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Abstract

Reproducibility is generally regarded as a hallmark of scientific validity. It can be undermined by two very
different factors, namely inflated false positive rates or inflated false negative rates. Here we investigate the role
of the second factor, i.e. the degree to which true effects are not detected reliably. The availability of large public
databases and also supercomputing allows us to tackle this problemquantitatively. Specifically, we estimated the
reproducibility in task-based fMRI data over different samples randomly drawn from a large cohort of subjects
obtained from the Human Connectome Project. We use the full cohort as a standard of reference to approximate
true positive effects, and compute the fraction of those effects that was detected reliably using standard software
packages at various smaller sample sizes. We found that with standard sample sizes this fraction was less than
25 percent. We conclude that inflated false negative rates are a major factor that undermine reproducibility.
We introduce a new statistical inference algorithm based on a novel test statistic and show that it improves
reproducibility without inflating false positive rates.

1 Introduction

In recent years there has been a growing concern
about the reliability and reproducibility of results ob-
tained in human brain mapping using fMRI [1–5].
Two major factors contribute to this problem, namely
inflated false positive rates [6] and lack of statistical
power, i.e. inflated false negative rates [7–10]. While
the detrimental effect of false positives is widely rec-
ognized, it may be less well known that inflated false
negative rates may also diminish reproducibility, see
Fig. 1 for an illustration.

In the present context, we use the term reproducibil-
ity to denote robust detections over different sam-
ples drawn from one single large cohort. Specifically,
we investigate the reproducibility in task-based fMRI

data over different samples randomly drawn from a
cohort of 400 subjects obtained from the Human Con-
nectome Project (HCP) [11, 12]. Here we intentionally
exclude factors such as different scanner hardware or
different preprocessing regimes that might also di-
minish reproducibility, and focus instead on inter-
subject variability and sensitivity of the test statistic
as our main target of investigation.

Because of the absence of ground truth it is impos-
sible to distinguish correct detections of true effects
from erroneous detections. However, since high sta-
tistical power entails an increased likelihood that sta-
tistically significant results reflect true effects [7], it is
reasonable to use the full cohort as a standard of refer-
ence for approximation. For brevity, we call it GT400.
The GT400 map results from statistical inference cor-
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rected for the familywise error at p < 0.01, addition-
ally thresholded to exclude very small effect sizes. The
question we will address here is whether or not GT400
effects are robustly found at commonly used sample
sizes. For this purpose, we will employ current meth-
ods as well as a new method that we introduce here.
We will show that this new method improves sensi-
tivity without inflating false positive rates.
We restrict ourselves to univariate activation maps

in which activations can only be detected if their time
courses correlate with a predefined hemodynamic re-
sponse model [13, 14]. The multivariate and dis-
tributed nature of human brain function can how-
ever not be captured with these maps, so that an en-
tirely new class of methods is now emerging [15–18].
Nonetheless, a large portion of our current neurosci-
entific knowledge relies on these classical results so
that it is still relevant to check their validity.
A wide range of statistical inference methods have

been proposed that aim to control error rates in fMRI-
based human brain mapping, see e.g. [14, 19–23]. Ek-
lund et al. [6] have argued that some of these methods
may produce overly optimistic results, for a discus-
sion see [24, 25]. Historically, the emphasis has been
on controlling the false positive rate. In the present
study, our focus will be on the false negative rate and
the role it plays in diminishing reproducibility.

2 Results

We analysed task-based fMRI data provided by the
Human Connectome Project (HCP), WU-Minn Con-
sortium [11, 12]. We focused on two fMRI studies,
namely the motor and the emotion task, using min-
imally preprocessed data of 400 participants. We
generated an approximation to true positive effects
as described in “Materials and Methods”. For ease
of presentation, we call this approximation GT400.
We estimated the percentage of GT400 that was ac-
tually found using three widely used statistical in-
ference procedures FSL-TFCE [26], SPM-FWE, SPM-
FDR [14, 27] and a new algorithm LISA that we intro-
duce here. See “Materials and Methods” for more in-
formation.
Approximate false negative rates using samples of

size 20 (Figs. 2,3). From a cohort of 400 subjects we
randomly drew 100 samples of a size 20, and applied
the four statistical inference procedures corrected for
multiple comparisons at p < 0.05. We generated maps

Figure 1: Illustration of the two factors that can
undermine reproducibility across three repeats. Top
row: false positives, bottom row: false negatives.

showing the reproducibility per voxel across these 100
tests (Fig. 2). Their histograms show the number of
tests in which a given fraction of GT400 voxels was
detected, see Fig. 3. We found that in the motor task,
in 50 or more tests less than 20 percent of all GT400
voxels were detected. Thus, the approximate false
negative rates were higher than 80 percent in more
than half of the tests. In the emotion task, these rates
were higher than 75 percent in more than half of the
tests. With LISA, the detection rates and hence the es-
timated false negative rates were consistently better.
In particular, LISA showed an increased detectability
of the cerebellar (bilateral lobules HIV-VI and HVIII)
and thalamic activation (right motor relay nuclei) dur-
ing left-hand movement (motor task) as well as the
improved thalamic and prefrontal and orbito-frontal
activation in the emotion task. Note that SPM-FWE
and SPM-FDR produced almost identical results. This
may be due to the very stringent initial cluster form-
ing thresholds (CDT = 0.001) [28].
Rates of reliable detection across various sample

sizes (Figs. 4,5). We repeated the above reproducibil-
ity analysis for various samples sizes, namely 20, 40,
60, 80, and 100. We then recorded the sample size
that was needed in order to detect an activation with
reasonable chance of success which we defined to be
80 of the 100 tests (Fig. 4). We estimated detection
rates as follows. We counted the number of voxels in
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each of the sample size maps of Fig. 4 as well in the
GT400 map and weighted each voxel by its effect size
so that voxels with low effects contribute less to the
final result. We define the “effectsize weighted detec-
tion rate” as the ratio of these weighted counts. Effect
sizes are defined as the voxelwise mean effect across
all 400 subjects divided by the standard deviation, see
also “Materials and Methods”. Figure 5 shows that
with sample sizes of 20, less than 25 percent of the to-
tal GT400 effect is reliably detected. Even with sam-
ple sizes of 60, detection rates are below 55%, see also
supplementary table S2. Note that generally smaller
sample sizes are needed using the algorithm LISA, see
supplementary figure S4.

3 Conclusions

In this study we derived approximations for the false
negative rates in two HCP studies using standard pro-
cedures as well as the new method LISA. The most
important finding is that with commonly used sample
sizes of 20 the false negative rates exceeded 75 percent
in more than half of 100 tests (Fig. 3). Furthermore,
less than 25 percent of the overall GT400 effect was
detected reliably (Fig. 5). With larger sample sizes the
detection rates improve but are still far away from the
costumary 80% level as a standard of adequacy for the
type II error. We used an effectsize weighted measure
for the detection rate so that type II errors that may
be considered less relevant, e.g. around the borders of
activation areas, do not distort the results.
These results lead us to conclude that inflated false

negative rates do indeed undermine reproducibility.
The recent publication by Eklund et al. [6] has drawn
a lot of attention to the problem of inflated false pos-
itives. However, because of the large sizes of the
false negative rates, we hypothesize that false nega-
tives may actually play a much more important role
in diminishing reproducibility. If true, this would
be quite reassuring because it entails that most non-
reproducible results may in fact not be false, but sim-
ply based on effects that are too weak to be detected
reliably.
In a recent study, Poldrack et al. [1] reported that

median sample sizes have steadily increased since
1995, but even in 2015 they were below 30. Our find-
ings show that even larger samples are too small for
a reliable detection of all true effects. Data acquisi-
tion of large samples is time consuming and costly,

and may often become impracticable. Therefore, im-
provements in reproducibility cannot be achieved by
increasing sample sizes alone. Rather, new analysis
methods with improved sensitivity and reliability are
crucial.

Here we have introduced the new method LISA
which is based on a novel test statistic derived from
hotspot analysis in geographical information systems.
In our experiments, we found that LISA was more
sensitive compared to the other three methods and re-
quired considerably smaller samples to achieve sim-
ilar results. Importantly, LISA passed the test pro-
posed by Eklund et al. [6] so that we may assume
that the decrease in false negatives did not lead to
an inflation in false positives. However, even though
LISA outperformed the other three methods in terms
of sensitivity, it was still far away from uncovering all
GT400 effects.

In LISA, hotspots of activation are highlighted as
locally coherent regions. Local coherence as a new
feature for statistical inference is very attractive be-
cause it is model free and easily accessible with neuro-
imaging techniques. More importantly, its effective-
ness may point to an underlying very general mecha-
nism of brain function. We have previously proposed
a similar feature of local coherence for network detec-
tion where it also proved to be a very strong marker
of differential task involvement [18].

The many small sized samples drawn from the to-
tal cohort of 400 subjects are likely to have overlapped
considerably. In such a scenario one would expect a
high degree of reproducibility that is simply due to the
correlation across samples. In more realistic settings
where such overlap is absent, and other factors such
as different scanner hardware or different preprocess-
ing regimes play a role, reproducibility may be even
worse. Therefore, our results are more likely to err on
the conservative side. We should note however that
the degree of overlap varies with sample size, so that
it is not possible to directly compare reproducibility
values across different sample sizes. But with larger
sample sizes and hence larger overlap across samples
the degree to which we underestimate the problem is
likely to increase.

Based on the results reported by Eklund et al. [6],
we used very stringent initial cluster forming thresh-
olds for SPM-FWE and SPM-FDR (CDT=0.001). A
first consequence of this choice was that both methods
produced very similar results [28]. More importantly
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however, this choice has lead to a dramatic increase in
false negatives and hence to a loss of reproducibility.
Thus, an overemphasis on avoiding false positives can
be problematic.
In summary, we conclude that inflated false nega-

tive rates are amajor impediment for reproducible hu-
man brainmapping. Since inflated false negative rates
may lead to an incomplete and hence biased picture of
brain function, it should be seen as a problem that is
just as severe as inflated false positive rates.

4 Materials and Methods

HCP data acquisition. All data sets were ac-
quired with the following parameters: TR=720ms,
TE=33.1ms, 2 mm isotropic voxel size, multiband fac-
tor 8. We focused on task-based fMRI tasks, namely
the motor and the emotion task, using minimally pre-
processed data of 400 participants of the left-right
phase-encoding runs. The preprocessing protocol is
described in [29]. In addition, FSL-Fix [30–32] was
used for data denoising, removing physiological nui-
sance effects as well as motion and multi-band arti-
facts. In addition, we applied a Gaussian spatial filter
with a kernel size of 6 mm. Using FSL-FEAT [30–32],
we performed individual onesample t-tests resulting
in 400 single-subject maps of uncorrected z-values.
HCPMotor task. While in the scanner, participants

were cued visually to tap their left or right fingers,
squeeze their left or right toes, or move their tongue.
Each block lasted 12 seconds (10 movements), and
was preceded by a 3 second cue, for details see [12].
Here we investigated only the left hand fingertapping
condition.
HCP Emotion task. In this experiment, participants

were cued to decide which of two faces matched the
face shown on top of the screen. In a second experi-
mental condition, an analogous task was done using
shapes instead of faces. The faces had either angry or
fearful expressions, for details see [12]. Here we in-
vestigated the contrast “faces minus shapes”.
Existing statistical inference procedures. Cluster-

extent based thresholding schemes are currently the
most popular methods for statistical inference in
fMRI [33]. Therefore, we selected a commonly
used method of this type for reference, namely the
Gaussian Random Field method as implemented in
SPM12 [14,27,34], with corrections for either the fami-
lywise error (SPM-FWE) or for the false discovery rate

(SPM-FDR). In our experiments, we used the default
initial cluster forming threshold of CDT=0.001. With a
lower threshold, the test reported by Eklund et al. [6]
produced inflated false positive rates. As a represen-
tative of a completely different method, we choose
threshold-free cluster enhancement (FSL-TFCE) im-
plemented in FSL [26, 31]. Even though many other
methods exist, we restricted ourselves to the ones
listed above because they represent a large portion of
the existing literature.
Effect sizes. Since large sample sizes may produce

highly significant results with very low effect sizes,
we computed the voxelwise effect sizes defined as the
mean across all 400 data sets divided by their standard
deviation. Following Cohen [35], effect sizes of 0.2 are
regarded as small, 0.5 as medium and 0.8 as large.
A new statistical inference procedure LISA.We in-

troduce a newmethod of second-level statistical infer-
ence for task-based fMRI called LISA. The input into
LISA is a set of several single-subject maps. The out-
put is a single thresholded map representing a voxel-
wise onesample t-test controlled for a predefined false
discovery rate. As a first step, LISA performs a one-
sample voxelwise t-test across all input maps in which
each voxel receives a t-value uncorrected for multiple
comparisons. In a second step, a bilateral filter is ap-
plied to this map [36, 37]. The effect of this filter is to
highlight hotspots of activation defined as areas of lo-
cal concentrations of large t-values. The bilateral filter
replaces each voxel with a weighted average of simi-
lar and nearby voxel values. It uses a product of two
Gaussian smoothing kernels where one kernel penal-
izes spatial distance while the other penalizes discrep-
ancies in voxel values. Thus, a voxel only receives a
high weight if it is both spatially close to the center of
its local neighbourhood and its value is close to that
of the center voxel. The bilateral filter is defined as
follows. Let i denote some voxel position, Ω its local
neighbourhood, and zi its value in the map of uncor-
rected z-values. Then the filtered value λi is given by

λi =
1

Wi

∑

j∈Ω

zifr(||zi − zj||) gs(||i− j||)

with normalizing factor

Wi =
∑

j∈Ω

fr(||zi − zj||) gs(||i− j||)

where fr is the range kernel for voxel intensities, and
gs is a spatial kernel for for weighting differences in
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voxel coordinates. As customary, we use Gaussian
kernels for fr and gs with fr(x) = exp(−x2/σr) and
gs(x) = exp(−x2/σs). Note that this filter requires
three parameters, namely the size of the local neigh-
bourhood Ω, and σr, σs for the kernel functions fr, gs.
We determined values for these parameters using sim-
ulated data. Once determined, these settings were
kept constant in all our experiments, regardless of
spatial resolution or smoothing parameters used dur-
ing preprocessing. Specifically, we used σs = 2.0
and a neighbourhood shaped like sphere with a ra-
dius of two voxels comprising 57 voxels. The param-
eter σr must however be scaled by the global variance
varglobal of the map of uncorrected z-values. We then
use σr = 1.9 × varglobal throughout. Bilateral filtering
can be applied iteratively. In all our experiments, we
used two iterations. The filtered values λi are used as
a test statistic for statistical inference.

LISA controls the false discovery rate (FDR) using
random permutations. In onesample tests, signs are
reversed in randomly selected maps. The false dis-
covery rate is then estimated using a two-component
model of the form Fdr = p0F0/Fz where F0 is the
empirical null distribution derived from random per-
mutations, Fz is the distribution of voxel values after
bilateral filtering of the non-permuted map, and p0 is
the prior probability of the null [38]. For simplicity, we
use p0 = 1 which is the most conservative choice. In
the experiments reported here, we used 5000 permu-
tations. A more detailed description of this algorithm
can be found in (t.b.a)..

The Eklund test applied to LISA. Tomake sure that
LISA does not produce inflated false positive rates, we
subjected it to the test described by Eklund et al. [6].
We found that error rates were well within the target
range of p < 0.05. For details see the supplementary
material.

Approximation to ground truth (GT400). Since
ground truth is not available, it is not possible to di-
rectly assess the false negative rate. However, a rea-
sonable approximation can be obtained as follows.
We use FSL-TFCE as a reference method because it
is widely used and validated [26] and apply statisti-
cal inference using the full cohort of 400 subjects as a
sample. Note that high statistical power entails an in-
creased likelihood that statistically significant results
reflect true effects [7]. We correct for the familywise
error at p < 0.01 using 10000 random permutations so
that the probability of type I errors is less than one per-

cent. To avoid statistically significant but very small
effects, we discard voxels with effect sizes below 0.2.
For brevity, we will call this approximation GT400.
The resulting GT400 maps are shown in supplemen-
tary figures S1,S2.
Effect-sizeweighted detection rates. We computed

weighted sums of the voxels in each of the sample size
maps of figure 4 and in the GT400 map. Each voxel
was weighted by its effect size, so that voxels with low
effects contribute less to the total sum. We found that
with sample sizes of 20, less than 25% of such effects
were reliably detected (Fig. 5).
Software. The software for the LISA algorithm is

available at (t.b.a.).
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Figure 2: Reproducibility across 100 tests based on randomly drawn samples of size twenty. The colors
represent the number of tests in which a voxel survived multiple comparison correction in at least 10 of the 100 tests. Thus,
only areas in bright yellow or white are detected reliably, areas in dark red were only rarely detected. The underlying blue
areas mark GT400 effects that were detected in less than 10% percent of all tests or not at all. We employed four different
methods for statistical inference denoted as LISA, FSL-TFCE, SPM-FWE, and SPM-FDR, see “Materials and Methods”.
Familywise error correction was applied for FSL-TFCE and SPM-FWE using p < 0.05 as threshold. Correction for the
false discovery rate (FDR) was applied for LISA and also for SPM-FDR at p < 0.05. Note the increased detectability
using LISA of the cerebellar (bilateral lobules HIV-VI and HVIII) and thalamic activation (right motor relay nuclei)
during left-hand movement (motor task) as well as the improved thalamic and prefrontal and orbito-frontal activation in
the emotion task. SPM-FWE and SPM-FDR yield almost identical results which may be due to the very stringent initial
cluster-forming threshold (CDT=0.001). See also supplementary figure S3 for differences in reproducibility.
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Figure 3: Approximate false negative rates at sample size 20. These histograms show the number of tests in which
a given fraction of GT400 voxels was detected. For example, in the motor task, in 50 or more tests, less than 20 percent of
all GT400 voxels were detected. Thus, in half of the tests the false negative rate is higher than 80 percent. In the emotion
task, in half of the tests the false negative rates were higher than 75 percent. With LISA, these rates were consistently
better.
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Figure 4: Maps indicatingminimal sample sizes required for reliable detection. The colors indicate the minimal
sample sizes that are needed in order to detect an activation with reasonable chance of success, i.e., in 80 of 100 tests. The
results for SPM-FDR were almost identical to those of SPM-FWE. The GT400 map is shown in the bottom row.
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Figure 5: Effectsize weighted detection rates. The histograms show the fraction of the overall effect within GT400
that was reliably detected, i.e. in at least 80 of 100 tests. Each voxel was weighted by its effect size, so that voxels with low
effects contribute less to the total sum. At sample sizes of 20, less than 25 percent of the total GT400 effect was detected.
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The Eklund test applied to LISA.

To make sure that LISA does not produce inflated false positive rates, we subjected it to the test described
by Eklund et al. [6]. We used the same experimental designs (B1,B2,E1,E2) and preprocessing regimes, and
applied LISA to all 200 data sets of the Beijing sample of [6]. The preprocessing pipeline is based on SPM12 [34].
For each of the four experimental designs and four spatial smoothing kernels (4mm, 6mm, 8mm 10mm), we
randomly drew 1000 samples consisting of 20 data sets each and applied LISA as described above. To allow
for a direct comparison with the results of [6], we recorded the family wise error rate. To check whether LISA
is vulnerable to resampling parameters used during preprocessing, we repeated the entire Eklund test with
the resampling parameter set to (3mm)3 instead of (2mm)3 while parameter settings for the bilateral filter
remained identical. In both cases, we found that error rates were well within the target range of p < 0.05. The
results are shown in table S1.

(2mm)3 resolution (3mm)3 resolution
E1 E2 B1 B2 E1 E2 B1 B2

4mm 0.007 0.001 0.020 0.019 0.000 0.003 0.022 0.017
6mm 0.020 0.006 0.037 0.027 0.011 0.009 0.047 0.017
8mm 0.026 0.013 0.060 0.033 0.029 0.007 0.049 0.035

10mm 0.037 0.017 0.054 0.035 0.032 0.014 0.065 0.030

Table S1: Results of the Eklund test using LISA. The table shows false positive rates of the Eklund test with two
types of preprocessing where the resampling parameter was either set to (2mm)3 or to (3mm)3 resolution. Both results
are based on 4x4x1000 individual tests. The experimental designs (E1,E2,B1,B2) are the same as in Eklund et al. [6]. For
preprocessing, SPM12 was used. Four levels of spatial smoothing were used during preprocessing (4mm, 6mm, 8mm,
10mm).
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Figure S1: The GT400 map of the motor task. The GT400 map shows voxels that are detected at p < 0.01 FWE-
corrected using FSL-TFCE using a sample size of 400. This map is thresholded using effect sizes larger than 0.2 where
effectsize is defined as the voxelwise mean across all 400 subjects divided by the standard deviation. The colors encode
effectsize.
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Figure S2: The GT400 map of the emotion task. The GT400 map shows voxels that are detected at p < 0.01 FWE-
corrected using FSL-TFCE using a sample size of 400. This map is thresholded using effect sizes larger than 0.2 where
effectsize is defined as the voxelwise mean across all 400 subjects divided by the standard deviation. The colors encode
effectsize.
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Motor task Emotion task
size LISA TFCE S-FWE S-FDR LISA TFCE S-FWE S-FDR
20 0.162 0.119 0.128 0.128 0.249 0.231 0.174 0.175
40 0.316 0.244 0.239 0.240 0.447 0.424 0.316 0.317
60 0.410 0.360 0.345 0.347 0.550 0.535 0.413 0.414
80 0.481 0.446 0.408 0.409 0.607 0.583 0.485 0.486

100 0.535 0.503 0.453 0.454 0.639 0.639 0.552 0.553

Table S2: Effectsize weighted detection rates. This table presents the same data as figure 5.
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Figure S3: Difference of reproducibility maps of figure 2. The comparison with SPM-FWE shows that LISA has better
reproducibility almost everywhere, indicated by the positive (red-yellow) color code. The comparison with SPM-FWE
shows that LISA has better reproducibility particularly in GT400 activation areas.
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Figure S4: Difference LISA-TFCE of sample size maps of figure 4. The comparison with SPM-FWE and FSL-TFCE
shows that LISA needs smaller sample sizes almost everywhere, indicated by the positive (red-yellow) color code.
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