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Abstract

By a hybrid computational modeling strategy we demonstrate that the growth response of tumors under
mechanical stress may be quantitatively predictable even under largely di↵ering growth conditions. In our
computational models, cells are represented by individual units parameterized by measurable biophysical and
cell-biological parameters. We assume a simple functional relation how cell cycle progression is controlled
by volumetric strain, the latter in our model being derived from a biomechanical relation between applied
pressure and cell compressibility. After parameter calibration from experiments with CT26 cells growing
against resistance of a thin elastic alginate capsule, the model adequately predicts both the growth curve
in thick capsules and, after accounting for di↵erences in the growth conditions, in a Dextran solution
experiment, where the stress is generated by osmosis. Our modeling strategy is very general, and provides
an important technical achievement for dealing with high compression in individual-based models that enjoy
increasing interest.

1. Introduction

Mechanotransduction, or the mechanism by which cells transform an external mechanical stimulus into
internal signals emerges in many cellular processes, such as embryonal development and tumor growth [1].
Cell growth in a confined environment such as stroma increases cell density and a↵ects the balance between
tissue growth in homeostasis [2, 3]. In their papers, Helmlinger et al. (1997) and later Cheng et al. (2009)
and Mills et al. (2014) [4, 5, 6] experimentally investigated the growth of spheroids embedded in agarose
gel at varying agarose concentration. Spheroids under pressure were also studied using the osmotic e↵ects
induced by Dextran concentrations [7]. Recent findings suggest that this stagnation of growth is due to a
volume decrease of the cells [8]. In all cases it was found that mechanical stress a↵ects spheroid growth
inhibitory, yet a quantitative relation between pressure and cell fate and is far less conclusive.

Here we in a first step establish a computational model to quantitatively explain the growth kinetics and
multicellular pattern found for CT26 (mouse colon carcinoma cell line) multicellular spheroids constrained
by a spherical elastic capsule with defined properties. Once the spheroid touches the capsule, further radial
expansion depends on the pressure exerted by the cell aggregate. This novel experimental technique, called
the “Cellular Capsule Technology” [9], has opened a new possibility to study growth of tumor multicellular
spheroids in a mechanically controlled way. The spheroids are monitored during a period of several days.
Histological data of the spheroids are collected and analyzed using staining, cryosections and microscopy. In
addition, the experiment has been conducted on capsules with varying thickness to mimic the mechanical
resistance of the environment. We refer to this experimental technique as ”Experiment I”.

Delarue et. al. (2014) [8] demonstrated the e↵ect of mechanical stress on multicellular growth using
the same cell line in a di↵erent experimental setting. This gives the opportunity to study in a second
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step, how far the computational model established to explain experiment I, would have to be modified
to quantitatively explain this experiment (referred to as ”experiment II” from now on). In experiment II
mechanical compression was imposed using the osmotic e↵ects induced by a Dextran solution. The main
di↵erence between those two experiments is that in the first experiment pressure gradually increases with
increasing deformation of the elastic capsule, while in the second, a constant pressure (5 kPa) is maintained.
Furthermore, in the second case there is no obstructing tissue present (see Fig. 1a, respectively Exp. I and
Exp. II).
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Figure 1: (a) Two experiments setups for growing spheroids (free and mechanically stressed) considered in
our model. (b) Multi-scale modeling approach, considering two model scales where the parameters from the
coarse scale are determined for runs with the fine scale model.

As modeling technique we developed an Agent Based Model (ABM) that is parameterized by biophysical
and cell-kinetic parameters. Di↵erent from continuum models which consider locally averaged variables (such
as cell density, momentum density, ...) [10, 11] agent based models represent each cell individually hence
allow to account for cell to cell variability and inhomogeneities on small spatial scales, and tie measurable
quantities at the cell level to the emergent behavior at the multicellular level. Simulations with center based
models (CBM), a prominent representative in the class of ABMs where forces between cells are calculated as
forces between cell centers, indicated the necessity of mechanical growth inhibition in monolayer growth [13].
The same model type was able to quantitatively reproduce the experimentally observed growth kinetics of
monolayers, as well as of multicellular spheroids growing in liquid suspension [14, 15, 16] and embedded in
agarose gel [17] if cell cycle progression was assumed to be inhibited either as a consequence of pressure or of a
too small distance of the cell centers. However, as no information about the mechanical stresses was available
for the underlying experiments, a quantitative coupling between mechanical pressure and growth inhibition
was not feasible. Cell populations subject to large compression forces represent an unresolved technical
challenge to the current generation of ABMs [18] which is why we here develop a sophisticated two-level
modeling strategy where the parameters of the CBM which considers the cell shape in a statistical, ”coarse
grained” sense thereby permitting simulations of large cell population sizes, are calibrated from a finer scale
cell model “DCM”, that displays cell shape at high resolution at the expense of high computational cost
(see Fig. 1b). As both CBM and DCM are parameterized by measurable quantities, the possible parameter
range of each model parameter can be identified and un-physiological parameter choices can be avoided.

To unravel the multicellular dynamics with the model, our modeling strategy is to postulate and im-
plement hypotheses on cell growth, quiescence and death, and iteratively adapt or extend them in case
the model simulations are falsified by comparison with the experimental data. Pursuing the same strategy
allowed predictions of subsequently validated mechanisms in liver regeneration [19, 20]. Based upon analy-
sis of the relation between pressure, cell density and cell compressibility, our findings suggest that contact
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inhibition can be regarded as a continuous process imposed by a reduction of cell volume as a consequence
of increasing pressure and individual cell compressibility. In addition, the high resolution model shows
that potential e↵ects of micro mechanics at the interfaces with the capsule may depend on the mechanical
properties of the cells.

Experiment I

Small clumps of CT26 cells were grown in a humidified atmosphere to to reach a radius of about 100µm
(see [9] for details). When the tumor cells reached the border of the elastic alginate capsule (t = 0d in
Fig. 2a), they induce a dilatation of the radius, which is an indicator of the pressure they exert. The capsule
expansion was measured from the point of confluence on and its radius was monitored during several days,
while histological data of the spheroids were collected at the point of confluence and at 48h after. The
capsules had an initial radius of ±100µm. Two capsule thicknesses have been studied to mimic a variation
in mechanical resistance. In unraveling the mechanisms of growing cells under confinement, we first extract
three principal observations in the experiments:

(E1.OI) In the absence of a capsule, an initial exponential growth phase was observed with doubling time
T
div

= 17h up to R > 100µm [9]. Two days after confluence, the growth kinetics starts to deviate clearly
from exponential growth (R ⇡ 175µm), see Fig. 2a. (E1.OII) At confluence, the time evolution of the capsule
radius shows an initial growth stage T1 (t < 1d, ⇠ 8µm/d for a thin capsule) followed by slower quasi-linear
residual growth stage T2 (t > 1d) that at least persists for several days. The observed growth velocities
were ⇠ 2µm/d for the thin capsules (Fig. 2a) and 0.7µm/d for the thick capsules (Fig. 7). (E1.OIII)
The nuclei density, obtained from cryosections, increases from ⇠1 nucleus / 100µm2 before confinement,
to roughly 2 nuclei / 100µm2 at 48h after confluence, with a relatively higher number near the center of
the spheroid (1.2 times more compared to the outer regions), and local increase right at the border of the
capsule. (E1.OIV) Most of the cells in the bulk are necrotic after 48h of confinement. However, the cells
in the periphery, corresponding to roughly 2 cell layers (15µm), stay mostly viable during the time course
T2 of the experiment. The distribution of cell nuclei in Alessandri et al. (2013) suggests that cells near the
capsule border are deformed while those in the interior look isotropically shaped.
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Figure 2: (a) Radial growth curves data of the spheroids for experiment I and II and respective model runs
(R0 = 100µm). The model runs with growth rate adaption (Model Ib) are indicated by dashed or full lines.
The thin blue line indicates pure exponential growth with doubling time of 17h. For clarity, the model run
without growth rate adaption (Model 0) is not shown, but matches very well with the exponential. (b) Agent
Based Model simulation time sequence for experiment I and II respectively. The color coding is according
to their size (red is bigger, dark blue is smaller).

Experiment II

In the work of Delarue et al. (2014) [8], CT26 spheroids (initial radius 100µm) were grown in a Dextran
solution, which expels the water out of the spheroid and generates osmotic forces exerted to the outer cells
which then are transferred as compressive stresses to the interior (the bulk) cells. The concentration of
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Dextran regulates the applied pressure. (E2.OI) The growth rate at p = 5kPa is significantly lower than
in control spheroids where no pressure is exerted. (E2.OII) Surprisingly, the spheroid free growth data do
not show an initial exponential phase found in (E1.OI) (T

div

= 17h) (Fig. 2a). This discrepancy might
be explained by the di↵erent culturing conditions in both experiments. During the stress conditions, no
significant changes in apoptosis rates after 3 days, yet over-expression of the kinase inhibitor p27Kip1 with
an increased number of cells arrested in the G1 phase were observed.

2. Results

2.1. Hypotheses for growth and death of tumor cells
In order to explain the experimental growth patterns in both experiments (1, 2) with a mathematical

model, we propose a number of hypotheses for the growth dynamics in relation to stress that should apply to
both experiments. The hypotheses are stepwise implemented in the model to identify those necessary to ex-
plain the observations. In the later sections the general hypotheses are complemented by model assumptions
that take into account specific features of each individual experiment.

(H.I) In both experiments sub-exponential growth is observed, in EI.OIV the formation of a necrotic
core. We assume that deviation of growth from an exponential indicates limitation of proliferation to a
proliferating rim. Interior cells can undergo necrosis as a consequence of a lack of nutriments or other
factors [14, 21]. This may indirectly be promoted by pressure, e.g., if the cell layer below the capsule is
so much compressed that it forms an obstructive barrier for some nutriments (as glucose) for cells located
further in the interior of the tumor. However, cell death may also be a direct consequence of mechanical
pressure e.g., if cells subject to compression cannot advance in cell cycle for too long and then undergo
apoptosis. We do not specify the reason for cell death here but define the thickness of the proliferating rim
by the parameter �

crit

. Necrotic cells can undergo lysis, in which they steadily lose a part of their fluid
mass. The decrease of mass is limited to about 70% of the total initial mass of the cell [22].

(H.II) Cell growth rate maybe be declined or inhibited by pressure [14, 4]. The authors of a recent study
[8] hypothesized that the growth rate may be down-regulated if the cell volume is reduced as a consequence
of pressure. On the molecular level, volume reduction correlates with over expression of p27Kip1 (a protein
which inhibits cell proliferation) which progressively decreases the proliferating potential. These observations
suggest that quiescence, and perhaps also apoptosis may thus be controlled by either pressure or cell volume.
Experimental studies [23, 24, 25, 26] mainly measured the growth rate of dry mass or size. These indicate
that the growth rate (↵) varies within the cell-cycle, yet a unique relationship is di�cult to infer. Here we
assume 1) that the growth of the cell population not constrained by mechanically-induced growth inhibition,
nutrient, oxygen or growth factor limitations is exponential, and 2) that the volume growth rate is constrained
if cells are exposed to compressive stress. We assume that growth rate is dependent on the volumetric strain
(“true strain”, commonly used in case of large strains) ✏

V

= � log(V/V
ref

) where V is the actual compressed
volume and V

ref

is the volume of the cell in free suspension. The degree to which a cell upon volumetric
compression changes its volume can be described by its compression modulus K. The compression modulus
of the cell depends on the actual volume fraction of water, and the elastic response of the cytoskeleton
structure and organelles. It may also be influenced by the permeability of the plasma membrane for water,
the presence of caveolae [27], and active responses in the cells. As such, the timescale at which K is measured
is important. In our simulations, we regard K as the long timescale modulus of cell, as growth and divisions
are slow processes. The calculation of growth, volume and pressure for each cell in the model is explained
in the Methods section).

We propose as general form for growth rate ↵ the Hill formula:

↵ = ↵0
✏n
Vtr

✏n
V

+ ✏n
Vtr

, (1)

where ↵0 is the growth rate of the unconstrained cell, ✏
Vtr is a threshold value1, and n is an integer.

The parameter ✏
Vtr is the value where the cells have lost 50% of their initial growth rate (see Fig. 3a). Note

1We assume V/Vref  1 in the experiment meaning the the cells are always in a compressive state

5

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 31, 2017. ; https://doi.org/10.1101/122614doi: bioRxiv preprint 

https://doi.org/10.1101/122614
http://creativecommons.org/licenses/by/4.0/


that for ✏
Vtr ! 1 we retrieve a constant growth scenario, whereas if n ! 1 a sharp pressure threshold is

recovered. This makes a variety of growth scenarios possible. Hill formulas have been used in the past to
simulate contact inhibition in epithelial tissue and tumors [28, 16, 29].
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Figure 3: (top) (a) Proposed function for the growth rate for di↵erent values of n with indication of ↵
qui

for
which below the growth stalls. (b) Left: simulation of a CT26 spheroid just before confinement (coloring
according to cell volume), right: after 48h of confinement in capsule (coloring indicate necrotic cells (red)
and viable cells (blue).

(H.III) It is generally accepted that cells who have passed the G1 checkpoint (also known as restriction
point) are committed to divide. In our model we assume this checkpoint is situated after 1/4 of the total
cell cycle time [30]. The transition to the quiescence state of a cell can be defined as the one at which the
growth rate ”stalls”, i.e. ↵/↵0 < ↵

qui

(see Fig. 3a).

2.2. Establishment of the model

We used an agent based model of the center based type to mimic the multicellular growth. In this
model each cell is represented individually and parameterized by measurable biophysical and bio-kinetic
parameters. This facilitates determination of the parameter ranges and thereby a sensitivity analysis [19].
Cell movement is modelled by an equation of motion, that balances friction with compression, adhesion,
micro motility forces, as well as external forces (e.g. capsule) exerted on that cell. A Center Based Model
(CBM) approximates each cell as inherently spherical object that deforms moderately upon compression
(see Methods section). Forces between cells are transmitted as forces between the cell centers. CBMs permit
realistic simulations as they directly use physical forces. They are amenable to about 1 Mio cells in two weeks
computation time on a standard desktop computer. However, basic CBMs generally lack a self-consistent
definition cell volume, shape and mechanical stresses on the cell [18] which provides a critical limitation here
for simulating cells subject to large compressive stress. This can be circumvented by using deformable cell
models (DCMs) instead of CBMs. In this model type, each cell surface is triangulated and the deformations
and stresses can be tracked precisely. However, a DCM simulation is computationally very expensive. To
permit simulations of large cell populations in reasonable time, while ensuring a realistic behavior at high
compression, we therefore use a hybrid modeling strategy in which we calibrate the interaction forces of
the CBM with numerical experiments using the DCM, and then use the modified CBM to simulated the
compression Experiments 1 and 2 in silico (for details, see Methods, section 4.3). A conceptually related
idea has been pursued in refs. [31, 12, 32], where an agent based model and continuum model have been
combined to achieve simulations of larger tumors without losing the necessary detail in the proliferating rim.

According to hypothesis H.II growth rate depends on the compression of the cells, hence the volume
doubling time can locally vary and is larger than for uncompressed cells. Limiting cases would be that
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division occurred after volume doubling at a variable time [14], or after a pre-defined time [20]. We therefore
also compared the e↵ect of constant time vs. doubling of volume criterion in cell division on the cell
population behavior. The execution order of the model components is depicted in Fig. 14. Also mentioned
in H.II, the growth rate may vary during the cell cycle. To study the e↵ect of a varying growth rate we ran
all simulations with constant growth rate, as well as exponential growth rate during the cell cycle (details
in Methods section 4.1.5).

2.3. Simulation of experiment I for thin capsules: constant growth rate

In this section we consider a constant growth rate, assuming first a constant compression modulus, then
strain hardening, and finally including volume shrinkage due to lysis.

“Model 0”: First, we simulated CT26 cells growing freely in the liquid suspension, hereafter referred
to as “Model 0” (for the parameters, see Table 1). For a constant cell cycle duration of T

div

= 17h (no
inhibition), in the observation period �2 d  t  1 d, we found a good mutual agreement between the
model, the experimental growth curve, and an exponential, see Fig. 2a. This determines the intrinsic cell
cycle duration T

div

of a growing cell population subject to neither external mechanical stress nor nutriment
limitation. The results in “Model 0” are hardly a↵ected by the cell compressibility. A movie (Video 1) of
this simulation is provided in the Supplementary material.

In the next step, we used the same model to mimic a growing multicellular spheroid in a thin capsule
(H = 8µm). Until confluence (t = 0) is reached, the radial growth curve in the experiment is close to
that of a spheroid growing in liquid suspension indicating that the presence of the capsule has no notable
influence on the growth of the spheroid. However at confluence, the growth curve exhibits a decline followed
by rather a sharp transition into an approximately linear slope (t  1d and t � 1d respectively in Fig. 2a).
As we do not explicitly model nutriment influences which would require a lot of experiments at varying
nutriment conditions displaying proliferating and viable cells as necrotic lesions [21], we capture the e↵ect
by introducing a critical distance from the capsule, �

crit

= 15µm, over which cells remain viable during
linear stage (see E1.OIV and H1). The transition for the cells from T1 to T2 is modeled by introducing a
critical pressure p

crit

in the capsule (see Methods section 4.4). At this pressure, the cells in the bulk of the
spheroid start to die, while the ones at the border remain viable.

“Model Ia”: The compression modulus of the cells influences the volumetric strain and thus growth rate.
In “Model Ia” we varied K in the range K 2 [2500Pa, 150 kPa], which includes the value of K ⇡ 10kPa
reported for CT26 cell [8, 33, 34]. In Fig. 4a we compare the radius of the capsule upon deformation by
the growing multicellular spheroid with the experiment. Note that all simulations exhibit a short initial lag,
in where the capsule dilatation is small. In this stage, the spheroid touches the capsule border but cells
are mainly pushed inwards, filling up intercellular spaces. This is less visible in the experiment, yet there
the exact point of confluence is very di�cult to determine. After this period, cells are becoming more and
more compressed and the mechanical resistance of the spheroid increases. Fig. 4b further also shows the
simulated and experimentally observed nuclei densities.

For K = 10 kPa both the initial and the residual radial growth are significantly overestimated. Moreover,
the cell density increases at 48h only by a factor of 1.5, while experimentally a factor of 2 is observed (Fig. 4).
This suggests that the apparent compressibility of the spheroid is too high, supported by observing that at
K = 150 kPa the initial radial growth becomes much too high whereas the cell density at 48h is now only
1.3 times the original one (Fig. 4b). Contrary, for a much smaller value K ⇠ 2500Pa as deduced in [35],
the initial and residual growth curves are closer to the experiment but still to high. Moreover, while for
the compression moduli K = 10 kPa, 150 kPa, the radius expansion was linear, it bends now upwards for
K = 2500Pa, as more and more cells reach the maximum limit of fluid expel (H.I) and cause a sti↵ response
of the spheroid system as we do not allow further compression in the model. More importantly, we now
observe a far too high cell density at 48h (increase of almost 3 times). These results demonstrate that the
proliferating rim with �

crit

= 15µm alone cannot not explain the velocity of the growing spheroid in the
linear phase, as it is not possible to simultaneously fit the nuclei density and the long-time radius expansion.
For any value that would be capable of fitting the nuclei density, the slope of the radius expansion would be
too high.
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(a)

(b)

Figure 4: (a) Time evolution of the radius of the thin capsule, shown for the experimental data and the
simulation using Model Ia, with parameter variation on the individual cell compressibility. Additional data
points “data thin 1-3” were provided by P.N. (see Supplementary material) (b) Left: time evolution of the
simulated curves for respectively cell density. The dashed horizontal line indicates the double cell density
at 48h. Right: pressure in the capsule versus time.

Strain hardening: Some authors reported strain hardening e↵ects leading to an increased elastic modulus
upon mechanical stress [36]. Sti↵ening of the cells could also occurs as the cytoskeleton gets denser [37]. To
test the e↵ect of strain hardening we replace the constant compression modulus with a linear increase of K
with the ”dry mass density“ ⇢

dm

:

K(⇢
dm

) = K0⇢dm = K0
V
ref

V
(2)

with ⇢
dm

= V
ref

/V � 1. We choose K0 = 5000Pa and K(⇢
dm

= 2) = 10 kPa. In this scenario, K is
initially smaller but gradually increase during compression, leading to a higher overall cell nuclei density
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(a)

(b)

Figure 5: (top) (a) Time evolution of the radius of the thin capsule, shown for the experimental data and
simulations using Model Ia, showing the e↵ect of a parameter variation for the lysis time T

lys

. (b) Time
evolution of the simulated curves for respectively cell density.

(Fig. 4b). However, the sti↵ening does not solve the discrepancy between data and model simulation results.
It allows a rapid nuclei density increase in a spheroid for low pressure but at the same time leads to higher
mechanical resistance with increasing pressure. We adopt the sti↵ening in Model Ia.

In a next step we studied whether incorporating the e↵ect of intrinsic volume loss of apoptotic cells due
to lysis would lower the radius expansion and establish agreement between model and data. Lysis induces
an irreversible water loss and decreasing of the volume of the cells (see Methods section 4.1.3). Contrary
to in vivo experiments, there are no macrophages present to phagocytose the remaining cell bodies, and
phagocytation by neighbor cells is very slow [21]. We studied lysis times T

lys

2 [5h, 14d] using Model Ia. For
shorter T

lys

the residual growth curves get closer to the experimental curves but largely fails to reproduce
the the observed linear behavior (see Fig. 5). This is because lysing results in more compression and thus
gradually sti↵er cells. The e↵ect becomes clear at very low lysis times (T

lys

= 5h). Here, the initial behavior
of the spheroid is determined by cells quickly loosing their volume (hence low resistance). Further in time,
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a large sti↵ core forms which will eventually overcome the mechanical resistance of the thin capsule (see
explanation above). Nevertheless, a T

lys

= 6d yields a good agreement with the cell nuclei density at 48h
(Fig. 5b), and this is also relatively close to the apoptosis time found by fitting phenomenological growth
laws for spheroids ( ⇡ 5d ) [38, 8]. On the other hand, it is still not possible to simultaneously fit growth
and density curves with Model Ia.

In conclusion, no agreement between Model Ia and data could be found for a constant growth rate,
neither by variation of the compression modulus, the magnitude of the lysis time, or by taking into account
strain hardening.

2.4. Simulation of experiment I for thin capsules: compression inhibited growth rate

“Model Ib”: In the following step we assume that the growth rate ↵ depends on the degree of compressive
stress according to Eq. 1. In ”Model Ib”, cells can enter G0 if the relative growth rate ↵/↵0 falls below a
threshold ↵

qui

between division and restriction point, here assumed to be after 1/4 of the cell cycle (H.III,
Fig. 3).

With Model Ib we found a very good agreement between experimental data and simulation results for
✏
Vtr ⇡ 0.35, n = 1, 2 and ↵

qui

 0.33 (Fig. 6a, Fig. 6b)). Low values of n do not discriminate, yet n � 4
results in a faster growth in the beginning but an experimentally not observed flattening of the residual
growth (n ! 1 leads to a plateau). Increasing ↵

qui

to 0.5 results in a significant growth stall (see Fig. 6a).
Increasing ✏

Vtr results in a faster capsule dilatation over the whole period. We selected ✏
Vtr ⇡ 0.35 as optimal

fit. The e↵ect of ✏
Vtr is shown in the thick capsule experiment (see next section, Fig. 7a).

Importantly, note that we still have a very good agreement when applying Model Ib to the free growing
spheroids experiment simulation, see black full line in Fig. 2a. This shows that of the proposed growth
function is still valid when compression e↵ects are much lower.

So far we assumed cells to divide after their volume has doubled. Consequently, for a compression
dependent growth rate, a cell subject to compressive stress has a longer cell cycle duration than an isolated
cell. We also tested the assumption that a cell always divides after a fixed cell cycle time. In this case we
find that the nuclei density is too large, as cells under compression tend to divide before their volume has
doubled (Fig. 6b).

Finally, we also captured di↵erent growth dynamics of individual cells within their cycle. With Model
Ib, we tested the hypotheses whether cells either have a growth rate, constant during the cycle (Eq. 16 in
Methods) or rather an exponential increase (Eq. 17). Yet, the results are quite robust for these assumptions
as we did not find any significant di↵erences for the spheroid growth.

Concluding, with simulations using Model Ib a much better agreement with data could be obtained in
case the cell divides after doubling its volume (even if this prolongs the cell cycle). A movie (Video 2) of
this simulation is provided in the Supplementary material.
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(a)

(b)

Figure 6: (a) Time evolution of the radius of the thin capsule for the experimental data and the simulations
using Model Ib showing the e↵ect of a parameter variation for n with ↵

qui

= 0.33, and n = 1 with ↵
qui

= 0.5.
(b) Simulation and experimental values of the radial cell density in the spheroid at T = 0h, and T = 48h for
the optimal parameters. The model run with the same parameters, but in which cells divide after a fixed
cycle time (”timer“) is also shown.
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2.5. Comparison of Model Ib for experiment I with thick capsule

For validation, we considered the thick capsule experiment (H = 30µm) running the simulations using
Model Ib and found that the parameter set (n = 1, ✏

Vtr = 0.35,↵
qui

= 0.3), close to the one for the thin
capsule, gave the best fit.The results for the radial expansions are depicted in Fig. 7a, showing still a good
agreement. For higher or lower values for the volumetric strain threshold ✏

Vtr , respectively, an overestimation
or underestimation for the residual growth is observed.

(a)

(b) (c)

Figure 7: (top) (a) Time evolution of the thick capsule radius (H = 30µm), shown for the experimental
data and the simulation with Model Ib, indicating the e↵ect of the parameter n and ✏

Vtr . The errors on the
thick capsule data are obtained from the spreading on the thin capsule data and indicated by the grey zone.
(b) Global view of experiment I and II and respective model runs, including an additional run for a capsule
wall thickness H = 60µm. (c) Simulated evolution of the average pressure in a capsule with H = 30µm
and H = 60µm.

12

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 31, 2017. ; https://doi.org/10.1101/122614doi: bioRxiv preprint 

https://doi.org/10.1101/122614
http://creativecommons.org/licenses/by/4.0/


Values n > 2 resulted in a clear deviation the end of the observation period and were hence rejected.
Because of a lack of additional data, the errors on the thick capsule data were estimated from the spreading
on the thin capsule data, by determining the minimum - maximum intervals for the thin data. These are
then rescaled by the ratio of thin - thick capsule dilatations and shifted on to the thick capsule curve.

To permit further validation of the model we also depict simulations for a capsule with thickness H =
60µm. This run predicts a slightly lower dilatation rate (Fig. 7b) yet the pressure increase per day in
the capsule (Fig. 7c) is comparable with the 30µm case, indicating a maximum for this cell line of about
2000Pa/day.

2.6. Validation II: experiment II

Finally, we tested if the model calibrated with the experiments of the thin capsule for experiment I
is able to predict the observed growth of CT26 multicellular spheroids in Dextran solution [8]. For this
purpose the objective was to change our model developed for the capsule as little as possible. Dextran
expels the water out of the spheroid and generates osmotic forces exerted to the outer cells, which then are
transferred as compressive stresses to the bulk cells. The concentration of Dextran regulates the applied
pressure. The growth rate at p = 5kPa is significantly lower than those in control spheroids. Strikingly,
the freely growing spheroids in experiment II grow much slower than in Experiment I, revealing an overall
linear but not exponential growth kinetics. This di↵erence in behavior is likely to be a result of the culturing
conditions.

p=0 Paa
30 μm 

100 μm 

120 μm 

Fext

b p=5 kpa

c

p=5 kpa

d

p=5 kpa

Figure 8: (a) Simulation snapshot at the beginning of a free growing CT26 spheroid (R = 100µm), indicating
quiescent (dark) and proliferating cells (light). (b-d) Simulation snapshots of growing CT26 spheroids
at R = 120µm during Dextran application (p = 5kPa), indicating quiescent and proliferating cells (b),
individual cell pressure (c), and volume for the cells (d). Color coding: red is higher, blue is lower.

Model II: To take the di↵erent culture conditions that led to such a di↵erent outcome for free growth
into account within our simulations, we in a first step simulated again the free growing spheroid. Linear
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behavior is characteristic for a proliferative rim of constant size, with the size and spatial distribution of
proliferating cells in the rim determining the speed of spheroid expansion ([39, 21]). To capture this e↵ect
without explicitly modeling the complex metabolism pertaining to the growth kinetics, for which much more
data would be needed [21], we imposed a distinct layer of proliferating peripheral and quiescent bulk cells.
As we do not simulate nutriments e↵ects explicitly we assume all the cells in the bulk, from the beginning
on, will go to rapidly a quiescent state but undergo no lysis as there is no increase in necrosis observed. The
cells in the periphery remain proliferating. The discriminant for keeping a proliferating state is in the model
translated to a threshold valued �

crit

which is measured from the edge of the spheroid onwards. Here, the
edge of the spheroid is computed as the average of the radial positions of the most outer cells plus one mean
cell radius (see Fig. 8a). We found that �

crit

⇠ 30µm with cells adopting the same parameter set from the
previous experiments (n = 1, ✏

Vtr = 0.35,↵
qui

= 0.3), matches well with the free growing data (Fig. 9). This
is referred as Model II. We then keep these values for the growth simulations in the presence of Dextran.
In other work by Delarue et al. (2014) [33] slight cell elongations were reported towards the tumor center,
which we neglected here to test whether the experimentally observed response of a growing tumor subject
to osmotic stress can already be captured with the model originally developed for the capsule, with the only
di↵erence being an adaptation for the free growth conditions.

In the next step we incorporate the e↵ect of Dextran in our so-calibrated model to study how compressive
stress would impact the growth kinetics. In accordance with the known pressure-exerting e↵ect of Dextran,
we apply an external force only to the outer cells, directed towards the center of the spheroid, mimicking
the osmotic e↵ects which induce depletion-induced adhesion and an increase of the contact area between
the cells [40]. The magnitude of the applied force on an outer cell i reads:

F
ext,i

= F0
V
i

V
i,ref

, (3)

where F0 is calibrated such that the experimentally observed average cell pressure < p
i

>= 5kPa is main-
tained inside the bulk of the spheroid during growth. As there is no confining volume, we use the local
calibration approach to compute the contact forces, see Methods section 4.3). Within our model we find
the pressure distribution in the bulk cells is quite homogeneous while for the most outer cells the pressure
is locally lower because some of these cells are experiencing less contact forces from their neighbors (see
Fig. 8c).

Remarkably, the slope of the growth curve obtained from a simulation with the model without any fur-
ther adjustment matches very well with the data (see Fig. 9). This indicates that the response of the CT26
cells on compressive stress is robust and reproducible even if the cells are subject to di↵erent environmental
conditions. Moreover, the surprisingly good agreement between model prediction and experimental obser-
vation suggests that the slight cell elongations observed in [33] might not be a fundamental determinant
in the overall response of a growing tumor to external mechanical stress by osmosis. Perhaps the major
contribution to the stress response is controlled by the proliferating cells that are mainly located close to
the border. For additional test purposes we verified that, in agreement with the capsule runs, setting the
growth parameters ↵

qui

> 0.3, ✏
Vtr < 0.2 or n > 2 resulted in a significant underestimation of grow (too

many cells go into quiescence). To permit further validation, a run for a higher Dextran concentrations
resulting in < p

i

>= 10 kPa is also given, indicating a significant decrease in growth.
Moreover, as proliferating cells, which are on average larger than resting cells, are preferentially localized

at the border, the nuclei-nuclei distance is larger close to the border of the spheroid than inside (see Fig. 8d).
This was also observed by Delarue et al. (2014) [8] and in freely growing spheroids [39].

3. Discussion

By establishing a quantitative model of growing multicellular spheroids subject to compressive stress
calibrated with data on growth in an elastic capsule we were able to demonstrate that the stress response of
a growing tumor is quantitatively robust and reproducible even if the cells grow under di↵erent conditions
and the pressure is exerted by di↵erent methods. Given the enormous complexity of intracellular processes
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Figure 9: Time evolution of radius of the CT26 spheroid relative to its initial state. Data from [8] shown for
free growth and at p = 5kPa. Runs with ”Model II“ are for free growth and p = 5kPa, and one additional
run for p = 10 kPa as prediction. The grey zones indicate the min-max values of the data.

that participate in multicellular growth this is fascinating as it might open the possibility that largely
separated functional modules may be identified and studied in separation without the need to analyze all
interactions of the components of this module with the components of other modules. In particular, we
first developed a model to study CT26 cells grown in an elastic thin and thick capsule, and then modified
this model in a minimal way by taking into account the remarkably di↵erent growth behavior of freely
growing tumor spheroids (i.e. not subject to compressive stress) to simulate the tumor growth response in a
Dextran solution. The large di↵erence in the growth curves for free spheroids not subject to any compressive
stress indicated significant di↵erences, however, the mechanical stress response was quantitatively the same.
Without the model, it would have been very di�cult to identify this equivalence. The key results of our
analysis are: (R.I) with increasing compression the cell growth rate decreases. This relation could be well
captured by a Hill function for the growth rate ↵ that depends on the volumetric strain (Eq. 1), and a
transition into quiescence if the growth rate felt below a threshold value. A sharp volume or pressure
threshold below which no cell cycle entrance would occur anymore, is not compatible to the data. (R.II)
Cells are compressible on long time scales, with a K increasing with the volumetric strain. (R.III) In the
model, we have assumed that cells that have become necrotic are lysing, thereby losing up to a maximum
of 70% of their initial mass. The death cells in the capsule embedded spheroids have a characteristic lysing
time of 6d. (R.IV) Cells divide when their dry mass has doubled during the cycle. A ”timer” as a decision
mechanism for dividing could not explain the data.

A particular point of concern all studies of spheroids is the appearance of cell death. Our work is based
on the observations of Alessandri et al. (2013), who observed necrosis (CT26 cells, using FM4-64) in capsule
confined cells, while their free growing spheroids exhibited the normal exponential growth for R < 150µm.
In their experiments, Helmlinger et al. (1996) [4] observed a decrease in apoptotic (LS174T cells, using
TUNEL) events during compression, while they also observed little necrosis (not measured) for spheroids
with R < 150µm. They concluded that the haltered growth of the spheroids is mainly due to the increasing
compressed state, which can be partially confirmed by our simulations (see Fig. 4). In the work of Delarue
et al. (2014) [8], no increase of apoptosis (HT29 cells, using cleaved-caspase 3) was observed after 3 days for
spheroids with R ⇠ 100µm. On the other hand, Cheng et al. (2009) [5] did observe an increase of necrosis
(67NR cells, using propidium iodide) even in very small spheroids R ⇠ 50µm, yet mainly for the bulk cells.
At the periphery, cells were still dividing. The fact whether necrosis occurs or not may well be dependent
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on the cell type, but overall it seems that the peripheral cells are much less a↵ected.
Clearly, the exact values of the parameters still need to be taken with caution and are expected to be

cell-type-dependent. More experiments with di↵erent pressure conditions can validate the proposed growth
law. Our modeling strategy bases on an in silico experiment, i.e., an abstracted experiment on the computer,
where each individual cell was represented as modeling unit that could be equipped with those properties,
actions and interactions that were considered as necessary to quantitatively explain the cellular growth re-
sponse on mechanical compression. The implementation of cell-cell and cell-environment interaction directly
accounts for physical laws with (in principle) measurable physical parameters which permit straightforward
limitation of parameter ranges to those physiologically relevant. A particular challenge was to construct an
individual agent based model that permits stable and robust simulations up to several tens of thousands
cells under high compression. Under high compression cell displacements may have to be minimal, which
rules out models operating on lattices unless the lattice size would be chosen a very small fraction of the
cell diameter (in which case their loose their computational advantage). Thus, the requirements of con-
straining the parameters, and providing realistic simulation trajectories in time favored models operating
in lattice-free space and following a dynamics simulated by equations of motion (as opposed to a Monte
Carlo dynamics, that under some condition mimics a master equation). The prototype of lattice free models
are center-based models that calculate the forces between cells as forces between cell centers. However, as
explained elsewhere [18] this model type has significant problems in dealing with cell populations under
large compressive stress i.e., with exactly the situation we are faced with in this paper. To solve this issue,
we developed a deformable cell model which represents each individual cell in much greater detail as in
center-based models but at the expense of much longer simulation times. As simulations with that model
up to several thousands of cells were not feasible, we performed simulations with this model of characteristic
multicellular configurations under large compressive stress and used the results to establish a new interaction
force model within center-based models.

Finally, we mention that despite their limit on cell numbers, simulations with DCM can give valuable
information on micro mechanics. In our study, we found that sti↵er cells in a scaled capsule model more
likely could cause a gradient in cell pressure from the border to the center of the spheroid than soft cells
(see Supplementary Material). These potential e↵ects are hard investigate to with center base models and
prove the necessity of further development of high resolution models.
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4. Methods

4.1. Center based model (CBM)

In CBMs cells are approximated as simple geometrical objects capable of active migration, growth and
division, and interaction with other cells or a medium [41]. In CBMs the precise cell shape is not explicitly
modelled but only captured in a statistical sense.

4.1.1. Equation of motion for the cells

The center of mass position of each cell i is obtained integrating a Langevin equation of motion, which
summarizes all forces on that cell including a force term mimicking its micro-motility:

�
ECM

~v
i

+ �
c,cap

~v
i

+
X

j

�
c,c

(~v
i

� ~v
j

) =
X

j

~F
cc,ij

+ ~F
mig,i

+ ~F
cap,i

+ ~F
ext,i

(4)

We assume that the system is inertia less (very low Reynolds number) due to the high friction of the
cells with their environment [42]. On the left hand side of this equation are the friction tensors for cell-ECM
friction (�

ECM

) cell-cell friction (�
c,c

), and cell-capsule friction (�
c,cap

), together with the cell velocities ~v
i

.
If friction coe�cients parallel and normal to the movement direction are di↵erent, the general form for the
friction tensors can be explicitly written as

�
ij

= �?(~uij

⌦ ~u
ij

) + �||(I � ~u
ij

⌦ ~u
ij

), (5)

with ~u
ij

= (~r
j

� ~r
i

)/||~r
j

� ~r
i

||, where ~r
i

, ~r
j

denote the position of the centers of cell i and object j (I is the
3 ⇥ 3 identity matrix, ⌦ denotes the dyadic product) [18]. The individual cell friction coe�cients are �?
and �||, respectively perpendicular and parallel to the movement direction. As experiments do not indicate
ECM inhomogeneity or anisotropy, the cell-ECM friction matrix is considered to be diagonal.

On the right hand side of the equation of motion are the cell-cell repulsive and adhesive forces ~F
cc

, A
force term ~F

mig

mimicking the cell micro-motility, external forces ~F
ext,i

(e.g. due to Dextran), and the

interaction force experienced by the cell from the capsule ~F
cap

. The latter is purely repulsive as cells cannot
adhere to the capsule. The micro-motility force of cell i is mimicked by a Brownian motion term with zero
mean value and are uncorrelated in time:

< ~F
mig,i

>= 0 (6)

and
< ~F (t1)mig,i

⌦ ~F (t2)mig,i

>= A�(t1 � t2). (7)

The amplitude tensor A of the noise autocorrelation function is generally not known. One may draw a
formal analogy to a colloidal particle moving in a homogeneous isotropic fluid [43]. In this case A = 2D�2I,
D being the cell di↵usion constant, � the friction coe�cient of a cell in the medium and I the unity matrix.
This result could be obtained if the cell moves in an isotropic, homogeneous environment for which �|| = �?.
However, keeping in mind a fluctuation-dissipation theorem for cells do not exist, and the random movement
of cells is controlled largely by active migration processes such as anchoring and releasing filopodia but not
by random collisions with fluid particles, the parameters in tensor A are largely controlled by the cell itself.

As the ECM material is not represented explicitly here, the above equations do not conserve total
momentum due to the micro-motility term. Yet as the cells are growing in a spherical aggregate, and the
central position of the capsule does not change, this poses no problem. The system of Eq. 4 needs to be
integrated numerically until the simulation time surpasses the total duration of the experiment which is
8-10d. Eq. 4 results in a linear problem with a sparse symmetric matrix, which can be solved e�ciently by
a Conjugate Gradient method [44] and an explicit Euler integration scheme.
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4.1.2. Adhesive and repulsive forces

Interphase cells are approximated by homogeneous, isotropic, elastic and adhesive spheres which split
into two adherent cells during mitosis. For moderate deformations, the forces between pairs of spheres
have been shown to resemble the Johnson-Kendall-Roberts (JKR) force model which takes into account
the hysteresis behavior in di↵erent forces at the same distance for cells that approach each other and those
which are pulled apart [14, 40]. In the simulations considered in this paper the cells are under permanent
compression hence detachment does not occur. In that case, as illustrated in [45, 41], one can approximate
the interaction force by the simpler extended Hertz model, that corresponds to adding an adhesion term to
the Hertz force. The Hertz force model represents the limit of the JKR model in absence of adhesion. The
extended Hertz model can be analytically solved while the JKR model would require numerical iterations
hence would significantly slow down the simulations.

Rref,i

Rj

Vi

dij

pi δij

rij

(a)

Ki

Ēi

(b)

Figure 10: Contact between two cells defining (a) the distance d
ij

, virtual overlap �
ij

, reference radius R
ref,i

,
actual radius R

i

and volume V
i

, and (b) the internal sti↵ness (compressibility K
i

) and contact sti↵ness Ẽ
i

.

Consider first two non-adhesive cells i and j in contact and with their centers separated by a distance
d
ij

= ||~r
j

� ~r
i

||. If d
ij

becomes moderately smaller than the sum of their radii hence leading to moderate
deformations of the cells, according to Hertz theory the contact force F

rep,ij

develops as a function of the
virtual overlap �

ij

= R
j

+R
i

� d
ij

:

F
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= 4/3E
ij

p
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ij
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(8)

in which E
ij

and R
ij

are defined as
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with E
i

and E
j

being the cell Young’s moduli, ⌫
i

and ⌫
j

the Poisson numbers and R
i

and R
j

the radii of
the cells i and j (see Fig. 10a), respectively. An important issue though, is that the Hertz model does not
take cell forces due to volume reduction into account, so that even in simulations with incompressible cells
(⌫ = 0.5) unrealistic compression could still appear. To include volume compressibility in the center-based
approach, we drop the assumption of E

i

being a constant in our model, and we define an apparent Young
modulus Ẽ

i

that increases as function of the cell density (see section 4.3).
The adhesive force term between cells can be estimated as proportional to the contact area and the

energy of the adhesive contact W [45]:
F
adh,ij

= �⇡WR
ij

. (9)

The total interaction force is then ~F
cc

= ~F
rep

+ ~F
adh

, and acts along the line connecting the centers of two
interacting spherical cells.
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4.1.3. Individual cell volume

In tissues under high pressures, cell compressibility may become an important factor. In our model we
consider both the compressibility of individual cells and that one of the whole spheroid. The bulk modulus
K

i

describes the resistance of a matter to uniform compression. It is the inverse of the compressibility 
i

describing how far a volume of matter is able to change upon compressive stress:

K
i

= �V
i

dp
i

dV
i

= E
i

/3(1� 2⌫) = 1/
i

. (10)

The compressibility of the cells is mainly controlled by the elastic response of a cytoplasmic constituents.
The observed volume change in general depends on the speed of compression. For slow compression, water
can be squeezed out of cells (and tissues), while for fast compression, water would yield incompressible
resistance. Integration of the above equation for K

i

yields the cell volume V
i

as a function of the pressure
(compressive stress) on cell i, the compression modulus and the reference volume that the cell would have
in isolation:

log(
V
i

V
ref,i

) = � p
i

K
i

. (11)

Here V
ref

= 4/3⇡R3
ref,i

is the uncompressed cell volume (R
ref,i

(considered as constant for a quiescent cell),
see Fig. 10).

We assume that as a consequence of internal friction and by remodeling of the cytoskeleton, a cell subject
to compressive stress adapts its volume only with a certain delay. We capture this by following di↵erential
equation:

�
int

✏̇
V,i

+K
i

✏
V,i

= �p
i

(12)

where ✏
V

= � log(V/V
ref

) is the volumetric strain and �
int

is a lumped parameter expressing the relaxation
behavior after an imposed change of the cell volume. The equation is basically equivalent to a Kelvin-Voigt
dynamical system. The logistic strain ✏

V

captures large strains. For small deviations V ⇡ V
ref

the known
relation log(V/V

ref

) ⇡ (V � V
ref

)/V
ref

is recovered.
The friction parameter �

int

is related to the relaxation time by T
rel

= �
int

/K
i

for a single cell (and by
an analogous argument, for the whole spheroids). The relaxation period may range from several seconds
or minutes up to hours, depending on how long the stress has been applied [46, 47, 8]. This phenomenon
is likely to be due to both intracellular and intercellular reorganizations. In our simulations, we assume
characteristic cell relaxation time T

rel

= O(1h) for a viable cell [48].

4.1.4. Measures for stress

As summarized in ref. [18], several measures have been used to quantify the mechanical stress in mul-
ticellular configurations within CBM simulations. Here we apply a concept of virial stress that originates
from stress definition in molecular dynamics [49, 50, 51], as it allows to calculate the full stress tensor. As
the motion of cells as opposed to that of molecules is overdamped, the kinetic contribution can be dropped,
and the stress of a cell i due to contact forces ~F

ij

with other cells is calculated as:

�
i

=
1

V
i

X

j

⇣
~F
ij

⌦ ~r
ij

⌘
(13)

where ~r
ij

is the vector pointing from the center of cell i to the cell j with ||~r
ij

|| = (d
ij

+ R
i

� R
j

)/2 (see
Fig. 10), and V

i

is the sampling volume. This measure was originally defined for small volumes containing
an ensemble of molecules, however, we apply it here to approximate the stress tensor for individual cells, by
taking actual volume of the cell as the sampling volume.

The external pressure p on a cell i is given by:

p
i

=
1

3
tr(�

i

). (14)
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A justification for this formula is given in [18]. From each stress tensor, we can also derive the following
quantity that accounts only for deformational stress:

S =
q
0.5 [(�

xx

� �
yy

)2 + (�
yy

� �
zz

)2 + (�
xx

� �
zz

)2] + 3
⇥
�2
xy

+ �2
yz

+ �2
xz

⇤
. (15)

In addition, we can also derive the principal stress directions {n1, n2, n3} and eigenvalues {�1,�2,�3} by
diagonalization of Eq. 13, yielding important information on how principal stresses on the cells are oriented.
This is for example illustrated in Fig. 12a. We used Cardano’s method for diagonalization of Eq. 13.

4.1.5. Cell growth, mitosis, and lysis

Our basic model assumes constant growth rate during the cell cycle and updates the volume V
ref,i

of
cell i in time as

dV
ref,i

(t)

dt
= ↵

const,i

, (16)

with V0,i = V
ref,i

(0) the initial volume of the cell and ↵
i

the growth rate. Alternatively, one could also
assume that cell volume increases exponentially during the cell cycle:

dV
ref,i

(t)

dt
= V

ref,i

(t)↵
exp,i

, (17)

with ↵
exp,i

= log(2)↵
const,i

/V0,i. Several studies show that cell growth is not constant during the cell
cycle [23, 24, 25, 26], yet no consensus or universal growth law could be inferred. In this work we have
studied the two di↵erent assumptions for the growth rate. However, note that this work addresses the time
scale of growth hence growth rate variations on time scales of less than an hour minutes turned out to be
negligible.

We have studied two alternative implementations for cell division. As far as either the volume or the
duration of the cell in the cell cycle have passed a threshold value, we replace the mother cell by two daughter
cells which are placed very close to each other [45, 15]. This algorithm is di↵erent from the approach where
cells deform into dumbbells in mitosis phase [41, 52]. In our model two daughter cells are created next
to each other instantaneously. During the mitosis period (which takes about 1.5h) the daughter cells do
not grow. However, the two newly created cells can generate short artificial pressure peaks which dissipate
during the division time course. To reduce these peaks, we have implemented an algorithm that (1) ensures
the mother cell divides in the direction of the least stress as derived from the local stress tensor (see Methods
section 4.1.4), and (2) a local energy minimum is sought by varying the distance between the daughter cells
and computing the interactions with the other cells. While this algorithm reduces the pressure peaks, we
did not see significant di↵erences in the results with the case of using no precaution algorithm.

Cells dying either by apoptosis or necrosis eventually undergo lysis, whereby they gradually shrinks.
The process is generally slower in vitro compared to in vivo where macrophages are around to digest the
dead cells [21]. Cristini et al. [12] modeled lysis in ductal carcinoma explicitly as a volume decrease
V = V0 exp (�t/T

lys

) with a time constant T
lys

of 1 to 5 days in their simulations. However, no pressure
e↵ects were considered in their simulations. In experiment I the necrotic core appeared very solid like,
indicating that the water was drained as a consequence of the high pressure. We mimic the lysing process
by setting first V

ref,i

! �V
ref,i

after necrosis, where � is the volumetric solid mass fraction. In the model
necrotic cells will not immediately acquire this new volume, but after a transient depending on the applied
pressure and the internal frictional resistance �

int

. Note, as explained above, the cell volume change is
governed by Eq. 12. The parameter �

int

is thus reset during lysis using the relation �
int

⇠ KT
lys

.
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4.2. Deformable Cell Model

Deformable cell models are able to capture the complex shapes of cells and describe forces onto subcellular
level [18, 53, 54, 55]. In a basic DCM the cell surface is discretized by a number of nodes which are connected
by viscoelastic elements interacting via pairwise potential functions, creating a flexible sca↵olding structure
with arbitrary degrees of freedom per cell. The discretization can be extended to the entire cell volume
and even organelles be represented. The nodes at the boundary form a triangulated structure, accounting
for the mechanical response of the membrane and cortical cytoskeleton (see Fig. 11). The forces in DCM
originate from both cell-cell interactions and intracellular interactions and are described by viscoelastic
elements, bending resistance of the surface, and cell volumetric compressibility. We briefly describe the
basic components.

The basic equation of motion in DCM is formally the same as for the center based model Eq. (4), but is
now applied to each node i of the cell:

X

j

�
nn,ij

(~v
i

� ~v
j

) + �
ns,i

~v
i

=
X

j

~F
e,ij

+
X

m

~F
m,i

+ ~F
vol,i

+
X

T

~F
T,i

+ ~F
rep,i

+ ~F
adh,i

(18)

with �
nn

and �
ns

the matrices here representing node-node friction and node substrate friction. The latter
one can be obtained by considering the CBM substrate friction coe�cient divided by the number of nodes
at the surface of the cell.

M

i

j

Fij

k

l
FT

Fm

A

Figure 11: (left) DCM representation of several adjacent cells. (right) Detail of nodal structure building cell
surface and depicting the forces that work on them.

The individual elements between the surface nodes are represented by classical linear spring-damper
systems. The force between the nodes both capture the elastic response of the cortical cytoskeleton. When
the elastic and dissipative components are added, one acquires the well known Kelvin-Voight element rep-
resenting a solid like behavior. Let us now first consider the in-plane forces originating from the cortical
cytoskeleton. The vector force between two nodes i and j read (see Fig. 11):

~F
ij

= ~F
e,ij

+ ~F
v,ij

= �k
s

(~d
ij

� ~d0,ij)� �~v
ij

, (19)

where ~F
e,ij

and ~F
v,ij

are the elastic and dissipative forces, k
s

is the spring constant, � represents the

dissipation, ~d0,ij , ~dij are the initial and actual distance vectors, and ~v
ij

is the relative velocity between the
nodes, respectively.

The surface bending resistance is incorporated by the rotational resistance of the hinges determined by
two adjacent triangles ↵ =

�
ijk

 
and � =

�
ijl
 
. This defines a moment M :

M = k
b

sin(✓ � ✓0) (20)

where k
b

is the bending constant, and ✓ is determined by the normals to the triangles ~n
↵

,~n
�

, with ✓0 being

the angle of spontaneous curvature. The moment M can be transformed to an equivalent force system ~F
m

acting on each of the nodes of the triangles. We note hereby that ~F
m,i

+ ~F
m,j

+ ~F
m,k

+ ~F
m,l

= 0.
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Importantly, the parameters of the spring network can be related to macroscopic elastic constants. The
linear spring constant k

s

(for a sixfold symmetric triangulated lattice) can be computed from the Young
modulus E

cor

of the cortex with thickness h
cor

by [37, 56]

k
s

⇡ 2p
3
E

cor

h
cor

(21)

The bending sti↵ness of a (thin) cortex is in the same way approximated by

k
b

⇡ E
cor

h3

12(1� ⌫2)
(22)

where ⌫ is the Poisson ratio (= 0.3 for an equilateral 2D network of linear springs). For a more a more in depth
analysis relating the spring force parameters to macroscopic constants, we refer to literature [57, 56, 58].

To avoid large deformations of the triangles in the network, an extra force F
T

, proportional to the area
expansion of the individual triangles is added:

F
T

= k
A

(A�A0)/A0 (23)

Here, A0 and A are the initial and the current areas of the triangle, and k
A

is the area compression
sti↵ness. The forces ~F

T,i

are summed over all triangles of the cell and transferred to the nodes in the
direction perpendicular to the opposite vertex edge of that node. We chose k

A

such that the influence on
the membrane elasticity is minimal, yet triangle deformations are minimized.

The volume penalty forces ~F
vol,i

, reflecting the bulk compressibility of the cytoplasm, are computed
from the internal pressure using the volume change and compressibility modulus of the cytoplasm K. In
our simulations we can safely assume K reflects the overall cell compressibility including the cortex, as in
its physiological range of elasticity, the cortex contributes little to the overall bulk modulus of the cell, i.e.
K � E

cor

h
cor

/R
cell

([35], own test runs). The pressure applied to the cell is therefore approximately given
by:

p = �K log(
V

V0
) (24)

The volume V of the cell is computed summing up the volumes of the individual tetrahedra that build up the
cell. The forces ~F

vol

on the nodes are perpendicular to the cell surface and can be obtained by multiplying
the pressure with the surface area assigned to each node. In principle, internal nodes and elements could
be added to model the elastic response of the internal cytoskeleton explicitly which would introduce shear
stress components, but we do not incorporate this option here as we assume the multi cellular system is
compression dominated.

Interactions between neighboring cells are accounted for by introducing repulsive ~F
rep,i

and adhesive

forces ~F
adh,i

between nodes belonging to di↵erent cells. The sum
P

i

~F
rep,i

reflects excluded volume forces
and determines the total contact force on the cell. Unlike in CBM, the cell bodies in contact do not overlap
and therefore triangles belonging to di↵erent cells will be repelled when approaching too close to each other.
These forces are modeled using the contact model as described in [59]. For consistency with the CBM we
chose the model components of the DCM such that cells are inherently isotropic. However, in principle
anisotropy could be included by representation of the cytoskeleton. For the model parameters in the DCM,
see Table 1.

4.3. Calibration of the contact forces using a Deformable Cell Model

During the process of compression, cells will rearrange and deform to a closer packing. As discussed above,
common models to model the interactions between cells (such as Hertz, JKR, extended Hertz, Lennard-
Jones, etc.) base on pair-wise interaction force calculations and do not take into account the e↵ect of
volume compression emerging from the simultaneous interaction of many cells [18, 41]. In simulations
using these interaction force models, the apparent volume (as seen in the simulation) that the spheroid
occupies upon strong compression may become much smaller than consistent with the material parameters;
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even incompressible cells having Poisson ratio ⌫ = 0.5 reduce their volume [18, 60]. The deformable cell
model (DCM) does not have this shortcoming, but can only handle a limited amount of cells in reasonable
computing time on standard desktop computers, which is why it was not amenable to simulate the whole
spheroid growth in the capsule. In this work we propose an solution that largely overcomes the artifact
of CBMs by correcting the interaction force in the CBM based upon numerical compression experiments
performed with the DCM (Fig. 12). Note, that in these compression simulations with the deformable cell
model mimicking isotropic cells, cell shaped are distorted near the capsule border. This is in line with the
shapes one would infer from the position of the cell nuclei in the capsule experiments [9]. In the CBM,
shape is not explicitly displayed but as we calibrate the forces and pressure of the CBM with the DCM,
these mechanical e↵ects in growing tumor spheroids should be captured.

DCM

CBM

compression

(a)

Vint 

Vi

Vcaps

Rin
H

p

(b)

Figure 12: (a,top) Cartoon illustrating the compression experiment using deformable cells in a capsule to
calibrate the center based model. (a, bottom) Equivalent compression experiment using the center based
model with indication of the maximal principal stress directions of the cells in the capsule during compression
using the virial formula. (b) Cartoon showing the volume compartments V

i

, V
int

and V
caps

in a capsule with
thickness H.

In order to obtain an estimate for the repulsive contact forces in CBM in case of many cell contacts, we
have constructed a multicellular DCM experiment with ⇠ 400 cells initially positioned in a closest sphere
packing. The outer cells are then pushed quasi-statically (to avoid friction e↵ects) towards the central cells
using a shrinking large hollow sphere encompassing the cells (see Fig.12a, we assume that this capsule wall
is rigid). The cells have the same size (yet, taking into account a moderate variable cells size does not a↵ect
the results). However, in the DCM those cells close to the capsule border are apparently deformed as it
is observed in [9]. At the point of confluence (outer cells touching the capsule wall), the DCM cells exert
a total interaction force F

cap

=
P

i

F
cap,i

on the capsule wall. This force is converted to a global pressure
p
cap

= F
cap

/A
cap

where A
cap

is the inner surface area of the capsule. We then obtain the curve of the
pressure p

cap

as a function of the volume fraction, defined as ✏
int

= V
int

/V
cap

where V
int

= V
cap

�P
i

V
cell,i

is the volume of the space in between the cells and V
caps

is the total capsule volume (see Fig. 13, solid green
line).

From literature we adopted E
cor

⇡ 2400Pa, h
cor

⇡ 100 nm and ⌫
cor

⇡ 0.5 [35]. This results in a cortical
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sti↵ness E
cor

h
cor

= 0.24mN/m, close to values deduced from other experiments performed on fibroblasts
[61]. The compressibility of the cytoplasm was set to K = 5000Pa. To study the e↵ect of cell cortex sti↵ness,
needed below to understand the pressure-volume relationship under moderate and strong compression, we
have also performed a DCM simulation with a 10 times higher E

cor

(Fig. 13, blue curve), showing a quicker
response with respect to the compression. For a higher interstitial volume fraction (✏

int

⇡ 0.06), the
compressibility of the spheroid is about 1000Pa, but at high compression (p

cap

� 1000Pa, i.e. ✏
int

 0.01)
both curves appropriately converge largely. Thus, for high interstitial volume fractions the compressibility
of the DCM spheroid is mainly influenced by elastic modulus of the cortex while for low fractions the main
contribution is the compressibility of the whole cell.

low 
compression

high 
compression

dij

Hertzian

Linear

Figure 13: (left) Pressure curves during compression of the spheroid as a function of the intercellular volume
fraction simulated with the DCM and the corrected CBM. The green solid line is the compression curve for
DCM cells with physical parameters values as mentioned in the text, the blue line is from a comparable
simulation for cells that have a 10 times sti↵er cortex. The pressure for CBM was computed using both the
capsule pressure and average virial stress per cell based on a local and global calibration approach. (right)
Average d̃

ij

versus average contact force for the DCM and CBM simulation. Both curves exhibit an initial
Hertz regime, followed by a volumetric compression (linear regime). The uncorrected Hertz force is indicated
by the red line. A representative movie (Video 3) of these simulations is provided in the Supplementary
material)

There are a few ways of calibrating the CBM contact forces. One possibility could be using Voronoi
tessellation, providing a realistic estimate of the volumes and the contact areas of the individual cells in close
packing [15] which would in turn give us the pressure and forces acting on the cell. However, this method
is expensive in 3D and can be cause di�culties in handling the boundary cells.

Local approach, free spheroid

We try to estimate the degree of packing around one cell by using the the distances between that cell and
its neighbors. During the DCM compression experiment we measure all the contact forces between a bulk cell
i and the surrounding cells, which gives us the pressure and volume change on that cell, as a function of their
relative positions, d̃

ij

= 1� d
ij

/(R
ref,i

+ R
ref,j

). The distance d
ij

is computed as the length of the vector
connecting the two center of masses of the cells, with R

ref,i

computed as ( 3
4⇡Vref,i

)1/3. The average contact

force of the central cell with its neighbors as a function of the cell to cell average distance d̃
i

=
P

Nc

j=1 d̃ij/Nc

(N
c

= number of contacts) is depicted in Fig. 13b, blue . We find that this contact force curve still can
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be characterized as initial Hertzian contact for d̃
i

< 0.08, but is after a transition zone followed by a linear
behavior (d̃

i

> 0.1). The first part in this curve is largely determined by the mechanical properties of the
cortex and the changing contact area of the cells, whereas the behavior at larger compression is determined
by the bulk modulus of the cells.

We have developed a CBM calibration approach where we keep the original Hertz contact law but modify
the apparent modulus E

i

! Ẽ
i

of the cell as the intercellular spaces become smaller. In other words, the
apparent Young’s modulus gradually increases in Eq. 8 as the cells get more packed, based on the simple
reasoning that indenting a piece of material with another object gets more di�cult when confined. Thus,
total strain of the cell is composed of a deformation of the cortex largely determined by the apparent Young’s
modulus Ẽ

i

, and the volumetric compression, determined by K
i

. Conceptually, the mechanics is equivalent
to putting two springs with di↵erent sti↵nesses in series, see Fig. 10b. The volume (and radii) of the cells
are adapted using Eq. 12. It is important to stress here that Ẽ

i

only a↵ects the apparent cortex sti↵ness of
the cell through Eq. 8, while the bulk modulus ( Eq. 10) is determined by the original cell Young’s modulus
E

i

.
The challenge now lies in determining Ẽ

i

as a function of the compactness of the spheroid. We have
achieved this by introducing a function that depends on the local average distance d̃

ij

for each cell:

Ẽ
i

(d̃
i

) =

⇢
E

i

0  d̃
i

 0.08
a0 + a1d̃i + a1d̃

2
i

+ a3d̃
3
i

+ a4d̃
4
i

0.08 < d̃
i

(25)

in where a0, a1, a2, a3 and a4 are fitting constants (see appendix B). They are calibrated so the function
is monotonically increasing and results in an optimal fit for the pressure - volume fraction (see Fig. 13, left).
The corresponding average contact cell-cell force F

cc,i

for the spheroid are plotted next to the average DCM
contact force. These curves do not match exactly, but follow each other closely (Fig. 13, right).

Global approach, confined spheroid

If compression rates are su�ciently slow as is the case in the capsule experiment, cells in the spheroid
may find the time to reorganize and ”distribute” the stress isotropically and homogeneously over the cells
in the spheroid. In this presumption, we computed the packing assuming that the intercellular spaces in the
capsule are homogeneous over the spheroid during compression (see Fig. 12b). This allows us to introduce
the global intercellular volume fraction ✏

int

and the cellular fraction ✏
cells

for which we have :

✏
int

+ ✏
cells

= 1, (26)

with ✏
cells

= V
cells

/V
caps

. We can now use ✏
cells

to re-parameterize Eq. 25. The apparent Young’s
modulus Ẽ

i

increases for all cells equally with ✏
cells

being the equivalent of 1� d̃
ij

in the previous approach.
Both CBM simulations with di↵erent calibration approaches then results in a curve that also closely

follows the DCM curve. Compared to the local approach the curve for the global approach is smoother and
less sensitive to the friction parameters and the radius distribution of the cells as it represents an average
over all cells disregarding local fluctuations. For high pressures (p > 2 kPa, both curves become nearly
parallel. On the other hand, the local approach does not require the enclosed (capsule) volume and hence
can be used as a general interaction force of individual cells upon volumetric compression. However, we have
verified that the mutual di↵erences for all simulations involving growth in the capsule are no more than 7%
(see Supplementary material).

Importantly, the pressure curves for the CBM in Fig. 13 only show little mutual di↵erence when using
the average virial pressure for all cells, < p

i

>, and the capsule pressure p
cap

. In addition, it might be also
interesting to look at the principal stresses (indicated in Fig. 12a by arrows) computed by Eq. 13. One clearly
observes that the direction of maximal stress is pointed radially for the border cells, while minimal stress
direction in pointed tangential to the capsule wall. This is equivalent to the DCM simulations where the
cells have a flattened shape of at the border of the capsule (see Fig. 15, Supplementary material). Finally,
we must emphasize that there is no explicit representation of ECM in the model. We assume the ECM
fraction is rather small and approximately homogeneously and isotropically distributed in the intercellular
spaces. Our model should be regarded as a cellular spheroid immersed in a fluid-like environment with a
permeation time typically shorter than the duration of the experiment.
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4.4. Elastic Capsule Model

The capsule is made of an quasi-incompressible alginate gel exhibiting a strain hardening behavior. The
stress-strains relationship was measured in a stretching experiment of an thin alginate cylinder. Strain
hardening behavior was observed for strains > 15%. In case of a thick walled capsule, the expansion strain
is low and hence linear elasticity can be applied. We refer to the hollow sphere example as described in
[62] to compute the radial displacement of the capsule from the internal pressure. If on the other hand the
capsule has a thin wall, strains can become large, and the linear elasticity hypothesis fails. For this case,
in accordance with [9] the original young modulus is modified instead of employing finite elasticity theory.
The nonlinear relationship in stress and strain (✏

cap

) was phenomenologically characterized by [9]:

E
cap

= E
cap,0(1 + a✏

cap

) (27)

where ✏
cap

is the strain, E
cap,0 is the initial Young modulus at zero strain, and a = 1.5 to obtain an optimal

fit with the experiment.
The capsules have an initial inner and outer radius R

in,0 and R
out,0 respectively, whereby the capsule

thickness H = R
out,0 � R

in,0 > 0.2R
in,0 typically for thick capsules. The pressure di↵erence along the

capsule wall can be related to the change in radii by [9]:

p
cap

=
4

3
E

caps

✓
1

1��R3
0/R

3
out

� 1

◆
u(R

out

)

R
out

(28)

Where E
caps

is the Young modulus of the capsule material, R
out

is the outer radius, and u(R
out

) is the
displacement at the outer radius. The outer radius is related to the inner radius R

in

by �R3
0 = R3

out,0�R3
in,0

(incompressibility). To simulate the radius evolution of the capsule, one computes pressure p
cap

by summing
up all contact forces of the cells with the capsule, and divide this by the actual inner surface area. The
radius from the nonlinear Eq. 28 could then be obtained using Newton’s iteration method. This however,
turned out not to be a good choice, as small fluctuations in the pressure causes cumbersome calculations.
Instead, we update the radius using following ODE, formally similar to Eq. 12:

�
cap

R
out

(t)

dR
out

(t)

dt
= p

cap

(t)� 4

3
E

caps

✓
1

1��R3
0/R

3
out

(t)
� 1

◆
u(R

out

(t))

R0out
(29)

This ODE describes the radial expansion of capsule in time, using a lumped material damping parameter
�
cap

which reflects the damping of the material. We assume that the capsule material damping does not
influence the rather slow dynamics of the spheroid, so in practice �

cap

is chosen high enough to warrant
numerical stability, but low enough to mimic the material’ s low viscous resistance [48]. Using Eq. 29 results
in a smooth evolution of the capsule radius.

4.5. Model setup and parameters

First, a single run is performed with a small clump of 10 cells all at the beginning of their cell cycle,
to grow a spheroid up to the size of the capsule (just before point of confluence, (see Fig. 3b)). The cells
grow until they reach a radius of R

i

= 7µm. After each cell division, a new cell cycle time is assigned to
each of the daughter cells, chosen randomly from a Gaussian distribution. The cell cycle time defines the
intrinsic growth rate ↵0. This configuration is then further used as starting configuration for all succeeding
simulations. The model parameters for this initial configuration have been calibrated such that the area
density, measured in a cryosection of width 10µm of the resulting spheroid with R = 100µm, matches that
of the experiments (⇠ 0.85 /100µm2) [9]. For an overview of the model parameters, see Table 1.

From the data for the capsule radius at which the curve is in the transition stage T1 to T2 (Fig. 4, t = 1d)
and using Eq. 28, we deduce a critical pressure p

crit

⇠ 1500Pa a which most of the bulk cells become necrotic.
To express the cell variability in the cells’ response on pressure we have generated a Gaussian distribution
for this with mean 1500Pa and standard deviation of 10 %.

The physical parameters responsible for the inter and intracellular friction are in the model represented
by �

int

, �
c,c,?, �

c,c,||. Mechanical relaxation time of spheroids compressed over a longer time period indicate
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relaxation times of 1 to 5 hours [47, 48]. We have calibrated these friction parameters in the model from a
relaxation experiment starting from a compressed spheroid such that T

rel

⇠ 2 h was obtained.
We ran for each parameter set one simulation i.e., a single realization of the stochastic growth process.

We have verified that using di↵erent random seeds for the same parameter set has negligible influence on
the simulation results (see section Supplementary material). This can be justified by observing that the
growth process containing several thousands of cells, is self-averaging such that the variations on the level
of individual cells cancel out at the population level.

A flow chart of the model algorithms is depicted in Fig. 14.

Parameter symbol unit value ref

Center Based Model -Capsule Model 0 — Model Ia —Model Ib
Mean cell cycle time (*) T

cyc

hours 17 [9]
Maximum cell radius R

i

µm 14 observations
Cell Young’s modulus (*) E Pa 400 [14]
Cell motility D m2/s 10�16 [17]
Adhesion energy W J/m2 10�4 [14]
Cell compressibility (*) K kPa 5 — [2.5, 150], K(⇢

dm

) — K(⇢
dm

) [8, 33, 34]
Cell-cell friction || �

c,c,|| Ns/m3 1010 test runs
Cell-cell friction, ? �

c,c,? Ns/m3 1010 test runs
Cell-ECM friction, �

ECM

Ns/m3 109 test runs
Cell-capsule friction �

c,cap

Ns/m3 109 test runs
Cell relaxation time T

rel

hours 2 [47, 48]
Stall growth rate ↵

qui

- No — No — 0.3 test runs
Hill exponent n - No — No — 1 test runs
Hill threshold (*) ✏

Vtr - No — No — 0.35 test runs
Cell lysis time (*) T

lys

days No — [0.2, 14] — 6 test runs
Critical pressure bulk (necrosis) (*) p

crit

kPa 1.5 observations
Critical rim thickness (necrosis) �

crit

µm 15 [9]
Cell solid mass fraction � - 0.3 [22]
Center Based Model -Dextran Model II
Critical rim thickness (quiescence) �

crit

µm 30 test runs

Deformable Cell Model

Cortex Young’s modulus E
cor

Pa 2400 [35]
Cortex thickness h

cor

µm 0.1 [35]
Cell compressibility K Pa 5000 test runs

Capsule properties

Young modulus E
cap

kPa 68 [9]
Poisson ratio ⌫

cap

- 0.5 [9]
Initial Radius R

in

µm 100 [9]
Thickness (thin/thick) H µm 8/30 [9]

Table 1: Nominal physical parameter values for the model. An (*) denotes parameter variability meaning
that the individual cell parameters are picked from a Gaussian distribution with ±10% on their mean value.
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Intitializet=0

compute cell forces 

Create cell(s)
Set cell parameters
      - Elastic moduli
      - Friction coeffs
      - cell diameters
      -...

t=t +Δt 

-Compute modified Ê (Eq. 24), function of cell 
 to cell distance or volume fraction (calibration) 
-Apply the contact force law (Hertz)

compute cell pressure 
-Apply virial formula (Eq. 14)

compute volume  
-Apply change on cell volume (Eq. 12)

compute growth rate  
-Apply growth rate Hill function (Eq. 1)

-Increase cell size (Eq. 16)  
 -Change cell state function (Necrotic, Quiescence, ..) 

Solve the system of Eqn of motion
-Apply Conjugate Gradient solver
-Integrate velocities yielding new cell positions
-Update capsule radius (Eq. 29)

t>Tend   

Check if cell can divide
-Create a new cell if so

Find contacts
-Cell - cell contacts
-Cell - capsule contacts

Simulate
     - loop over all cells:

Stop

Figure 14: Model flow chart.
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Supplementary material

Influence of cell cortex sti↵ness during compression

We considered whether the apparent boundary e↵ect (E1.OIII) can be attributed purely to mechanical
e↵ects. For this, we used a spheroid compression experiment with a scaled capsule system using 400 (qui-
escent) DCM cells with di↵erent cortex properties (i.e. cells that have the original E

cor

and cells with 10
times this value). It is shown in Fig. 15a that there can be a small mechanical e↵ect in the case for a “high”
sti↵ness of the cortex, as the simulations show that the cells near the boundary acquire higher pressures as
compared to the bulk cells and a weak gradient from the center to the spheroid edge can be observed. This
can be attributed to arching e↵ects, the e↵ect where layers of outer cells bears more stress compared to inner
layers. The e↵ect is higher for an increasing cortex sti↵ness. On the other hand, “softer” cells spread out
more easily, diminishing the pressure di↵erences. To investigate the boundary mechanics in a more realistic
system with dividing cells, the DCM should extended with the capability to mimic mitosis. In our simple
compression experiment with cells having estimated cortex properties, the boundary e↵ect appears to be
limited.

soft

stiff
(a) (b)

Figure 15: (a) Simulation snapshots of DCM cells within a scaled capsule model, in case of “soft” (top)
and “sti↵” cells (bottom). (b) Internal cell pressure for deformable cells in a shrunk capsule for soft cells
and sti↵ cells. The sti↵ cells show a higher variability in pressure as function of the distance to the capsule
center. Notice that in the calibration simulations we use cells of equal volume prior to compression but the
method can equally be applied to any prior volume distribution.
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Comparison of ”local“ and ”global“ calibration methods

For the local calibration procedure, the constants a0 = 7 ⇥ 103 , a1 = 3.5 ⇥ 105 , a2 = �2.96 ⇥ 107 ,
a3 = 2.068 ⇥ 108 and a4 = �1.515 ⇥ 108 in Eq. 25 yield a curve that matches well with the pressure -
volume fraction curve obtained from the deformable cell simulations experiment (see Fig. 13). The function
for Ẽ(d̃

ij

) is monotonically increasing and shown in Fig. 16a (dashed line). The average for all cells during
the simulation is given as well. A mentioned above, the resulting pressure - volume fraction curves are
generally smoother compared to the one obtained from the local calibration. Friction parameters have less
e↵ect, as the calibration is based on a comparison of volume, rather than a cell to cell distance. As a test, we
have compared the radial expansion curves for growth in the thin capsule using contact inhibited growth for
both calibrations. As can be seen the di↵erence between the two approaches is rather small, with a mutual
variation of 5� 7%.

Figure 16: (a) Plot of the function Ẽ(d̃
ij

) used for every cell (dashed line) and averages over all cells during
a simulation (o-). (b) Comparison of the global an local calibration approach for a growing spheroid in the
capsule with the proposed contact inhibition growth law.

Comparison of realizations with di↵erent random seedings

In analogy to experimental statistical procedures, we have performed di↵erent runs to test the e↵ect of
stochastic e↵ects. Fig. 17 provides a direct comparison of the growth expansion in the thin capsule with the
same parameters (optimal parameter set), using 4 di↵erent random seeds. Even after more than 7 days of
simulation, little mutual di↵erences can be observed, while the slopes of the curves are the same. This can
be attributed to self-averaging e↵ects such that the variations on the level of individual cells cancel out at
the population level.
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Figure 17: Thin capsule growth curves for four di↵erent realizations (seeds) of the stochastic processes in
each of the cells using the same parameters.

Additional data

Experimental data and simulation data

New experimental raw data on the capsule can be found in the file ”capsule dextran data.xlsx“. The
data extracted from Alessandri et al. (2013) and Delarue et al. (2014) are in this file as well. The simulation
data are in the file ”simulation data.xlsx“ arranged by figure.

Videos

Video 1 (CT26 free growth.avi) shows the simulated evolution of pressure a free growing CT26
spheroid. Note that a gradient in cell pressure gradually builds up from the center to the border of the
spheroid.
Video 2 (CT26 spheroid capsule.avi) shows the simulated evolution of pressure and cell volume of the
CT26 spheroid growing in a thin capsule. The pressure increases gradually but remains approximately uni-
form over the spheroid.
Video 3 (DCM spheroid compression.avi) shows the simulation of a compression experiment of a
spheroid in a capsule containing 400 deformable cells. Cell pressure and global volume fraction of the
cell volume is indicated. The capsule radius shrinks gradually so that equilibrium pressures are measured.
The cell pressure may be slightly higher at the spheroid border due to arching e↵ects of the outer cells.
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