing errors, genetic

variation in individuals or novel, or non-reference transcripts. The majority of RNA-

seq k-mers that do not occur in Gencode are found in the human genome reference

(Fig 1B, 1B2), suggesting polymorphisms and errors represent a minor fraction of

tissue-specific k-mers and a lot of k-mers results from expressed genome regions that

are not represented in Gencode. Further scrutiny of tissue-specific k-mers shows that

a significant fraction can be mapped to the transcriptome with one substitution.
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However, for each tissue there is an average of 1 million k-mers that cannot be

mapped to either reference (1B3).

Non-reference k-mers classify samples as accurately as reference transcripts. We

performed a Principal Component Analysis (PCA) of the above human tissue sam-

ples using conventional transcript counts and k-mer counts. PCA based on 20,000

randomly selected unmapped k-mers was able to differentiate tissues as well as PCA

based on estimated gene expression or transcript expression (Fig 2). This illustrates

how a ”shadow”, non reference transcriptome that is not incorporated in standard

analyses comprises biologically relevant expression data.

When comparing RNA-seq and whole genome sequence (WGS) data from the

same individual [16], library-specific k-mers represent a much larger fraction of

RNA-seq than of WGS k-mers (Fig 3). This shows that non-reference sequence

diversity is larger in RNA-seq than in WGS. Altogether these results point towards

the existence of a significant amount of untapped biological information in RNA-seq

data.

Non-reference k-mers may result from three classes of biological events. First, they

may stem from genetic polymorphism in the studied sample. Second, they may result

from RNA processing, notably, but not limited to, splicing and polyadenylation. A

predominant source of k-mers in this category is intron retention, whose products

are not usually incorporated into reference databases and are mostly by-products of

regular gene expression. A third, major source of k-mer ”innovation” is intergenic

expression (eg. lincRNA, antisense RNA, expressed repeats or endogenous viral

sequences). Altogether, the combination of these genetic, transcriptional and post-

transcriptional events may have a profound impact on transcript function.

A new k-mer based protocol for deriving transcriptome variation from RNA-seq data

We designed the DE-kupl computational protocol with the aim to capture all k-mer

variation in an input set of RNA-seq libraries. This protocol is composed of four

main components (Figure 4):

1 Indexing: index and count all k-mers (k=31) in the input libraries

2 Filtering: delete k-mers representing potential sequencing errors or perfectly

matching known transcripts

3 Differential Expression (DE): select k-mers with significantly different abun-

dance across conditions

4 Assembly and annotation: build contigs of assembled k-mers and annotate

contigs based on sequence alignment.

DE-kupl departs radically from existing RNA-seq analysis procedures in that it

does neither ”map-first” (a la Tuxedo suite [17]) or ”assemble-first” (a la Trin-

ity [18]) but instead directly analyzes contents of the raw FASTQ files, displacing

assembly and mapping to the final stage of the procedure. In this way, DE-kupl

guarantees that no variation in the input sequence (even at the level of a single

nucleotide) is lost at the initial stage of the analysis. Even unmappable k-mers

such as sequences from repeats, low complexity regions or exogenous organisms,

are retained up to the final stage and can be analyzed. The DE-kupl protocol is

detailed in Methods. We highlight here some of its key features. First, DE-kupl

must deal with the large size of the k-mer index. A single human RNA-seq library
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contains in the order of 108 distinct k-mers and an index for 50 individual samples

can reach billions of k-mers. We selected the Jellyfish tool for counting k-mers [14]

as it presents very fast computing times and allows to store the full index on disk

for further query.

The central process in DE-kupl is k-mer filtering. Filtering out unique or rare

k-mers is relatively straightforward and considerably reduces k-mer diversity and

the amount of sequence errors. Another stringent filter is the removal of k-mers

matching reference Gencode transcripts. The rationale for this is that the bulk of

k-mers in RNA-seq data comes from expressed exons, and we are not interested

in this canonical exon expression, as it can be captured efficiently by conventional,

reference-based protocols [8, 9]. Discarding these k-mers enable us to ignore the

overwhelming signal caused by known transcripts and focus on expressed regions

harboring differences from the reference transcriptome.

Two modes are available to perform differential analysis of k-mers (Figure S10 &

Methods): The t-test filter mode is fast and has lower sensitivity, i.e. it retrieves

only the most significantly differentially expressed k-mers. The DESeq2-based mode

[19] is slower, more sensitive and is recommended for small samples (fewer than 6

vs. 6 samples). Whenever possible, key steps of the procedure (k-mer table merging,

t-test, k-mer assembly) were written in C, enabling the whole procedure to run on

a relatively standard computer in a reasonable amount of time.

Discovery and assembly of differential RNA contigs with DE-kupl

To assess the capacity of DE-kupl to discover novel differential events, we applied

the procedure to 12 RNA-seq samples from an EMT cell-line model [20], in which

NSCLC cells were induced by ZEB1 expression over a 7-day time course. We com-

pared 6 RNA-seq libraries from the ”Epythelial” stage of the time course (uninduced

and Day 1) with 6 libraries from the ”Mesenchymal” stage (Day 6 and 7). The full

DE-Kupl procedure was completed in about 4 hours in the t-test mode (single-

threaded), and 6.5 hours in the DESeq2 mode (multi-threaded), using 8 computing

cores, 54 GB RAM and 7 to 42 GB of hard disk space (Table 1). Recurrence filters

efficiently reduced k-mer counts from 707M to 92.5M and the Gencode filter fur-

ther reduced counts to 40.3M. Differential analysis using the t-test mode eventually

retained 3.8M k-mers that were assembled into 133.690 contigs (Table 2). The re-

sulting contigs ranged in size from 31 bp (corresponding to an ”orphan” k-mer) to

3.6 kbp, with a major peak of short 31-40 bp contigs and a minor peak around 61

bp (Fig 5A).

Almost all (99.2%) of the 133k DE contigs mapped to the human genome. Map-

ping revealed that most 61 bp contigs result from assembly of 31 overlapping k-mers

harboring a single nucleotide variation (SNV) at every position of the k-mer. This

phenomenon also causes a higher mismatch ratio for contigs around 61 bp (Fig 5B).

Contigs that do not map to the human genome are generally shorter than mapped

contigs (Fig 5A), indicating a lower signal-to-noise ratio in unmapped contigs. Ex-

pectedly, shorter mapped contigs tend to map at multiple loci more often than

longer ones (Fig 5C), however 80% of all contigs are uniquely mapped (not shown).

Analysis of contig locations reveals distinct contig classes. Most contigs are located

in annotated introns and exons (Fig 6), however intronic contigs are predominantly
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exact matches while exonic contigs are predominantly mismatched. This effect is due

to Gencode filtering : contigs with exact matches to introns are usually not filtered,

as they do not pertain to a Gencode transcript, while contigs that match exons are

filtered out unless they differ from the reference. This difference might be in the

form of SNVs, or through exons extending in flanking intergenic or intronic regions.

Under the same rationale, contigs mapping to intergenic and antisense regions are

depleted in SNVs (Fig 6), consistent with their location in unannotated lncRNAs

and antisense-RNAs, while contigs overlapping exon-exon junctions behave like ex-

onic contigs (high rate of SNV). However, a significant fraction of exon junction

contigs are exact matches, indicating they may correspond to novel junctions.

Assigning contigs to biological events

We assigned DE contigs generated from the EMT dataset to 11 classes of potential

biological events, using the rule set described in Table 3. Since intragenic DE con-

tigs may result from a mere over/under-expression of their host gene and do not

necessarily reflect a differential usage (DU) of transcript isoforms, we implemented

a simple strategy to distinguish the two situations based on the differential status

of the host gene (Methods). We made this distinction for splicing, polyadenylation,

SNVs and intron retention (Table 3).

From the total set of 133k DE contigs (supplemental data), we extracted about

6900 contigs matching our rule set for either event class (Table 3). We noted that a

single event often generates multiple contigs. We thus further grouped contigs into

”loci”, defined as independent annotated genes or intergenic regions harboring one

or more contigs (Table 3). We describe below the main classes of events identified.

Differential splicing. Analysis of split-mapped contigs found evidence of poten-

tially novel differential splice variants in 1040 contigs (Table 3, Fig 7A,B,C). Note

that this class excludes SNV-containing contigs, as to avoid known splice variants

associated to genetic polymorphism. Furthermore, 171 of these contigs were classi-

fied as DU, suggesting differential splicing at these sites may not be a consequence

from DE of the whole gene. Remarkably, these novel events include a number of

subtle variations at 5’ and 3’ splice sites with 3-15 bp difference from the annotated

reference, which escaped prior annotation (see eg. Fig S1).

Differential polyadenylation. We extracted all contigs aligned with 5 or more

clipped (e.g. non-reference) bases at their 3’ end, and containing 5 or more trailing

As. Out of 140 such poly-A terminated contigs, 105 (75%) contained an AATAAA

or variant polyadenylation signal (Table S1), indicating they result from actual

polyadenylated transcripts (Table 3, line ”PolyA”). Note these are not necessarily

novel polyadenylation sites since polyadenylated transcripts always create k-mers

that differ from the reference transcriptome and are hence retained by DE-kupl.

Indeed, only 6 of the 105 poly-A contigs mapped intergenic regions. Furthermore,

only 17 poly-A contigs mapped to genes with no differential expression (”polyA DU”

in 3), and these had relatively poor fold change values (Table S11) raising doubt

on their DU status. Altogether this analysis demonstrates that DE-kupl is able to

capture bonafide polyadenylated transcripts present in the sequencing reads, how-

ever we did not observe any clear case of differentially polyadenylated genes in the

experiment studied.
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LincRNA. We identified a subset of 809 DE contigs (282 loci) corresponding to

potential long intergenic non-coding RNAs (Table 3, line ”lincRNA”). Criteria for

lincRNAs were contigs of size > 200nt mapped to an intergenic locus. Visual inspec-

tion revealed clear lincRNA-like patterns, whith contigs clustered into well defined

transcription units with abundant read coverage and evidence of splicing (Fig 7C,

Fig S2). DE-kupl is thus an effective tool for the identification of novel differentially

expressed lincRNAs.

Antisense RNAs. When DE-kupl is applied to stranded RNA-seq libraries (as

with the EMT libraries used in this study), the resulting contigs are strand-specific

and can thus be used for identifying antisense RNAs (asRNAs) and disembiguating

loci with intricated expression on both strands. We identified 356 contigs from 156

loci mapping to the reverse strand of an annotated gene (Table 3, line ”asRNA”).

These antisense RNAs include very strong cases of differential expression (Fig 7D),

sometimes combined to apparent repression of the sense gene (Fig S3).

Allele-specific expression. As DE-kupl quantifies every SNV-containing k-mer, we

set out to exploit this capacity to identify potential allele-specific expression events.

We extracted all contigs including an SNV (either base substitution or indel) and

mapping to an exon whose host gene was not measured as differentially expressed

(Table 3, line ”SNV DU”). This was a less than perfect procedure, as we did not

explicitly test for a switch in allelic balance among the two conditions. Yet, among

the 717 contigs identified, some displayed strong apparent changes in allelic balance

between the E and M conditions (eg. Fig S4). The ability of DE-kupl to capture

differential SNV between datasets may be particularly interesting when looking for

recurrent mutations in subpopulations.

Intron retention and other intronic events. As highly expressed transcripts often

carry intronic byproducts, we expected DE-kupl to turn out a lot of ”parasitic”

intronic contigs. Indeed 1909 contigs mapped to intronic loci (Table 3, line ”intron”).

We thus focused on intronic k-mers from genes that were not DE (line ”intron DU”).

This filter identified 559 intronic contigs from 185 different genes. Inspection of read

mapping at these loci revealed clear instances of novel skipped of extended exons

(Fig S5), as well as cases where a specific short intronic region was differentially

expressed, reminiscent of the pattern observed at intronic processed miRNAs and

snoRNAs [21] (Fig S6). Therefore DE-kupl can be used for screening a wide variety

of exon/intron processing events in addition to alternative splicing.

Expressed repeats. Assessing the expression of human repeats by conventional

RNA-seq analysis protocols is difficult, as ambiguous alignments render repeat re-

gions ”unmappable” [22]. Since DE-kupl first measures expression independently

of mapping, we were able to collect and analyze differential contigs with multiple

genome hits. 4968 contigs of size 50nt or larger have multiple hits (not shown),

and 1141 are repeated more than 5 times (Table 3, line ”repeat”). RepeatMasker

[23] found 664 out of these 1141 sequences to match known repeats, mostly LINEs,

LTRs and SINEs (Fig S8). Further inspection showed that most of the remaining
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multiple-hit contigs correspond to unannotated repeats or low complexity regions.

One of the most striking differential repeats is an unannotated 22x66 bp tandem

repeat, located about 2 Mbp from the chromosome 8 telomere. This repeat is found

about 50-fold overexpressed in the Mesenchymal condition (Fig 7B, S7). These re-

sults indicate DE-kupl can serves as a screen for differential expression or activation

of endogenous viral sequences and other repeat-containing transcripts.

Unmapped contigs. Finally, we analyzed DE contigs that did not map the hu-

man genome. Unmapped contigs may result from transcripts produced by highly

rearranged genes or by exogenous viral genomes and could thus be highly relevant

biologically. In principle, DE-kupl is able to detect such events when levels of for-

eign RNA vary across samples. In this test set, where all samples come from an

invitro cell line, we did not expect to observe such a phenomenon. Indeed, out

of 114 unmapped contigs of size > 50 bp (Table 3, line ”Unmapped”), the vast

majority (76%) correspond to vector sequences overexpressed in the ”M” condi-

tion (not shown), indicating these contigs come from the expression vector used for

EMT induction. The remaining unmapped contigs were low complexity sequences or

aligned to non-human primate sequences, indicating possible contamination and/or

misassemblies.

DE-kupl event detection is reproducible across independent datasets

We cross-validated DE-kupl findings using two independent human RNA-seq

datasets extracted from the Genotype-Tissue Expression (GTEx) [24] and the Hu-

man Protein Atlas (HPA) [15]. DE contigs were first obtained by running DE-kupl

on 8 colon vs 8 skin libraries from GTEx. Events were classified as above into intron

retentions, lincRNAs, polyadenylation sites, repeats, splice sites and unmapped. The

100 top events from each class (50 for class ’unmapped’) were extracted and their

k-mer labels saved as a sequence file. We then counted the occurrence of each k-mer

in colon and skin libraries from the HPA project and applied DEseq2 [19] to evalu-

ate the significance of the expression change between colon and skin (see Methods).

79% of the 550 DE k-mers identified in GTEX were also significantly DE in the

HPA data (Figure 8). Each event class showed clear reproducibility, with particu-

larly strong effects in lincRNAs and splice variants. This demonstrates that novel

events identified by DEkupl are reproducible across independent datasets in spite

of independent RNA extraction, library preparation and sequencing protocols.

Discussion
K-mer decomposition followed by filtering and differential expression analysis is a

novel way of analysing RNA-seq data that is capable of detecting a wider spec-

trum of transcript variation than previous protocols. DE-kupl explores all k-mers

in the input RNA-seq files (vs. only k-mers from annotated transcripts in recent

software [8, 9]) which potentially entails heavy computational time and memory

requirement. Using the Jellyfish k-mer indexing software and C-programming code

for key table manipulation, we achieved time/memory requirements on par with

popular mapping-based software for similarly sized datasets. Another key aspect of

our protocol that rendered a ”full k-mer” analysis tractable was applying successive
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filters for rare k-mers, Gencode transcripts and differential expression, which alto-

gether resulted in a 200-fold reduction in k-mer counts. These filters are not only

useful for technical reasons (they reduce runtimes and enable to get rid of most

sequence errors), but they also allow to focus on k-mers which (i) vary significantly

between the conditions under study, and (ii) would not be captured by conventional

reference-based protocols.

Contrarily to popular RNA-seq analysis software, DE-kupl does not attempt full-

length transcript assignment or assembly but focuses instead on local transcript

variations. Indeed, we do not consider full-length transcript analysis to be realis-

tic when screening for unspecified RNA variation, since the combinatorial nature

of genomic, transcriptomic and post-transcriptomic events would require an indef-

initely expanding transcript catalog. In some way DE-kupl is closer in spirit to

methods analyzing local RNA-seq coverage such as RNAprof [25] and DERfinder

[26], with the notable exception that DE-kupl does not involve mapping and thus

avoids mapping-related pitfalls while considerably widening the range of detectable

events. Another important benefit of the k-mer strategy is that k-mers representing

events of interest can be used to efficiently assess the occurence of similar events in

the huge public compendium of RNA-seq data.

We showed that DE-kupl is able to detect a wide range of differential transcription

and RNA processing events. Although specialized software may perform better at

assessing specific event classes such as differential splicing, to our knowledge no

software provides such an extensive screen. As differential RNA-seq analysis is often

conducted with an exploratory spirit, we argue that it is preferable to cast a wide net

with no preconception on target events, using DE-kupl along with a conventional

gene-by-gene differential expression analysis. Note that DE-kupl might also be an

interesting option for exploring other types of NGS data such as small-RNA-seq,

ChIP-seq or CLIP-seq, with simple adjustments of k-mer size and event annotation

rules.

In this proof of concept study, we focused on RNA-seq libraries from a cell line,

where no genetic polymorphism was expected among samples. The next step will

be application to libraries from multiple individual organisms. Although k-mer di-

versity will be higher in such datasets, preliminary tests with RNA-seq data from

60 human tumors were completed successfully on a single computer server (data

not shown). Analysis of patient samples open exciting perspectives. For instance,

the ability of DE-kupl to simultaneously detect genetic variation and RNA expres-

sion/processing events may serve as a basis for studying genotype-phenotype rela-

tions. Analysis of patient RNA-seq data may also reveal event classes not explored

in this work, such as fusion transcripts and circular RNAs.

Methods
Characterization of k-mer diversity in human RNA-seq libraries

RNA-seq data for bone marrow, skin and colon were retrieved from the Human Pro-

tein Atlas project (10.1126/science.1260419, E-MTAB-2836). A total of 18 datasets

from different individuals, corresponding to 6 replicates per tissue, were downloaded

from EBI/ENA (bone marrow: ERR315469, ERR315425, ERR315486, ERR315396,

ERR315404, ERR315406, colon: ERR315348, ERR315403, ERR315357, ERR315484,
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ERR315400, ERR315462, skin: ERR315401, ERR315464, ERR315460, ERR315372,

ERR315376, ERR315339). The reference GRCh38 genome and Ensembl 86 tran-

scripts were downloaded from Ensembl.

First we counted k-mers in each RNA-Seq and reference sequence set using Jel-

lyfish (2.2.0) count, with options k = 32 and -C (canonical k-mers). The k-mer list

for each tissue (Fig 1A and B) was produced by merging counts for all 6 samples

and conserving only those found in all replicates.

For mapping statistics (Fig 1B3), we extracted k-mers specific of each tissue and

mapped them to the Ensembl 86 transcript reference using Bowtie (version 1.1.2).

Unmapped k-mers were mapped a second time with Bowtie to the GRCh38 genome

reference. Reads with 3 or more mismatches are not mapped by Bowtie and, there-

fore, are considered as unmapped.

The intersection of k-mers between RNA-Seq and WGS data (Fig 1C), is based

on the transcriptome and genome of lymphoblastoid cell lines [16]. K-mers were

counted in these libraries with the same procedure as above. In order to reduce

noise from sequencing errors, k-mers with only one occurrence were filtered out.

DE-kupl Implementation

The DE-kupl pipeline (Fig S12) is implemented using the Snakemake [27] workflow

manager. A configuration file is filled up by the user with location of FASTQ files,

the condition of each sample, as well as global parameters such as k-mer length,

CPU number, maximum memory and other parameters for each step of the pipeline,

as described hereinafter.

K-mer counting

Raw sequences (FASTQ files) are first processed with the jellyfish count com-

mand of the Jellyfish software, which produces one index (a disk representation of

the Jellyfish hash-table) for each sequence library. For stranded RNA-seq libraries,

reads in reverse direction relative to the transcript are reverse-complemented, ensur-

ing proper orientation of k-mers. At this point, for each library, only k-mers having

at least 2 occurrences are recorded (user-defined parameter). Once a Jellyfish index

is built, we use the jellyfish dump command to output the raw-counts in a two

column text file, which contains at each line a k-mer and its number of occurrences.

Raw counts are then sorted alphabetically by k-mer sequence with the Unix sort

command.

K-mer filtering

All samples counts are joined together using the dekupl-joinCounts binary to

produce a single matrix will all k-mers and their abundance in all samples. Given

an integer a ≥ 0, we define the recurrence of a k-mer x as the number of samples

where x appears more than a times, i.e. recurrence(x, a) =
∑n

i=1 1{xi>a}, where n

is the total number of samples and xi is the number of times the k-mer x appears in

sample i. The k-mer filtering step involves two user-defined parameters: an integer

min recurrence abundance and an integer min recurrence such that a k-mer x is

filtered out if recurrence(x, min recurrence abundance) < min recurrence, i.e.

if the k-mer x appears more than min recurrence abundance times in fewer than
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min recurrence of the samples. Usually min recurrence is set to the number of

replicates in each conditions, and min recurrence abundance is set to 5. In order

to remove known transcripts sequences from our set of experimental k-mers, we

also use our Jellyfish-based procedure to create the set of k-mers appearing in the

reference transcriptome and we subtract this set from the experimental k-mers.

Differential k-mer expression

Prior to differential analysis, we compute normalization factors (NFs) using the

”median ratio method” [28] on the table of k-mers after recurrence filter: for each

sample, the NF is the median of the ratios between sample counts and counts of

a pseudo-reference obtained by taking the geometric mean of each k-mer across all

samples. To avoid dealing with the complete table of k-mers, we extracted a random

subset of 30% of the k-mers and computed NFs on this subset. Computing NFs on

the complete table of k-mers, on the table of k-mers after recurrence and Gencode

filters, or on the table of transcripts abundances produced by Kallisto [8] led to

similar values (Fig S9).

To perform differential analysis, two options are implemented (Fig. S10). The first

option is to apply a t-test for each k-mer on the log transformed counts, normalized

with the previously computed NF. Transformation of raw counts in conjunction

with linear model analysis have been successfully used for differential analysis of

counts [29]. We perform the t-test independently on each k-mer and avoid complex

variance modeling strategies to reduce execution time of the analysis. The t-test

option has been implemented in C in the dekupl-TtestFilter binary. Note that

this t-test option is not appropriate for small samples [30]. To increase the power of

the analysis, in particular for small samples (typically less than 6 vs 6 libraries), we

strongly advise to use the second option based on generalized linear model, imple-

mented in the R package DESeq2 [19]. On top of modeling raw counts (normalization

or prior log-transformation of the counts is not required), this approach performs

information sharing across k-mers to improve variance estimation and differential

analysis results. However, given the large number of k-mers, we do not apply this

approach on the complete matrix of k-mer counts. We divide the matrix of k-mer

counts into random chunks of approximately equal size (around one million k-mers)

and apply the DESeq2 approach on each chunk independently. For each chunk, pre-

viously computed NFs are used as an input of the method, and are not computed

independently on each chunk. Raw p-values, not adjusted for multiple testing, are

collected as an output for each chunk, and merged into one single vector containing

the raw p-values for all k-mers to test. Subsequently, raw p-values obtained from

either the t-test or the DESeq2 test are adjusted for multiple comparisons using

the Benjamini-Hochberg procedure [31] and k-mers with adjusted p-values above a

user-set cutoff are filtered out.

K-mer assembly

DE k-mers are assembled de novo in order to group k-mers that potentially overlap

the same event (ie. all k-mers overlapping a splice junction or SNV). To this aim,

we developed our own procedure called mergeTags, which works as follows: we first

identify all exact k−1 prefix-suffix overlaps between k-mers. We consider only k-mers
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that overlap with exactly one other k-mer, and merge all pairs of k-mers involved

in such overlaps. For example, given the set of k-mers : ATG, TGA, TGC,CAT ,

the following contigs are produced : contigs = CATG, TGA, TGC. We repeatedly

merge contigs that overlap exactly over k− 1 bp with exactly one other contig. We

then repeat this assembly process with k − 2 exact prefix-suffix overlaps, using as

input the contigs produced at the previous step, and so forth for increasing values

of i such that k− i > 15 bp (default value). Finally, a set of DE contigs is produced

and each contig is labelled by its constitutive k-mer of lowest p-value. This assembly

procedure is implemented in C in the dekupl-mergeTags binary.

Contig Annotation

Finally, DE contigs are annotated in order to facilitate biological event identifica-

tion. First, contigs are aligned with BLAST [32] against Illumina adapters. Contigs

matching adapters are discarded. Retained contigs are further mapped to the refer-

ence Hg38 human genome using the GSNAP short read aligner [33], which showed

the best speed/sensitivity ratio for aligning both short and long contigs in internal

tests (not shown). GSNAP is used with option -N 1 to enable identification of new

splice junctions. Contigs not mapped by GSNAP are collected and re-aligned using

BLAST.

Alignment characteristics are extracted from GSNAP and BLAST outputs. Align-

ment coordinates are compared with Ensembl (v86) annotations (in GFF3 format)

using BEDTools [34] and a set of locus-related features is extracted. The final set

of annotated features (Table S3) is reported in a contig summary table. The anno-

tation procedure generates two additional files: a “per locus” summary of contigs

(one line per genic or intergenic locus), and a BED file of contig locations that can

be used as a display track in genome browsers. In the “per locus” table, a locus

is defined as either an annotated gene, the genomic region located on the opposite

strand of an annotated gene, or the genomic region separating two annotated genes.

The table records the number of contigs overlapping each locus as well as the contig

with lowest FDR for this genomic interval.

In parallel to k-mer counting and filtering, we analyze the RNA-Seq data libraries

a conventional differential expression protocol. Reads are processed with Kallisto

[8] to estimate transcript abundances. Transcript-level counts are then collapsed

to the gene-level and processed with DESeq2 [19] to produce a set of differentially

expressed genes. This information is stored in the contig summary table and used

later on for defining events with differential usage (”DU” in Table 3).

DE-kupl run on EMT data

DE-kupl was run using RNA-seq libraries from [20] retrieved on the GEO web

site under accession GSE75492. For stage ”E” we used libraries GSM1956974,

GSM1956975, GSM1956976, GSM1956977, GSM1956978, GSM1956979, and for

stage ”M” GSM1956992, GSM1956993, GSM1956994, GSM1956995, GSM1956996,

GSM1956997. DE-kupl parameters were kmer_length 31, min_recurrence 6,

min_recurrence_abundance 5, pvalue_threshold 0.05, lib_type stranded,

diff_method Ttest. Output files are provided as supplementary material. The

DE-kupl contig summary table was analyzed interactively using R commands to
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extract lists of contigs based on the filtering rules described in Table 3. Visualiza-

tion of selected contigs was performed with IGV [35], using the bed file produced

by DE-kupl and read mapping files produced by STAR [36].

Cross-validation

DEkupl was applied to 8 skin and 8 colon libraries from GTEx [24]: skin library IDs:

SRR1308800, SRR1309051, SRR1309767, SRR1310075, SRR1311040, SRR1351501,

SRR1400467, SRR1479595; colon library IDs: SRR1316343, SRR1396146, SRR1397292,

SRR1477732, SRR1488307, SRR807751, SRR812697, SRR819486. DE-kupl param-

eters were kmer_length 31, min_recurrence 6, min_recurrence_abundance 5,

pvalue_threshold 0.05, lib_type unstranded, diff_method Ttest. DE-kupl

contigs were interactively classified using R commands, applying the same rules

as in Table 3. Classes asRNA and SNV-DU were not included since asRNA iden-

tification is not possible using the unstranded GTEx and HPA libraries, and we

had no reason to expect common SNVs with differential usage in this dataset. DE

contigs were sorted by fold-change and k-mer labels of the top 100 DE contigs in

each class were extracted (50 for class ’unmapped’ due to lower event number). DE-

kupl output files and selected k-mers are provided in supplementary material. For

cross-validation, we used the same 6 skin and 6 colon RNA-Seq data as in Figure

1 (10.1126/science.1260419, E-MTAB-2836). K-mers were counted in each library

using Jellyfish with options k = 31 and -C (canonical k-mers) as GTEx data were

unstranded. All k-mers selected from the GTEx analysis were queried against the

jellyfish databases using jellyfish query command. Finally the extracted k-mers

counts were processed with DESeq2 [19] and the resulting adjusted p-values were

plotted for each event class (Figure 8).

Availability

The DE-kupl software, documentation and supplemental material presented herein

are available at https://transipedia.github.io/dekupl/.
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27. Köster, J., Rahmann, S.: Snakemake—a scalable bioinformatics workflow engine. Bioinformatics 28(19),

2520–2522 (2012). doi:10.1093/bioinformatics/bts480

28. Anders, S., Huber, W.: Differential expression analysis for sequence count data. Genome Biology 11, 106

(2010). doi:10.1186/gb-2010-11-10-r106

29. Law, C.W., Chen, Y., Shi, W., Smyth, G.K.: Voom: Precision weights unlock linear model analysis tools for

RNA-seq read counts. Genome Biology 15, 29 (2014). doi:10.1186/gb-2014-15-2-r29

30. Jeanmougin, M., de Reynies, A., Marisa, L., Paccard, C., Nuel, G., Guedj, M.: Should we abandon the t-test in

the analysis of gene expression microarray data: A comparison of variance modeling strategies. PloS One 5(9),

12336 (2010). doi:10.1371/journal.pone.0012336

31. Benjamini, Y., Hochberg, Y.: Controlling the False Discovery Rate: A Practical and Powerful Approach to

Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological) 57(1), 289–300 (1995)

32. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., Madden, T.L.: BLAST+:

Architecture and applications. BMC Bioinformatics 10, 421 (2009). doi:10.1186/1471-2105-10-421

33. Wu, T.D., Nacu, S.: Fast and SNP-tolerant detection of complex variants and splicing in short reads.

Bioinformatics 26(7), 873–881 (2010). doi:10.1093/bioinformatics/btq057

34. Quinlan, A.R., Hall, I.M.: BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics

(Oxford, England) 26(6), 841–842 (2010). doi:10.1093/bioinformatics/btq033
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Figures

Tables

Table 1 DE-kupl parameters and resources used for analyzing EMT data (12 libraries) using the
t-test and DESeq2 methods.

Parameter/Resources value

nb threads 8
min recurrence 6
min recurrence abundance 5
pvalue threshold 0.05
lib type stranded

t-test DESeq2

Max memory usage 54Gb 53Gb
Max disk used (1) 7Gb 42Gb
Running time (1) 4h 02m 6h 33m

(1): excluding reference genome and transcriptome indexing for the annotation step.
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Figure 1 The diversity of 31-mers in RNA-Seq libraries exceeds that of reference sequences. A.
Intersection of k-mers present in Gencode transcripts and RNA-Seq data from three tissues: bone
marrow, skin and colon. The set of k-mers for each tissue was defined as the common k-mers
shared by all six individuals. B. Intersection of k-mers present in Gencode transcripts, the
reference human genome (GRCh38) and RNA-Seq data (same as in A). B1. Repartition of k-mer
abundances for each tissue represented in A and B. K-mers shared with Gencode are labelled as
”GENCODE”, among other k-mers, those shared with the human genome are labelled as
”GRCh38”, the remaining k-mers are labelled as ”tissue-specific”. The same procedure was
applied in B2 and B3. B2. Repartition of k-mer diversity for each tissue. B3. Mapping statistics of
k-mers labeled as ”tissue-specific” in B2. These k-mers were first mapped to Gencode transcripts,
and unmapped k-mers were then mapped to the GRCh38 reference using Bowtie1, allowing up to
2 mismatches in a 31-mer.
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Figure 2 Principal Component Analysis on non-reference k-mers discriminates tissues. Samples
are labeled according to their tissues (bone marrow, colon, skin). PCA were produced with
normalized, log transformed counts. For genes and transcripts, counts were generated with
Kallisto based on Gencode V25. Genomic k-mers correspond to 20k random k-mers from the
RNA-seq libraries that did not map to Gencode transcripts but successfully mapped to GRCh38.
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Figure 3 The diversity of non-reference k-mers is greater for RNA-Seq than for whole genome
sequencing (WGS). Intersection of k-mers between Gencode transcripts, the human genome
(GRCh38), RNA-Seq and WGS data. RNA-Seq and WGS data originate from the same
lymphoblastoid cell line (HCC1395).
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Figure 4 The DE-kupl pipeline for the discovery and analysis of differentially expressed k-mers.
First, Jellyfish is applied to count k-mers in all libraries. K-mers counts are then joined into a
count matrix and filtered for low-recurrence and matching to the reference transcriptome.
Normalization factors are computed from raw K-mer counts and the DE procedure is applied.
Finally overlapping DE k-mers are merged into contigs and annotated based on their alignment to
reference and overlap with annotated genes
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Figure 5 Specificity of differentially expressed contig. A. Density plot of contig lengths for
mapped and unmapped contigs. The red line indicates contigs assembled from k k-mers and likely
corresponding to SNVs. B. Mismatch ratio (number of mismatch / contig size) as a function of
contig length. C. Number of hits in the reference genome as a function of contig length. The B
and C curves were obtained using a smoothing function.
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Figure 6 Genomic location of differentially expressed contigs. Contigs are separated by genomic
location, according to their overlap with exons, exon-exon junctions, introns, antisense regions of
annotated genes or intergenic regions. The right panel shows the total number of contigs in each
class; the left panel shows contig distribution according to their alignment status: contigs with a
single mapping location are labeled as ”perfect match”, ”one mismatch” or ”multi mismatches”,
contigs with multiple mapping locations are labeled as ”multi-map”.
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Figure 7 Examples of DE contigs. Sashimi plots generated from IGV using read alignments
produced with STAR [36]. Sample SRR2966453 from condition D0 is labeled as ”E” (epithelial).
Sample SRR2966474 from condition D7 is labeled as ”M” (mesenchymal). Annotations from
Gencode and DE-kupl DE contigs are shown at the bottom of each frame. A. New splicing variant
involving an unannotated exon, overexpressed in condition ”E”. B. Tandem repeat at
chr8:143,204-870-143,206,916 (red region) that is overexpressed in condition ”M” vs. ”E”. Note
that the overexpressed tandem repeat is part of a larger overexpressed unannotated locus. C. A
novel lincRNA overexpressed in condition ”E”. D. A novel antisense RNA. RNA-seq reads are
aligned in the forward orientation while the gene at this locus is in the reverse orientation. The
annotated gene is not expressed.
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Figure 8 Cross validation of DE events in GTEx and Human Protein Atlas data. 550 DE
contigs from 6 different event classes (intron with differential usage, lincRNA, polyA site, repeat,
splice site, unmapped) were identified using DE-kupl on GTEx libraries from two human tissues
(skin and colon). A representative k-mer from each contig was then tested for differential
expression in skin and colon libraries in the Human Protein Atlas. Box plots represent distributions
of DESeq2 adjusted P-values for all k-mers in the different classes. The red line shows the
adjusted P-value cutoff of 0.05.

Table 2 DE-kupl pipeline results for the EMT experiment. Description of output files sequentially
generated by DE-kupl. Number of kmers/contigs, correspond to the number of lines in each file.

Files Description Number of k-mers/contigs Sizes

raw counts (no filter)
Matrix of k-mers counts
from all libraries

707,067,278 (not generated)

raw counts.tsv.gz
Matrix of all k-mer counts from
all libraries with recurrence filters

92,525,450 1.9GB

noGENCODE-counts.tsv.gz
Counts filtered with
GENCODE k-mers

40,398,848 728MB

t-test DESeq2 t-test DESeq2

diff-counts.tsv.gz
Counts with differential
expression test, filtered on
adujsted P value

3,813,418 6,102,447 186MB 510MB

merged-diff-counts.tsv.gz
DE k-mers assembled
into contigs

133,690 169,613 3.0MB 18MB

Table 3 Assignment rules for DE contigs. Each class of event is defined by a set of rules applied to
annotated contigs. Keyword ”DU” indicates Differential Usage. Column ”Other rules” refers to the
following: 1. Contig ends with AAAAA, 2. Mean counts in both conditions > 20, 3. Mean counts
> 20 in at least 1 condition & mapped region < 1kb, 4. Mean counts in cond1+cond2 > 70 &
mapped region < 1kb. Column ”Contigs” indicates the number of contigs of each class found in the
EMT experiment. Column ”Loci” is the number of loci implicated by these contigs (see Methods).
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Contigs Loci

Splicing >0 T T F 1 1040 812
Splicing DU F >0 T T F 1 171 146
PolyA ≥5 T 1 1 105 96
PolyA DU F T ≥5 T 1 1 17 16
lincRNA F F T 1 >200 2 809 282
asRNA F T T 1 >200 2 356 156
SNV DU F T F T T T 1 3 717 493
Intron T F 0 T T 1 4 1909 576
Intron DU F T F 0 T T 1 4 559 185
Repeats T ≥5 >50 1141 618
Unmapped F >50 114
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