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Abstract

The regulatory interactions in a cell control cellular response to environmental and genetic perturbations.
Gene regulatory network (GRN) inference from high-throughput gene expression data helps to identify unknown
regulatory interactions in a cell. One of the main challenges in the GRN inference is to identify complex biological
interactions from the limited information contained in the gene expression data. Using prior biological knowledge,
in addition to the gene expression data, is a common method to overcome this challenge. However, only a few
GRN inference methods can inherently incorporate the prior knowledge and these methods are also not among
the best-ranked in benchmarking studies.

We propose to incorporate the prior knowledge after the GRN inference so that any inference method can be
used. Two algorithms have been developed and tested on the well studied Escherichia coli, yeast, and realistic in
silico networks. Their accuracy is higher than the best-ranking method in the latest community-wide benchmark-
ing study. Further, one of the algorithms identifies and removes wrong interactions predicted by the inference
methods. With half of the available prior knowledge of interactions, around 970 additional correct edges were
obtained and 1300 wrong interactions were removed. Moreover, the limitation that only a few GRN inference
methods can incorporate the prior knowledge is overcome. Therefore, a post-inference method of incorporating the
prior knowledge improves accuracy, removes wrong edges, and overcomes the limitation of GRN inference methods.

1 Introduction

Reconstructing the gene regulatory network (GRN) structure from the gene expression data is also known
as GRN inference, top-down approach, or reverse engineering of the GRN. Many methods for the GRN
inference are available (de Jong, 2002; Markowetz and Spang, 2007). However, the GRN inference is a hard
problem due to various challenges, especially due to the limited quantity and quality of experimental data
(De Smet and Marchal, 2010; Marbach et al., 2010). A popular method to overcome this limitation is to
incorporate prior biological knowledge about the network (expert knowledge) along with the data (Chasman
et al., 2016; Ghanbari et al., 2015; Gao and Wang, 2011; Hecker et al., 2009; Cooke et al., 2009; Hartemink
et al., 2002). Bayesian network methods are the best known to include the prior knowledge along with the
data (Ghanbari et al., 2015; Cantone et al., 2009; Mukherjee and Speed, 2008; Bansal et al., 2007; Gardner
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and Faith, 2005; Friedman, 2004). In these methods, the prior knowledge is transformed for integration
with the scoring function, such as the prior probabilities (Mukherjee and Speed, 2008) or the edge copy
number in sampling distribution (Gao and Wang, 2011), ‘before’ the actual inference. These are the best
studied methods and we term them as the ‘priors before inference’ methods. There is also a Bayesian network
method (Nair et al., 2015) that considers the prior knowledge ‘during’ the inference procedure and not before
the inference. This method incorporates the knowledge of the power-law of indegree distribution in GRN
network topology, in which only the genes that show a tendency to have a large number of regulators are
searched with a larger number of regulators. The number of possible regulators for a gene is not given a
priori but is identified ‘during’ the inference from the experimental data. Thus, we term it the ‘prior during
inference’ method. In a large-scale assessment of 29 GRN inference techniques (Marbach et al., 2010), a
Bayesian network method came in second place. However, the most recent large scale assessment with 35
GRN inference techniques (Marbach et al., 2012) found that the Bayesian network methods scored low when
compared to the other methods. Thus, Bayesian network methods are not among the current best-performing
GRN inference methods.

A few recent studies reported the inclusion of the prior knowledge with non-Bayesian network meth-
ods (Petri et al., 2015; Ellwanger et al., 2014; Chen et al., 2014; Greenfield et al., 2013), in which the prior
knowledge is again considered ‘before’ the inference process. Some (Ellwanger et al., 2014; Chen et al.,
2014), assume that the GRN structure is available from the prior knowledge and compute only the weight
of interactions from the gene expression data. These studies cannot infer any new interactions and thus,
cannot be strictly referred to as GRN inference techniques. Petri et al. (2015) uses a supervised machine
learning approach to identify new interactions, given the known interactions. Their approach is applicable
only when all the regulators are known and at least one target-gene is known for each of these regulators.
Greenfield et al. (2013) used a regression method and assumed that all the regulators are known. Assuming
that all regulators are known is a hard assumption which prevents discovery of any new regulators. Pe-
tralia et al. (2015) reported the integration of different types of experimental data in GENIE3 (Huynh-Thu
et al.,, 2010). GENIE3 is a random forest based GRN inference method which was the best-performer in
DREAMS network inference challenge (Marbach et al., 2012) and DREAM4 in silico network inference sub-
challenge (Huynh-Thu et al., 2010). However, only the different types of gene expression data have been
integrated and not the prior biological knowledge. Thus, the higher-ranked GRN inference methods are not
known to incorporate the prior biological knowledge which can improve their accuracy.

Higher-ranked and other general GRN inference methods are not known to inherently incorporate the
prior knowledge into the scoring function and thus, cannot incorporate the prior knowledge along with the
experimental data. We hypothesise that this limitation can be overcome if the prior knowledge is incorporated
in a post-inference step, after the GRN inference is completed. Since, the prior knowledge is incorporated
after the inference, any GRN inference method can be used. Further, it is reported that the methods of
reverse engineering the GRN can predict only influence networks (Emmert-Streib et al., 2014; Matos Simoes
et al., 2013; Hecker et al., 2009; Gardner and Faith, 2005) because the actual biological interactions cannot
be differentiated from the indirect relations between genes. With the post-inference step of prior knowledge
inclusion, it could be possible to differentiate the indirect relations from the actual interactions. Since, the
prior biological knowledge is incorporated in a post-inference step, we call this as the ‘prior after inference’
method.

This paper has two main contributions: a) two algorithms are developed for the post-inference incorpora-
tion of the prior knowledge; and b) a method to identify and remove the indirect interactions using the prior
knowledge is reported. The algorithms have been studied using Fscherichia coli and Saccharomyces cerevisiae
real networks and also a realistic in silico network, all from the latest benchmarking study, DREAMS5 (Mar-
bach et al., 2012). The results are compared to the best-ranked method in the DREAMS5.
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2 Theory and methods

2.1 Prior inclusion with any GRN inference method

GRN inference techniques based on the Bayesian network and a few other methods only are known to
incorporate the prior biological knowledge along with the gene expression data (Petri et al., 2015; Nair
et al., 2015; Greenfield et al., 2013; Gao and Wang, 2011; Cantone et al., 2009; Mukherjee and Speed,
2008; Friedman, 2004; Gardner and Faith, 2005; Bansal et al., 2007). However, these methods were either
not considered or did not rank high in the recent DREAMS5 benchmarking study (Marbach et al., 2012).
Further, their prior knowledge incorporation procedure is specific to the GRN inference technique used such
as the prior probabilities (Mukherjee and Speed, 2008), the edge copy number in sampling distribution (Gao
and Wang, 2011), or the specific search process (Nair et al., 2015). So, these prior incorporation procedures
cannot be readily used with other GRN inference methods. Moreover, the top-ranked methods in DREAMS5
are not reported to incorporate the prior knowledge.

In the methods proposed here, the GRN inference is performed using any inference technique and an
inferred network is obtained. Then, the post-inference step of incorporating the prior knowledge is performed
on the inferred network. Thus, incorporation of the prior knowledge after the inference allows GRN inference
using any inference method.

2.2 Avoiding inference bias due to prior knowledge
The most common method reported in literature for incorporating the prior knowledge is to include them
before the inference (Gao and Wang, 2011; Hecker et al., 2009; Cooke et al., 2009; Cantone et al., 2009;
Mukherjee and Speed, 2008; Hartemink et al., 2002). In this case, the inference accuracy is improved
by biasing the search with procedures such as formulating a better initial set of hypothesis based on the
prior knowledge (Mukherjee and Speed, 2008) or restricting the search space towards solutions that include
the prior knowledge (Gao and Wang, 2011; Hecker et al., 2009). A problem with this method is that if
an interaction in the prior knowledge is not present in the experimental data (due to the experimental
conditions being different or due to the lack of transcript correlation between regulator and its target-gene),
the use of the prior knowledge will still bias the search. This bias occurs because, inferring one interaction
can influence the inference of subsequent interactions. The subsequent interactions can be missed or added
wrongly in heuristic search methods such as greedy search or in the optimal methods that use decomposable
scoring. Thus, incorporating the prior knowledge not supported by data may lead to regulatory interactions
supported by the data to be missed. This is not desirable because the predicted network can be unnecessarily
inaccurate due to the prior knowledge.

In the prior after inference method proposed here, at first, the inference is performed on the data. Thus,
a network that is a true representation of the data is first obtained. Subsequently, in the post-inference step,
the prior knowledge is incorporated in the obtained network which will not bias the inference process.

2.3 Identification and removal of wrong edges

It is reported that the GRN inference from the gene expression data infers only an influence network
which contains transcription regulatory interactions along with other regulatory and non-regulatory in-
teractions (Emmert-Streib et al., 2014; Matos Simoes et al., 2013; Hecker et al., 2009; Gardner and Faith,
2005). However, while quantifying the accuracy of the network inference, only the transcriptional regulatory
interactions are considered as correct edges or true positives. All other interactions are considered to be
wrong edges or false positives. It has been observed that even high-ranking methods in benchmark stud-
ies (Marbach et al., 2012) show very low precision which means that they predict a significantly high number
of wrong edges. We identify the source of these wrong edges and develop a method to reduce them.
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2.3.1 Sources of wrong edges

A GRN shows the interactions between regulators and their target-genes. The complex bio-physical process
by which a regulatory transcription factor protein controls the gene expression of a target-gene is repre-
sented as an edge between the regulator and the target-gene in a GRN. The gene expression data measures
concentration of mRNA transcripts in cells. However, inferring the GRN from the gene expression data can
detect only statistical dependencies between the mRNA transcripts in the gene expression data.

The dependencies between the mRNA transcripts can be due to interactions at transcription, post-
transcription, protein, and metabolite (Emmert-Streib et al., 2014; Friedman, 2004; Gardner and Faith,
2005) which are not measured separately. Thus, the non-transcriptional interactions can be inferred due
to the information limitation in the data. It is reported that the GRN inference methods based on the
gene expression data can infer only an influence network (Emmert-Streib et al., 2014; Matos Simoes et al.,
2013; Hecker et al., 2009; Gardner and Faith, 2005). The influence networks can contain any interaction
that influences the mRNA expression levels such as the direct and indirect transcriptional regulatory in-
teractions (Friedman, 2004); or other non-transcriptional regulatory and non-regulatory interactions such
as the protein-protein interactions and metabolite interactions (Gardner and Faith, 2005). Thus, the in-
ferred network may contain direct and indirect transcriptional regulatory interactions and other influence
interactions.

Another challenge in using the gene expression data is that the regulator and its target-gene mRNA
transcript concentration are not always correlated (Chua et al., 2004). From our understanding of the
gene regulation, the regulatory proteins control the expression of its target-gene mRNA. If this is true
then the lack of correlation could be because the regulatory protein activity is not correlated to its mRNA
concentration and/or the regulator mRNA concentration does not vary. Both of these conditions have
been observed. It has been reported that the activity of the regulators do not necessarily correlate with
their transcript abundance (Hecker et al., 2009; Gardner and Faith, 2005; Herrgard et al., 2003). This
could be because the activity of some regulatory proteins is controlled by their phosphorylation states.
Phosphoproteome studies in yeast (Pomraning et al., 2016) have shown that around 18% of the regulators
have at least one phosphorylation domain by which they are activated or deactivated. Moreover, it is also
reported that most regulators are themselves not transcriptionally regulated and have a low constitutive
mRNA expression (Herrgard et al., 2003). Thus, even if a regulator regulates a target-gene, it may not
be detected at the gene expression level of their transcripts. This lack of correlation between some of the
regulators and their target-gene mRNAs will result in some correct interactions being undetected.

If different target-genes are regulated by the same regulatory proteins, then the target-gene transcripts can
be correlated. A condition in which the correlation between the regulator and the target-gene transcripts
are absent but correlation between the target-gene transcripts are present, can lead to the inference of
interactions between the target-genes. These inferred interactions between the target-genes do not represent
real biological interactions but indirect transcriptional interactions due to the common regulator. It is
reported that the indirect interactions can also produce statistical dependencies (Friedman, 2004; Gardner
and Faith, 2005). Thus, the indirect transcriptional interactions can also be present in an inferred network.

Other factors such as noisy, limited, and incomplete data or errors in experiments can cause spurious
interactions to be inferred (Emmert-Streib et al., 2014; Gardner and Faith, 2005). Thus, due to the limitations
in technology or experimental errors, the inference may not capture the actual biological interaction or may
predict spurious interactions.

Therefore, the three known reasons that cause the wrong edges or the false positives in an inferred
network are the influence interactions, the indirect interactions and the spurious interactions. The influence
interactions are the protein or metabolite level interactions (which are not transcription regulatory) that
influence the gene expression. The indirect interactions are the interactions inferred due to the statistical
dependencies shown by the indirect transcriptional regulatory interactions. The spurious interactions are
the interactions inferred due to noise, errors, or such limitations in data or experiments.
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2.3.2 Analysis of wrong edges

Previous studies (Yu et al., 2004; Marbach et al., 2010) have analysed the wrong edges or the false positives
predicted by different types of GRN inference methods. It is reported that these false positives have a
certain pattern. If the inferred network is visualised as a graph, then the false positives either originate
from indirectly connected genes (known as relatives) or far away genes (known as strangers). Since the
relatives are defined with respect to the GRN, the false positives from the relatives originate from the
indirect interactions that are defined in section 2.3.1. Yu et al. (2004) showed that in Bayesian network
methods the false positives from relatives are significantly large and for larger data, the false positives from
the relatives are greater than the strangers. They further classified the false positives from relatives into
grandparent, uncle, sibling, or child. Marbach et al. (2010) analysed results from 29 GRN inference methods
and reported that these methods suffer from systematic prediction errors in the network motifs that involve
relatives. For example, fan-out error showed the false positives caused by siblings and cascade error showed
the false positives caused by grandparents.

Yu et al. (2004) classified the sources of false positives as grandparent, sibling uncle, child, and stranger.
In their classification, a three-node distance in direction of ancestor was considered such as the uncle, while in
the direction of descendants only a one-node distance, the child, was considered. Our analysis show that the
false positives also occur from three-node distance descendant, the grandchildren. Further, they considered
only four types of relatives and all other relatives were grouped with the strangers. This approach is not
intuitive and no justification was provided. Therefore, we expanded the classification to include the same
node distances in the ancestor and descendant directions.

The previous study (Yu et al., 2004) considered three-node distance relatives. We consider up to four-
node distance relatives in ancestor and descendant directions. The relatives beyond the four-node distance
are not considered because it is not possible to detect them when the prior knowledge is limited. Moreover,
the number of false positives from them is also negligible. The details of the relatives and strangers up to
four-node distances are given in figure 1. In the figure, ‘TG’ is the target-gene whose relatives are illustrated.
For example, ‘Prnt’ is the regulator or the parent of the TG and ‘Strg’ represents the possible strangers within
the four-node distance. Other relatives are also defined with respect to the TG. The number on the edges, in
the figure, represents the node distance from the TG. The details of the different relatives of the TG, their
node distance, and their abbreviations used are as follows:

Distance 1: child (‘Chd’)
e Distance 2: sibling (‘Sib’), grandparent (‘Gp’), grandchild (‘Gc’)

Distance 3: aunt (‘Aun’), niece (‘Nie’), great-grandparent (‘GGp’), great-grandchild (‘GGc’)

Distance 4: cousin (‘Cus’), child-of-niece or Niece-child (‘NCd’), grandparent’s sibling (‘GpS’), great-
great-grandparent (‘GGGp’), great-great-grandchild (‘GGGc’)

Strg I Sib T Mig oo 4w NCd
4
2
GGGp . GGp Fow- Gp - T Prnt - 1e TG ]_._" Chd R, - Gt - . GGC 4w GGGC
S .. .
Gps 3., Strg
N

Strg o4 Aun  -de Cus

Figure 1: The different relatives of the T'G, up to four node distance, are represented in a directed graph. The
names of the nodes are defined in the text. The numbers on the arrows represent the node distance from the TG.

The false positives from the relatives will be termed as relative-FPs (relative-false-positives). Similarly,
the false positives from each relative will be denoted with an ‘FP’ suffixed to the relation name such as
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sibling-FP, grandparent-FP, aunt-FP and so on. The main challenge is that a relative-FP can fall into
more than one relationship category. For example, let TG1—TG2 be an inferred edge that is found to
be a false positive, based on the prior knowledge. Further, it is known from the prior knowledge that
TF1-TG1, TF1-TG2, TF2—TF1, and TF2—TG1 interactions exist. Then, TG1 can be a sibling-FP
or an aunt-FP to TG2. To overcome this multiple category problem, we use a ranking for relatives based
on the node distance because influence is larger from shorter distances. Further, the ancestors are higher
ranked than descendants because the ancestors’ influence will be causal, while the descendants show a non-
causal correlation. Thus, the following preference order is followed in classifying the false positives: sibling
(highest rank), grandparent, aunt, niece, great-grandparent, cousin, niece-child, grandparent-sibling, great-
great-grandparent, child, grandchild, great-grandchild, and great-great-grandchild (lowest rank). Therefore,
according to the preference order, if a node is both a sibling-FP and an aunt-FP, it will be classified as a
sibling-FP.

The previous studies (Yu et al., 2004; Marbach et al., 2010) have reported that different GRN inference
methods predict similar types of false positives. Many false positives originate from the relatives (relative-
FPs) and rest from the strangers. It is shown here that the relative-FPs are caused mainly due to the indirect
interactions. Further, we propose to classify the relative-FPs into 13 types of false positives.

2.3.3 Remowval of indirect interactions

We hypothesise that, if the knowledge of actual interactions (prior knowledge) is available, then it would be
possible to identify and remove the relative-FPs or the indirect interactions. For example, let Sib—TG be
an edge in the inferred network. In the prior knowledge, let: a) Prnt—TG, b) Prnt—Sib edges exist, and
¢) Sib not be a regulator (no DNA binding domain). Then, it can be deduced that the Sib—TG edge is an
indirect interaction or a relative-FP. Thus, by incorporating the prior knowledge in a post-inference step, a)
the actual interactions Prnt—TG and Prnt—=Sib can be included, and b) the sibling-FP (Sib—TG) indirect
interaction in the inferred network can be identified and removed.

The prior knowledge of transcriptional interactions (edge priors, non-edge priors, and known regulators)
may detect only the indirect interactions as shown by the previous example. The influence edges due
to protein-protein interactions or metabolites may not be detected because these prior information are not
considered. However, some influence interactions may get removed. For example, let G1—G2 be an influence
edge inferred due to G1 and G2 protein interactions. If the prior knowledge states that G1 cannot be a
regulator, then this influence edge will be removed. Thus, using the prior knowledge, the indirect interactions
and possibly other wrong edges can be removed.

2.3.4 Conditions for identifying indirect interactions

In the previous section, the condition for identifying an indirect interaction from a sibling was described.
Here, the conditions required for identifying the indirect interactions from the different relatives are devel-
oped. Figure 2 shows the inferred wrong interaction PInf—TG (edge label ‘a’) and all the possible relatives
from which the correct indirect interaction could have originated. PInf is the parent-inferred or the inferred
regulator of the TG that is not its correct parent or the regulator.

The conditions for identifying the relative-FPs are given in Table 1. As an example, consider the identi-
fication of niece-FP. In the niece-FP condition, the PInf—TG edge has been wrongly inferred and actually
the PInf is a niece to the TG. This mistake can be identified if the following edges and non-edges are present
in the prior knowledge: edges c,j, k are present as edge priors and edges a,b,d, e, (fg), (hi) are known to
be absent (non-edge priors). When edges ¢, j, k are present, a parent, a sibling, and a niece are present,
respectively, for the TG and the Plnf is its niece. The absence of edges a and b signifies that the nodes TG
and PInf do not interact directly. The absence of edges d and e implies that the PInf is not a sibling or a
grandparent, respectively, of the TG. Further, the absence of (fg) (where either edges f and g, or both are
absent) implies that the PInf is not a descendant of the TG. The absence of (hi) implies that the PInf is not
an aunt of the TG. Thus, the closest relation of the PInf to the TG is a niece. In Table 1, the nomenclature
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a’ means absence of edge a and (fg)’ means either of edges f and g, or both of them are absent. Thus, the
conditions given in Table 1 identify the indirect interactions up to four-node distance.

Aun Sib wogw Nie
o R
0 i
GGp 5-»( Gp ey PIE ' wem TG '. fom Chd e Ge oy GGC
» A p 4 v
Tt

Figure 2: The inferred wrong interaction PInf—+TG and all its possible indirect interactions. PInf is wrongly the
parent-inferred or the inferred regulator for the node TG. The network shows all possible relatives that the PInf can
be, for the node TG. Relatives up to four-node distances only are considered.

2.4 Advantages of prior after inference

Incorporating the prior knowledge in a post-inference step has the following advantages: a) it improves the
accuracy of inference due to the incorporation of the prior knowledge (Steele et al., 2009; Gao and Wang,
2011; Isci et al., 2014); b) it identifies and removes the wrong edges due to the indirect interactions; c)
it helps to incorporate the prior knowledge with any GRN inference technique and overcomes the limit in
choice of inference methods; d) it avoids the inference process bias towards inaccurate results due to the
prior knowledge; and e) it shortlists the edge priors not supported by the data for further study.

Section 2.8 discusses the different reasons that can cause an edge prior to be not supported by the gene
expression data. These edge priors are interesting candidates for further study in wet-lab. Although, any
method of prior incorporation can check if the priors are supported by the data, this step is more intuitive
in the prior after inference method because the design philosophy of the method considers the possibility of
the lack of transcript correlation between a regulator and its target-gene, noise, errors, and so on.

2.5 Algorithm development

The steps required to obtain the full advantages of a prior after inference method are: a) incorporation of
the prior knowledge of interactions, b) incorporation of the knowledge of regulators, c) identification and
removal of the wrong edges, and d) shortlisting of the prior interactions not supported by the data. Of
these, the most basic step and the procedure that is similar to the existing methods of prior knowledge
incorporation, is to perform only the first step of incorporating the prior knowledge of interactions. Thus,
two prior after inference (post-inference prior) algorithms are proposed. The first, termed the Basic post-
inference algorithm, performs only the incorporation of the prior knowledge of interactions. The second,
termed the Advanced post-inference algorithm, performs all the four steps.

2.6 Basic post-inference algorithm

The Basic post-inference algorithm or the Basic algorithm incorporates the prior knowledge of interactions
into the result (the inferred network) obtained from a normal GRN inference process without the prior
knowledge. Since this is the most basic form of prior incorporation in a post-inference method, it is termed
as the Basic post-inference algorithm. The inputs required for the algorithm are the following.
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Table 1: Conditions for classifying the false positives from relatives (relative-FPs) for up to a four-node distance.
The edge and non-edge labels are from figure 2

Distance ‘ Relation Edges Non-edges
} True positive a -
False positive (FP) - a
1-node Child-FP b a’
Sibling-FP c, d a’, b’
2-node Grandparent-FP c, e a’, b, d’
Grandchild-FP f,g a’, b, (cd)’, (ce)’
Aunt-FP ¢ h,i a’, b, d’, e, (fg)’
3-node Niece-FP ¢ k a’, b, d’, e, (fg)’, (hi)’
Great-grandparent-FP c, h,1 a, b, d, e, (fg), 1, (jk)
. a’, b, (ed)’, (ce)’, (cjk)’,
Great-grandchild-FP f, m, n (chi)’, (chl)’, g
. a’, b, d’, e, (fg)’, 1, (k)
Cousin-FP ¢, h,o,p I, (fmn)’
Niece-child-FP ¢ jqr 2 bhd,e (), (fmn)
hi)’, (hl)’, (hop)’, k
4‘n0de a: ba d’ ea (fg)7 i7 (‘]k)’
Grandparent-sibling-FP ¢, h s, u S e N Y
P & I, (fmn)’, (jar)’, (op)
a7 b7 d, e7 (fg)7 i, (jk)?
Great-great-grandparent-FP ¢, h, s, t S e N Y
geal-grandp ', (fmn)’, (jar)’, (op)’, u
a77 b’? (Cd)77 (Ce)77 (Cjk)77
Great-great-grandchild-FP f,m, v, w (chi)’, (chl)’, g, (cjqr)’,
(chop)’, (chst)’, (chsu)’, n’

1. The inferred network which is obtained from any GRN inference method. The inferred network, termed
the infMat, is an N x N matrix that represents the pairwise relation between all the N number of
genes in the network. For any two genes ¢ and j, the pairwise relation is defined as,

. Co 0 < x <1, implies an edge from ¢ — j with weight x

infMat(i, j) = z; where { —1 <z <0, implies a non-edge from i — j with weight =

2. The prior knowledge on interaction — the edge and the non-edge priors. These are given as two
separate N x N matrices, edge Prior and nEdgePrior, respectively. For any two genes ¢ and j, these
matrices are defined as,

edgePrior(i, j) — 0<x<1 edgefromi— j with confidence x
g 1= 0 interaction not present or is unknown.

0 <z <1 non-edge from ¢ — j with confidence z

nkdgePrior (i, j) = { 0 non-edge is not present or is unknown.

It should be noted that the edgePrior and the nEdgePrior are complimentary such that for any
two genes i and j, both edgePrior(i,j) and nEdgePrior(i,j) cannot be non-zero simultaneously.
Further, edgePrior(i,j) = 1, implies a full confidence prior edge between genes ¢ and j, Similarly
nEdgePrior(i,j) = 1, implies a full confidence non-edge prior.

In the Basic algorithm, the GRN inference is performed with any inference method of user’s choice and
an inferred network is obtained. The in fMat is created from the inferred network by simple operations such
as scaling to make the weight of interactions between genes to range from —1 to 1. The positive weights
represent confidence in the edges between genes, with 1 being the highest confidence. The zero and negative
weights indicate the confidence in non-edges, with —1 representing the highest confidence. If weights for the
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non-edges are not available in the inferred network, then the range of weights in the in f Mat will be between
0 and 1, with O representing the absence of edges. For cases in which only the edges and the absence of
edges are known and the weight of interactions are not available, the infMat will be a binary matrix with
1 and 0 representing an edge and a non-edge, respectively.

Once the infMat is obtained, the pseudo-code for rest of the procedure is given in Algorithm 1. In the
algorithm, the prior knowledge of edges and non-edges are incorporated for each interacting gene pairs. The
edge prior weights in edgePrior are added and the non-edge prior weights in nEdgePrior are subtracted
from the in f Mat weights. The edge Prior and the nFEdge Prior weights are multiplied by a factor 2 to ensure
that an incorrect prediction in the infMat is also corrected. For example, assume infMat(i,j) = —1, which
implies a non-edge between genes ¢ and j. However, if an edge actually exists with edgePrior(i,j) = 1,
then infMat(i,j) + 2 x edgePrior(i,j) will result in the edge between i and j being incorporated in the
final network. The final post-inference network that incorporates the prior knowledge into the infMat is
an N x N matrix BPI (acronym for Basic post-inference); which represents the pairwise relation between
all genes after the GRN inference and post-inference prior incorporation. For any two genes i and j, the
pairwise relation in BPI is defined as,

x > 0, implies an edge from i — j with weight x

BPI(i, j) = z; where { z < 0, implies a non-edge from ¢ - j with weight x

Algorithm 1 Basic post-inference algorithm

Inputs: Inferred network (infMat), edge priors (edgePrior) and non-edge priors (nEdgePrior). Assum-
ing N genes are present, these inputs are N x N matrices.
> Integrate the prior knowledge with the inferred network

for i=1 to N; do

for j=1 to N; do

BPI(i,j) =infMat(i,j) + 2 x edge Prior(i, j) — 2 x nEdgePrior(i, j)

end for

end for

From Algorithm 1, it can be seen that all the possible pairwise interactions are considered for the post-
inference process. Since N genes are present, the complexity of this algorithm is thus, O(N?).

2.7 Advanced post-inference algorithm

The Advanced post-inference algorithm or the Advanced algorithm, incorporates the prior knowledge of
interactions, includes the prior knowledge of regulators, identifies and removes the wrong edges, and shortlists
the prior interactions not supported by the data. The inputs required for the algorithm are the following.

1. The inferred network, in f Mat, obtained from any GRN inference method. The details of in fMat are
given in section 2.6.

2. The prior knowledge on interaction given by edgePrior and nFEdgePrior. These matrices are also
discussed in section 2.6.

3. The knowledge of the transcription factor and the non-transcription factor genes (for example the
genes that lack DNA binding domains cannot be transcription factors), given by a 1 X N matrix —
tf Possible. For gene i, this matrix is defined as,

1 a transcription factor
tfPossible(i) = ¢ —1 non-transcription factor
0 no information
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4. The knowledge that all GRN inference methods based on the gene expression data predict indirect
interactions that can be identified and removed. These indirect interactions are classified as wrong
edges by the performance metrics. It was shown in section 2.3 that the knowledge of actual interactions
can be used to identify and remove the wrong edges caused by the indirect interactions.

5. The gene expression data that was used to infer the infMat in an n X N matrix, in which n is the
number of experiment data samples. This data is used to check the support for the edge priors.

In the Advanced algorithm, similar to the Basic algorithm, the infMat is obtained from any GRN infer-
ence method. The other user inputs required are edgePrior, nEdgePrior, tf Possible, and gene expression
data. Once these inputs are obtained, the rest of the procedure is given as a pseudo-code in Algorithm 2.
The main steps of the algorithm are: a) find and report the edge priors without data support; b) identify and
remove the wrong edges (implemented as two separate steps of ancestor-FP and descendant-FP removal);
¢) incorporate the prior knowledge of regulators; and d) integrate all the prior knowledge and compute the
final network.

In the procedure to find the edge priors without data support, each edge prior is individually checked.
Since each edge prior corresponds to a transcription regulatory interaction between two genes, a statistical
dependency is expected in the gene expression data between these two genes. The statistical dependency
can be measured with tools such as mutual information, the details of which are given in section 2.8. The
edge priors that do not show statistical dependency in the gene expression data are identified and reported.
The algorithm still includes the non-data support edge priors because the absence of data support can be
due to the lack of regulator and target-gene transcript correlation, noise, or error. One of the main focus of
the Advanced algorithm is to remove the false positives caused due to these reasons.

The procedure to identify and remove wrong edges is based on the theory developed in section 2.3. The
wrong edges from the relatives are termed the indirect interactions (or relative-FPs) which can be identified
and removed using the prior knowledge. The conditions to identify the indirect interactions were given in
Table 1. In the table, a large number of non-edge priors were required to identify a relative-FP. Non-edge
priors are not easily available and though there are methods to obtain them (Nair et al., 2014), it needs
organism specific knowledge; which is not feasible for a general method developed here. Further, the quantity
of the edge priors available is also generally low. Due to these factors, the Advanced algorithm proposes a
pragmatic approach to classify the relative-FPs. Here, the essential edge priors and any available non-edge
priors are only considered. Further, the ancestor-FPs are checked first and then the descendant-FPs because
only the ancestors have a causal relation. Moreover, because the quantity of priors is limited, the relative-FP
classification is performed only for the inferred edges related to the available priors; and not necessarily for
all the inferred edges.

The conditions that incorporate these approaches to classify the relative-FPs are given in Table 2. Due to
the simplification of the conditions in Table 2 when compared to Table 1, confidence weights of some correct
inferred edges that are not in the edge priors could be reduced and some low confidence edges could also
be removed, in the post-inference stage. This will be the cost of trade-off for implementing the algorithm
when the prior knowledge is limited. However, because only the low confidence inferred edges are expected
to be affected, the overall performance of the Advanced algorithm is expected to be better than the Basic

algorithm.
The relative node names, edge labels, and non-edge labels in Table 2 are based on figure 2. In the
nomenclature followed in table: a — represents the presence of an edge prior; a’ — represents the presence

of a non-edge prior; a* — represents the absence of an edge prior; and 4 — represents the presence of an
inferred edge along with other relevant prior knowledge such as a transcription factor. For example, in the
case of niece-FP relation, PInf is a niece to the TG and the PInf — TG edge is wrongly inferred. This
wrong interaction can be identified if the following conditions are true. a) Edges ¢ and j are present as edge
priors. b) Either edge k is present as an edge prior or the three conditions — k is not a non-edge prior, Sib
node is a transcription factor, and k is an inferred edge — are true. These three conditions are represented
by k in the table. c) Edges a,b,d, e, (hi) are absent in the prior knowledge.
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Algorithm 2 Advanced post-inference algorithm

1: Inputs: Inferred network (infMat), edge priors (edgePrior), non-edge priors (nEdgePrior), gene expression data, and
regulatory genes (tfPossible).

2: procedure FIND AND REPORT EDGE PRIORS WITHOUT DATA SUPPORT
3: Edge priors not supported by data are found using statistical methods such as mutual information.
4: end procedure
5: Initialise these N X N matrices to zero: ppEdge, ppN Edge, ppEdgeT F,ppN EdgeT F
6: procedure IDENTIFY AND REMOVE WRONG EDGES (ANCESTOR-FPS)
7 for each Prnt — T'G in edgePrior do
8: Update Prnt — T'G edge in ppEdge(Prnt, TG) and TG - Prnt non-edge in ppN Edge(TG, Prnt)
9: for each PInf of the TG in infMat do
10: If PInf — TG is a prior edge, update ppEdge, ppN Edge appropriately. Skip rest of the steps, and go to next
iteration of the current for loop
11: If PInf — TG is a non-edge, update ppN Edge appropriately.
12: If PInf is a sibling-FP, update ppEdge, ppN Edge appropriately.
13: Else, if PInf is a grandparent-FP, update ppEdge, ppN Edge appropriately.
14: Else, if PInf is an aunt-FP, update ppEdge, ppN Edge appropriately.
15: Else, if PInf is a niece-FP, update ppEdge, ppN Edge appropriately.
16: Else, if PInf is a great-grandparent-FP, update ppEdge, ppN Edge appropriately.
17: Else, if PInf is a cousin-FP, update ppEdge, ppN Edge appropriately.
18: Else, if PInf is a niece-child-FP, update ppEdge, ppN Edge appropriately.
19: Else, if PInf is a grandparent-sibling-FP, update ppFEdge, ppN Edge appropriately.
20: Else, if PInf is a great-great-grandparent-FP, update ppEdge, ppN Edge appropriately.
21: end for

22: end for

23: end procedure

24: procedure IDENTIFY AND REMOVE WRONG EDGES (DESCENDANT-FPS)
25: for each T'G — Child in edgePrior do

26: Update TG — Child edge in ppEdge(TG, Child) and Child - TG non-edge in ppN Edge(Child, TG)

27: for each PInf of the T'G do

28: If PInf — TG is a prior edge, then update weights in ppEdge, ppN Edge, skip rest of the steps, and go to next
iteration of the current for loop

29: If PInf — TG is a non-edge, update ppN Edge.

30: If PInf is a child-FP, update ppEdge, ppN Edge appropriately.

31: Else, if PInf is a grandchild-FP, update ppEdge, ppN Edge appropriately.

32: Else, if PInf is a great-grandchild-FP, update ppEdge, ppN Edge appropriately.

33: Else, if PInf is a great-great-grandchild-FP, update ppEdge, ppN Edge appropriately.

34: end for

35: end for

36: end procedure

37: procedure INCORPORATE THE KNOWLEDGE OF REGULATORS

38: Weights of inferred edges of relevant regulators are updated in ppEdgeT F'.

39: Weights of non-edges from non-TFs are updated in ppN EdgeTF'.

40: end procedure

41: procedure INTEGRATE PRIOR KNOWLEDGE AND COMPUTE THE FINAL NETWORK

42: w = 2xmaximum_value_in(ppEdge, ppEdgeT F, ppN Edge).

43: API =infMat — ppN Edge + ppEdge + ppEdgeTF — w * ppN EdgeT F' + w * edge Prior — w * nEdgePrior

44: end procedure
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Table 2: Conditions for classifying the false positive relatives (relative-FPs) in the Advanced algorithm. The relatives
up to four-node distances are considered.

Distance Relation Edges Non-edges

- True positive a -
False positive (FP) - a’

Ancestors

2-node Sibling-FP c, d/a a*, b*
Grandparent-FP c, e a*, b*, d*

3-node Aunt-FP ¢, h, i a* b*, d*, e*
Niece-FP ¢, j, k/k  a* b¥ d¥ e* (hi)*
Great-grandparent-FP ¢, h,l a* b* d* e* i* (jk)*

a‘*7 b*7 d*7 6*7 1*’ (-]k)*?

4-node Cousin-FP c,h,o0,p 1*
F R g oF (T)E
Niece-child-FP ¢, j,q,r E(th)]: ’(}CIIOI’))E; ,k(in) ’
EINS R E e I IR
Grandparent-sibling-FP e, hys,u o b¥, d%, €™, 1%, (1K),

I*, (jar)*, (op)*
a¥, b¥, d¥, ¥, i¥, (K%,
I*, (jar)*, (op)*, u*

Great-great-grandparent-FP ¢, h, s, t

Descendants

1-node Child-FP b a*

2-node Grandchild-FP f, g a*, b*
3-node Great-grandchild-FP f,m, n a*, b* g*
4-node Great-great-grandchild-FP f,m,v,w a* b* g* n*

In the identify-and-remove-wrong-edges procedure, the weights of known and expected edges are in the
N x N pairwise edge confidence matrix, ppEdge. Similarly, the weights of known and expected non-edges are
in the N x N pairwise non-edge confidence matrix, ppN Edge. For example, if a relative-FP is identified, the
required edge interactions are incorporated by increasing the interaction weights between the appropriate
genes in ppFEdge. Similarly, the required non-edge interactions are incorporated by increasing the appropriate
weights in ppN Edge. Therefore, after the identify-and-remove-wrong-edges procedure, the ppEdge and the
ppN Edge matrices will have the cumulative confidence of the expected edge and non-edge interactions,
respectively.

The next procedure is to incorporate the knowledge of regulators. This procedure consists of two steps:
a) increasing the weights of inferred edges from the known transcription factors; and b) removing the
inferred wrong edges from the non-transcription factors. The prior knowledge of transcription factors and
non-transcription factors are in the variable t f Possible. If the in fMat has inferred edges from the known
transcription factors, these are more likely to be true edges because the GRN inference methods are designed
to identify such interactions. Moreover, because the regulator and its target-gene transcript correlation can
be low (discussed in section 2.3), these inferred edges may have lower confidence weights. Due to these
two reasons, the confidence weights of the inferred edges from the known transcription factors in infMat
are increased. An additional constrain, that these known transcription factors should also regulate a gene
among the considered genes, is kept to prevent false interactions. Thus, in the in f Mat, for each inferred edge
from a known transcription factor that also has a known target-gene, the corresponding pairwise interaction
weight is increased in the N x N matrix, ppEdgeT F. Tt was shown in section 2.3 that wrong edges can be
inferred from the non-transcription factors. For a non-transcription factor in the tfPossible, any edge from
it to another gene will be a wrong edge and should be removed. The information of edges going out of each
non-transcription factor is updated in the N x N matrix, ppN EdgeTF.
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The last procedure in the algorithm is to integrate all the prior knowledge and compute the final post-
inference network. The final post-inference network from the algorithm is the N x N matrix API (acronym
for Advanced post-inference), which contains the pairwise relation between all the genes considered. The
API is obtained from the infMat by: a) removing the wrong interactions identified in the ppN Edge; b)
adding the expected correct interactions in the ppEdge; ¢) adding the increased weights of inferred edges from
transcription factors in the ppEdgeT F'; d) removing the wrong edges from the non-transcription factors by
scaling and subtracting the ppN EdgeT G; e) including the edge priors by scaling and adding the edge Prior;
and f) removing the non-edge priors by scaling and subtracting the nEdgePrior. Scaling factor w, is chosen
such that even if an edge or a non-edge is wrongly predicted in the post-inference procedures, they can
be corrected by the prior knowledge. The pairwise interaction value for any two genes i and j, in the
post-inference network matrix AP is defined as,

x > 0, implies an edge from ¢ — j with weight x
API(i,j) = x; where{ x < 0, implies a non-edge from ¢ - j with weight z
x = 0, implies interaction between ¢, j is unknown

Theorem 1. The Advanced algorithm has a computational complezity of O(nN? 4+ N3).

Proof. The procedure to find the edge priors without data support, needs to check if n samples of the
experimental data supports each of the edge priors (for N genes there can be a maximum of N2 edge priors).
Thus, the complexity of this procedure is O(nN?).

The procedure to identify and remove the ancestor-FPs needs to consider each edge prior (maximum of
N?) and the inferred parents for each of these edge priors (there can be a maximum of N parents). Thus,
the complexity of this procedure is O(N?). Similarly, the complexity of the procedure to identify and remove
the descendant-FPs is also O(N?3).

The procedure to incorporate the knowledge of regulators consists of two steps. The first step of increasing
the weight of inferred edges from transcription factors, identifies all the transcription factors (maximum of N)
and the inferred target-genes for each of these transcription factors (maximum of N). Thus, the complexity
is O(N?). The second step of removing non-edges from non-transcription factors identifies all the non-
transcription factors (maximum of N) and then all its non-edges (maximum of N). Thus, the complexity is
again O(N?). Therefore, the overall complexity of the procedure is O(N?).

The procedure to compute the final post-inference network needs to find the maximum value of the
pairwise matrices as the scaling factor w (O(N?) complexity) and then compute the pairwise matrix AP
(O(N?) complexity). Thus, the complexity of this procedure is O(N?).

Therefore the overall complexity of the algorithm is

O(nN? + N® + N®* 4+ N? + N?) = O(nN? + N?)
O

The complexity of the algorithm will be O(nN? + N3) for a fully connected network. For a typical GRN,
the complexity will be much lower because the network will be sparse and the total number of edge priors
will never be N2. The sparseness property can be taken advantage of by storing the edge priors in memory
and not checking all the possible edge priors each time. In the algorithm implementation, the edge priors
are stored in a list and read when required. Thus the complexity of considering all the edge priors is O(N)
(assuming that the number of edge priors is proportional to the number of genes in the network). Further,
due to the scale-free property of the GRNs (Albert, 2005; Barabasi and Oltvai, 2004), the number of parents
for a gene will be much smaller than N. Due to these factors, the real complexity of the algorithm will be
around O(nN + N?).

2.8 Metric to check data support for edge priors
The different reasons that can cause an edge prior interaction to lack support from the gene expression data
are a) the interaction does not occur in the experimental conditions considered; b) the regulator and its
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target-gene mRINA transcripts are not correlated; ¢) the interaction is missed due to error or noise in the
experimental data; or d) the prior knowledge is wrong. Thus, if an edge prior is not supported, it is an
interesting candidate for further study.

There are many metrics to check if a prior edge is supported by the data such as: a) correlation between
the genes, b) mutual information (MI) between the genes, or c) some other pairwise score or distance
measure. Of all these, the MI is considered to be among the best because it can detect linear and non-linear
dependencies, is well studied, and is reported to be better than other methods (Margolin et al., 2006). The
data support with MI can be checked against a threshold (Margolin et al., 2006; Butte and Kohane, 2000)
or with a statistical significance test (de Campos, 2006). The threshold value depends on the characteristics
of a particular experimental data and needs to be recalibrated each time for new data. The statistical
significance test does not have such drawbacks and is thus more intuitive. Pairwise MI with statistical
significance test is used here because edge priors are direct pairwise relations. Though MI based tests have
been reported before (de Campos, 2006; Wilczyniski and Dojer, 2009; Vinh et al., 2011; Morshed et al., 2012),
the mathematical derivation was not given and was cited to be in Kullback (1968). Kullback (1968) does
not define the MI but uses relative entropy for all the results. Cover and Thomas (2006) (pp.19), presents
a good definition of the MI and the relation between MI and relative entropy. Without the mathematical
derivation, the details of computation such as the base of logarithm to be used and the assumptions involved
are unclear. Thus, the MI statistical test derivation is provided here from the first principles.

Lemma 1. For any two variables a,b € N, the following approzimation log, § ~ “2;? , holds for 3 ~ 1
(Kullback (1968), pp-114).

Theorem 2. In pairwise statistical test of significance using MI, two genes x and y are said to be independent
if 2NI(z,y) < x*(a, df).

Proof. Let (z,y) € IR?; HI be the hypothesis that = and y are dependent with probability density P1 =
p(z,y); and H2 the null hypothesis that « and y are independent with probability density P2 = p(x)p(y).
Then the mean information for discrimination in favour of H1 against H2 is given by (Kullback (1968) pp-8),

19— [ oy og 25D,
[(Hl'HQ)f//p( )1 gp(w)p(y)d W

If d, and d, are the number of categories or classes in the population of x and y respectively, then

[(g;,y)](H].SHQ)Zzp(xuyj)log% (1)

where, I(x,y) is known as the mutual information (Cover and Thomas (2006) pp-20) between the genes x
and y; p(z;) and p(y;) are their individual probability distributions; and p(x;,y;) is their joint probability
distribution. Thus, if I(x,y) = 0, then = and y are independent and larger values of mutual information
implies higher dependence between the variables. However, even when the genes are independent, I(z,y) # 0
can occur by chance . Thus, a statistical test of independence needs to be performed to identify the
dependency between the variables.

The equation 1 in terms of H1 and H2 can be written as

Applying the result of lemma 1, to the previous equation and deriving

P2
P ; 11] 247 2
Z 1 2P11JP22] ( )
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P2
INI(z,y) QNZPMJ 21;;1 P;”
154245

_ ZN lz] P2213
P2Zj

Plz] — PQ”) + 2P1ijP2ij — 2P22,Lj

- Z P;

(NPy;; — NPQij)2
= Z NPQU + 2NP1ij — QNPQij

For the independence test, assume that the null hypothesis H2 (the variables are independent) is true. So
the expected observation is F;; = NP;; and the actual observation is O;; = NPj;;. Thus, the previous
equation can be written as,

Oij — Eij)?
2NI(x,y)227< JE i) +2(045 — Eij)

ij

~3 (03 — Eiy)?
s

The right side of the equation is the form of the chi-squared test of independence with degrees of freedom
df = (dy — 1)(dy, — 1), at significance level a. Thus,

2NI(z,y) = x*(e, df) (3)

It is important to note that the above relation holds only when the MI is computed using log. because the
equation 2 is valid only for logarithm with base e. Further, the equation 3 is valid when the null hypothesis
is true (a similar result was stated for a two-way table with a slightly complicated derivation in Kullback
(1968), pp-158). So, if 2NI(z,y) > x*(a, df), the null hypothesis is rejected at significance level o and the
genes are considered dependent; else, if 2N1(z,y) < x?(a, df), we fail to reject the null hypothesis at a and
the genes are considered independent. O

The x2(a, df) is not dependent on the genes and their relation but represents the statistical chance of
a particular value to appear for a system with df degrees of freedom at « significance. The 2NI(z,y)
measures the strength of the dependence between genes x and y from the given experimental data. A higher
dependence will cause a larger 2NI(x,y). Thus, the above metric is also intuitive. During the significance
test, 2N1(z,y) is computed using the equation 1 from the experimental data and x?(«, df) is obtained from
the x? distribution.

3 Experiment

This section presents the details of the networks and the data used for the study; the GRN inference method
selected for the inference; the procedure followed to quantify the wrong edges predicted by the inference
method; the performance metrics used to measure the improvement in GRN inference after the priors
were incorporated; the prior knowledge used; and the implementation of the two novel post-inference prior
algorithms — Basic and Advanced algorithms.
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3.1 Networks and data

The DREAMS5 transcription network inference challenge (Marbach et al., 2012) is the latest community-
wide benchmarking study that compared the GRN inference performance of 35 inference methods. These 35
methods belonged to all the major categories of the GRN inference methods. The benchmarking study was
performed on the gene expression data from the eukaryotic model organism — S. cerevisiae, the prokaryotic
model organism — FE. coli, the human pathogen — Staphylococcus aureus, and a realistic in silico network.
These networks were named Network 4, 3, 2, and 1, respectively in the study. We selected the networks from
this benchmark study because all the major GRN inference methods were compared; both biological and in
silico networks were considered; the results and the original data are in public domain; and later studies have
also used their networks and data. Further, because the DREAMS5 results do not report S. aureus (named
Network 2), this network is not considered here. The other three networks, Network 1, 3, and 4 are used
here with the names Netl, Net3, and Net4, respectively. The details of these networks are as follows.

1. Realistic network (Netl): the DREAMS in silico network. This network uses the known E. coli
regulatory network with the gene expression data generated in silico but based on biological principles,
using GeneNetWeaver (Schaffter et al., 2011) (version 4.0). There are 1643 genes and 195 transcription
factors. The gold standard has 278,392 interactions, of which 4012 are edge priors and the rest 274,380
are non-edge priors.

2. E. coli network (Net3): the DREAMS5 biological E. coli network. This network uses the currently
known E. coli regulatory network with experimental gene expression data. There are 4511 genes and
334 known transcription factors. The gold standard has 152,280 interactions of which 2066 are edge
priors and the rest 150,214 are non-edge priors.

3. Yeast network (Netd): the DREAMS5 biological S. cerevisiae network. This network uses the currently
known S. cerevisiae regulatory network with experimental gene expression data. There are 5950 genes
and 333 known transcription factors. The gold standard has 227,202 interactions of which 3940 are
edge priors and the rest 223,262 are non-edge priors.

For all the three networks, there are 805 lines of experimental data from 107 experiments which included
73 static and 34 time-series experiments. Thus, the gene expression data, prior knowledge (edge priors,
non-edge priors, known transcription factors), and actual networks required for the study are obtained.

3.2 Selection of a GRN inference method

In the prior after inference methods proposed here, first an inferred network is obtained with a GRN inference
method of user’s choice and then the prior knowledge is incorporated into this inferred network, in a post-
inference step. Even though any GRN inference method can be used, we selected the GENIE3 (Huynh-Thu
et al., 2010) method because it was a) the best-performer in DREAMS5 Network inference challenge (Marbach
et al., 2012); b) the best-performer in DREAMA in silico network inference sub-challenge (Huynh-Thu et al.,
2010); and c) based on an inference method that is not known to incorporate prior knowledge. Thus, GENIE3
being a high performing method which is not known to inherently incorporate the prior knowledge, is among
the best candidates for a post-inference prior knowledge incorporation. GENIE3 will henceforth be referred
to as Otherl, which is its name in the DREAMS5 results.

The inferred networks by the Otherl method for DREAMS5 networks are also available in public do-
main. The inferred networks in DREAMS5 have 100,000 predicted interactions as per the requirement of the
DREAMS5 competition. Each of the 100,000 predicted interaction has a confidence score associated with it,
where a higher confidence score represents higher possibility of interaction. Thus, the results of the Otherl
method on the DREAMS5 networks are used as the inferred networks for this study.

16


https://doi.org/10.1101/122341
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/122341; this version posted March 30, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

3.3 Quantifying the wrong edge sources

It was shown in section 2.3 that the wrong edges in the inferred networks can be classified as originating
from the strangers or one of the 13 relatives. This classification is applied to the inferred networks from the
Otherl method to quantify the sources of wrong edges.

In the classification procedure, the known correct network and the inferred network for each of the three
selected networks, Netl, 3, and 4, are obtained. Then, the quantification of the wrong edge sources in the
inferred network can be performed by the following steps. For each gene in the correct network, all its
parents, the 13 relatives, and the strangers are identified. Then, using the correct network, the wrong edges
in the inferred network for each gene are identified. From these wrong edges, the wrong inferred parents for
each gene are identified. Now, each of the wrong inferred parents is checked to determine whether it belongs
to one of the 13 relatives or to the strangers that were identified earlier, for the gene. Thus, each wrong
inferred parent can be classified. While checking if the wrong inferred parent is from any of the 13 relatives,
the ancestors are checked first and then the descendants. Further, the different ancestor and descendant
relatives are checked in the order given in Table 2.

This procedure to identify and classify the wrong edges is performed for all the genes in the inferred
network. From this result, the total number of wrong edges, wrong edges due to strangers, and wrong edges
from each of the 13 relatives can be quantified.

3.4 Performance metrics

The widely used performance metrics are applied to quantify the improvement given by the algorithms. These

are: sensitivity or recall=TP/(TP+FN), is the fraction of correct edges detected; specificity=TN/(TN+FP),
measures the fraction of correct non-edges detected; precision or positive predictive value=TP/(TP+FP),
represents the fraction of correct edges in total predicted edges; and F1-score=2*precision*recall/(precision+recall),
is the harmonic mean of precision and recall which is used to measure the performance in detecting true edges

for skewed conditions. Here, TP is the true positives or the correct predicted edges; TN is the true negatives

or the correct predicted non-edges; FP is the false positives (wrong edges), or the incorrect predicted edges;

and FN is the false negatives or the incorrect predicted non-edges.

Further, standard metrics such as AUROC (area under ROC) and AUPR (area under precision-recall
curve) are also computed using the script provided by the DREAMS5. This will help to compare our results
to the DREAMS5 results. The AUROC measures the area under TPR (true positive rate) and FPR (false
positive rate) curve where the TPR is the sensitivity and the FPR=FP/(FP+TN), is the fraction of non-
edges wrongly classified as edges. For a random prediction, the value of the AUROC is 0.5 and in an ideal
all correct prediction, it equals 1. The AUPR measures the area under precision-recall curve. For a random
prediction, the AUPR is close to zero and for an ideal all correct prediction, it equals 1.

3.5 Basic post-inference algorithm

The inferred networks for the Net1, Net3, and Net4, obtained from the Otherl method are used to create the
inferred network matrix, infMat. The prior knowledge matrices edgePrior and nEdgePrior are created
from the ‘gold standards’ available for each network in the DREAMS5 data. The prior knowledge is incor-
porated into the in f Mat according to the Algorithm 1. The post-inference matrix thus obtained is referred
as the BPI. As discussed in section 2.6, the BPI is a weighted matrix with BPI(i,j) = z, where z €IR,
is the weight of the interaction from gene i to j. The weights are used to rank the edges while computing
the AUROC and the AUPR. A threshold of x > 0 is applied to obtain a non-weighted matrix of edges to
compute the other performance metrics such as precision, sensitivity, specificity, and F1-score.

The experiments are performed at different percentages of the total edge priors such as 0% (corresponding
to the normal condition of having no priors), 10%, 25%, 50%, 75%, and 100% (all the priors used). For
the 10%, 25%, 50%, and 75% experiments, the edge priors are chosen at random from all possible priors;
and the experiments are repeated 10 times, to obtain the sample mean and standard deviation of the
performance metrics. Further, separate experiments are conducted with all the non-edges along with the
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different percentage of edge priors to study the effect of the non-edge priors. Since only a small percentage
of the non-edges are known for the networks studied here, different percentages of the non-edge priors are
not considered.

3.6 Advanced post-inference algorithm

The infMat, edgePrior, and nEdgePrior variables are obtained using the same procedure described for
the Basic algorithm, in section 3.5. The known transcription factors are available from the ‘input data’ of
the DREAMS, from which the ¢ f Possible is constructed. The gene expression data for each network is also
available from the ‘input data’ in two files ‘expression_data’ and ‘chip_features’. These files are processed
to separate the static and time-series gene expression data; and the data from different experiments. Once
these inputs are obtained, the rest of the steps are given in Algorithm 2. Similar to the BPI, the API is
also a weighted matrix with API(i,5) = x, where x €IR, is the weight of the interaction from gene i to j.
The AUROC and AUPR are computed by obtaining a ranked list of interactions based on this weight. A
threshold of z > 0 is applied to obtain a non-weighted matrix of edges, to compute the other performance
metrics.

Similar to the Basic algorithm, the experiments are performed for 0%, 10%, 25%, 50%, 75%, and 100%
of the edge priors. Except for 0 and 100%, the priors are chosen at random from all possible priors and
the experiments are repeated 10 times. Further, separate experiments are conducted with all the available
non-edge priors along with the different percentage of edge priors.

The edge priors are checked for the data support with the MI statistical significance test. The edge priors
are checked for support from all the available static experiment data samples, at a = 0.9. For the edge priors
not supported in this condition, in the second stage, the support is checked with each static experiments
individually. Since, individual experiments contain only lesser data samples, o = 0.999 is used. If any edge
prior is still not supported, then in the third stage, the support from the individual time-series experimental
data is checked for these edges, at @ = 0.999. An edge that is not supported in all the three stages only will
be reported as an edge prior without data support.

The following parameters are used to compute weights of edges and non-edges in the post-inference matri-
ces ppEdge, ppN Edge, ppEdgeTF' |, and ppN EdgeT F: weightPrior = 2; weightInfer = 0.5; weight Direct
= 0.5; weightIndirect = 0.25. The weightPrior is the weight of a known prior interaction such as an edge
or a non-edge prior. It is given a weight of 2 because the maximum weight of an inferred interaction in the
infMat is 1 or a -1. The prior interaction should have twice the weight of an inferred interaction so that
even a wrong inferred interaction can be corrected. The weightInfer is the weight for an interaction, in
the inferred network or supported by the data for a pairwise statistical significance test. Its value is lesser
than the maximum weight of an edge in the infMat because the GRN inference methods generally use a
more sophisticated technique than a simple pairwise test. The weightDirect is the weight given to a direct
relation that is very likely to exist such as the inferred edges of a known transcription factor. The value of its
weight is kept half of the maximum weight of an edge in the infMat. The weightIndirect is used when an
indirect interaction is expected. For example if TF1 — TF2 — TG exists then it is likely that TG — TF1
does not exist. Therefore, this non-edge can be updated with weightIndirect. It needed a weight that is
less than the weight Direct but greater than zero, so 0.25 is chosen.

4 Results and discussion

4.1 Quantifying the wrong edge sources

The wrong edges or the false positives in the inferred networks of the three selected networks, are shown
in Table 3. The total false positives, the number of false positives from the strangers, relatives, and the 13
different relatives are given in the table. It can be seen from the table that all the networks predict a large
number of total false positives. This is because the DREAMS required each inferred network to have 100,000
interactions, which is much larger than the number of known correct interactions; resulting in a large number
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Table 3: Quantification of the total number of wrong edges and the different classes of wrong edges such as strangers
and relatives, from the inferred networks of Netl, Net3, and Net4. The relatives are further classified into the 13
different relatives that are up to four-node distance. The different relatives are listed in the descending order of their
frequency of occurrence in the inferred network.

Class Netl Net3 Net4d Distance
Total 96848 99386 99668
Strangers 56678 96536 93468
Relatives 40170 2850 6200

Sib 16545 1429 1985 2
Aun 9759 530 1195 3
Nie 3883 280 873 3
Cus 2768 194 651 4
NCd 2238 166 652 4
GpS 2095 89 325 4
Gp 1425 91 174 2
GGp 882 36 145 3
GGGp 376 8 116 4
Chd 150 25 39 1
GGGe 17 0 13 4
Ge 16 2 17 2
GGc 16 0 15 3

of false positives. Among the relatives, the non-descendant-FPs are much larger than the descendant-FPs.
Further, more false positives originate from immediate ancestors than the ancestors farther away.

It was shown in section 2.3.1 that the false positives occur due to three reasons — indirect interactions,
spurious interactions, and influence interactions. In Table 3, for the realistic network (Net1), 40% of the false
positives are from the relatives, which are due to the indirect interactions. The rest 60% are from strangers
which could be due to the spurious interactions caused by the noise and errors added in the data (Marbach
et al., 2012). Further, a few stranger-FPs could occur due to the unclassified relatives at five-node distance
and higher. The influence interactions due to protein-protein interactions and metabolites are not expected
due to the in silico data generation method used (Schaffter et al., 2011).

In Table 3, for the E. coli (Net3) and yeast (Net4) real networks, the number of the relative-FPs are much
lower compared to the Netl. There could be more than one reason for this occurrence. In real networks, the
influence edges due to protein-protein interactions and metabolites could be present. The noise in the data
and other experimental errors could also be higher because real experimental data is used. Further, these
networks are not gold standard (Marbach et al., 2012) which means that our knowledge of these networks is
not complete and more undiscovered interactions could be present. If more interactions are indeed present,
then, many current stranger-FPs could actually be correct edges or relative-FPs.

The quantity of each relative-FP as a fraction of the total relative-FPs is shown in figure 3. The sibling-
FP, at 40%, is the largest individual fraction of the total relative-FPs, for the Net1. In all the three networks,
the sibling-FP is the largest source of wrong edges, followed by Aunt-FP, Niece-FP and so on. Thus, it can
be seen that all the three networks have a similar distribution of the different relative-FPs with respect to
the total relative-FP.

Thus, it was seen that all the inferred networks have a large number of relative-FPs caused due to the in-
direct interactions. The relative-FPs predominantly originate from the ancestor nodes than the descendants.
Moreover, the nodes that are closer in node distance form a higher fraction of the relative-FPs. Further,
all the three inferred networks show a similar distribution of the different relative-FPs. These observations
validate the design and motivate the use of the Advanced post-inference algorithm.
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Figure 3: Fraction of wrong edges from each of the 13 relatives to the total relative-FP (false positives from all the
relatives) for the three networks.

4.2 Post-inference incorporation of priors

The results of the post-inference inclusion of the prior knowledge with the Basic and Advanced algorithms
are presented for the three networks — Net1, Net3, and Net4. These results are compared to the results of a
normal GRN inference without incorporating the prior knowledge (termed here as the Normal method), to
identify the improvement. The study is performed only with the edge priors because a) the edge priors are
the most widely used priors; b) it is difficult to obtain the non-edge priors; and ¢) only a small percentage of
the non-edge priors are available for the networks considered here. However, because these algorithms can
accept both edge and non-edge priors, the results with both priors are also presented.

4.2.1 Netl: the realistic network

The performance of the Normal method, the Basic algorithm, and the Advanced algorithm for Net1 is given
in Table 4. Only the edge priors are considered here. The averaged values of the different performance
metrics and their sample standard deviations, at different percentages of the edge priors, are listed. It can
be seen from the table that both the Basic and Advanced algorithms show equal or generally, much better
performance than the Normal method, in all the performance metrics.

The Basic algorithm predicts higher true positives than the Normal method which helps to improve all
the performance metrics, except the false positives metric. This algorithm considers only the incorporation
of the prior knowledge of interactions and does not remove the wrong edges. Since only the edge priors are
available here, the algorithm cannot reduce the false positives (wrong edges) when compared to the Normal
method.

The Advanced algorithm is better than the Normal method in all the performance metrics, including
the false positives metric. This algorithm incorporates the prior knowledge of interactions and also tries
to remove the wrong edges due to the indirect interactions. Thus, only the Advanced algorithm shows a
reduction in the false positives when compared to the Normal method or the Basic algorithm. However, the
Advanced algorithm predicts a slightly lower number of true positives than the Basic algorithm. As discussed
in section 2.7, the Advanced algorithm uses an approximate method to identify the wrong edges when the
prior knowledge of interactions are insufficient. This can cause a few correct edges to be lost. For example, in
Table 4, for 10% edge priors, the Advanced algorithm identifies and removes around 700 wrong interactions
and looses less than 20 correct interactions, when compared to the Basic algorithm. Moreover, the Advanced
algorithm has consistently the lowest false positives and the highest precision, F1-score, specificity, AUROC,
and AUPR among the three methods.
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Table 4: Performance metrics for Normal method, Basic post-inference (BPI), and Advanced post-inference (API)
algorithms on Netl for the different percentage of edge priors (Edge%). In the performance metrics, TP is true
positives and FP is false positives. A standard deviation equals to zero implies that its value is less than 0.001.

Edge% Method TP FP Precision Recall Fl-score Specificity AUROC AUPR
- Normal 3152.0 96848.0 0.032  0.786 0.061 0.964 0.815 0.291
10 BPI 3237.4  96848.0 0.032  0.807 0.062 0.964 0.833 0.388
API 3219.6  96149.1 0.032  0.802 0.062 0.964 0.841 0.417
25 BPI 3371.1 96848.0 0.034  0.840 0.065 0.964 0.862 0.510
API 3332.5 95377.5 0.034  0.831 0.065 0.965 0.861 0.518
50 BPI 3585.9  96848.0 0.036  0.894 0.069 0.964 0.908 0.686
API 3545.8 94374.6 0.036  0.884 0.070 0.965 0.904 0.688
75 BPI 3799.4  96848.0 0.038  0.947 0.073 0.964 0.954 0.849
API 3776.6  93637.2 0.039  0.941 0.074 0.965 0.951 0.848
100 BPI 4012.0 96848.0 0.040  1.000 0.077 0.964 1.000 1.000
API 4012.0 93235.0 0.041 1.000 0.079 0.965 1.000 1.000
Sample standard deviation
10 BPI 4.115 0.000 0 0.001 0 0 0.001 0.002
API 3.921 177.363 0 0.001 0 0 0.002 0.007
25 BPI 10.354 0.000 0 0.003 0 0 0.001 0.002
API 9.312 153.893 0 0.002 0 0 0.001 0.004
50 BPI 15.271 0.000 0 0.004 0 0 0.002 0.003
API 15.915 196.964 0 0.004 0 0 0.002 0.004
75 BPI 13.108 0.000 0 0.003 0 0 0.002 0.003
API 14.577 101.427 0 0.004 0 0 0.002 0.002
100 BPI 0.000 0.000 0  0.000 0 0 0.000 0.000
API 0.000 0.000 0  0.000 0 0 0.000 0.000
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Table 5: Improvement in performance metrics for Netl with the Basic (BPI) and Advanced (API) algorithms when
compared to the Normal method. The best-performance values for 10% edge priors are highlighted in bold typeface.
In the performance metrics, TP is true positives and FP is false positives.

Edge% Method TP FP Precision% Recall%  Fl-score% AUROC% AUPR%
10 BPI 85.44+4.1 0.0£0.0 0.0£0.0 2.74+0.1 1.6+0.0 2.240.1 33.3£0.7
API 67.6+£3.9 -698.9+177.4 0.0+0.0 2.040.1 1.6+£0.0 3.2+0.2 43.3+2.4
25 BPI 219.1+10.4 0.0£0.0 6.240.0 6.9+0.4 6.6+£0.0 5.840.1 75.3+0.7
API 180.56+9.3  -1470.5+153.9 6.2+0.0 5.7+0.2 6.6+0.0 5.6+0.1 78.0£1.4
50 BPI 433.9+15.3 0.0+0.0 12.54£0.0 13.74+0.5 13.1+0.0 11.4+0.2 135.7£1.0
API 393.8£15.9  -2473.4+197.0 12.5+0.0 12.5£0.5 14.8£0.0 10.9£0.2 136.4+1.4
75 BPI 647.4+13.1 0.0£0.0 18.8+£0.0 20.540.4 19.7+0.0 17.1+£0.2 191.84£1.0
API 624.6+14.6 -3210.84101.4 21.94+0.0 19.74+0.5 21.3+0.0 16.7+0.2  191.4+0.7
100 BPI 860.0£0.0 0.0£0.0 25.0£0.0 27.240.0 26.2£0.0 22.7£0.0 243.6+0.0
API 860.0+0.0 -3613.040.0 28.1£0.0 27.24+0.0 29.5+0.0 22.740.0 243.61+0.0

The improvements in performance metrics (computed from Table 4) for the Basic and Advanced al-
gorithms when compared to the Normal method, are given in Table 5. In the table, true positives and
false positives show improvement in the absolute number of edges. All the other metrics show percentage
improvement with respect to the Normal method. For the 10% edge priors, the Basic algorithm has the
highest improvement for the true positives with 85.4 more correct edges on an average than the Normal
method which results in 2.7% better recall. For the Advanced method, the corresponding values are slightly
lower with 67.6 more true positives and 2.0% better recall. However, for all the other metrics the Advanced
algorithm outperforms the Basic algorithm. For the 10% edge priors, the Advanced algorithm reduces the
false positives by around 700 edges on an average, which means it identifies and removes around 700 indirect
interactions. It also improves AUROC by 3.2% and AUPR by 43.3%. Thus, even though the improvement
in true positives is slightly lower, the Advanced algorithm displays a better overall improvement compared
to the Basic algorithm.

The performance of the Basic and the Advanced algorithms for the different performance metrics and
edge prior percentages, can be compared using radar charts. In the radar charts here, the performance of the
Normal method is assumed as the baseline of zero. Any increase of performance from the Normal method
is scaled to [0,1] range, with 0 representing no improvement and 1 representing the highest improvement for
that particular performance metric, among all the edge prior percentages in the Basic and the Advanced
algorithms. Any decrease of performance is similarly scaled between [-1,0]. Thus, each performance metric
is individually scaled between [-1,1], reflecting the increase or decrease in performance over the different edge
prior percentages. Since the highest improvement selects the best-performance among the Basic and the
Advanced algorithms, the radar chart can also compare the performance between the two algorithms.

The performance of the three algorithms (Normal, Basic, and Advanced) for the different performance
metrics and edge prior percentages, can be seen in the radar charts in figure 4. Figure 4(a) shows the
performance of the Normal and the Basic algorithms. The Basic algorithm shows higher performance in all
the metrics, except false positives metric, when compared to the Normal method. Further, for the Basic
algorithm, as the prior percentage increases, all the performance metrics (except false positive) also improve.
Thus, 100% prior shows the best improvement, which is intuitive because all the correct edges are detected.
However, precision and F1-score do not reach the maximum value even at 100% priors because the Advanced
algorithm shows better improvement.

Figure 4(b) shows the performance of the Normal and the Advanced algorithms for the different per-
formance metrics. It can be seen that the Advanced algorithm shows improvement in all the performance
metrics, including the false positives metric, when compared to the Normal method. As the prior percentage
increases, all the performance metrics of the Advanced algorithm also show improvement.

Figure 4(c) shows the performance of the Normal, Basic, and Advanced algorithms in a single chart
for the different performance metrics and prior percentages. This chart enables a comparison between the
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performance of the Basic and Advanced algorithms for the different metrics. From the symmetry of the plots
in the chart, it can be seen that the Basic and Advanced algorithms have similar performances for all the
performance metrics at the different edge prior percentages, except for the false positives metric. Further,
among the Basic and the Advanced algorithms, only the Advanced algorithm shows a reduction in the false
positives and thus, reduction in the wrong edges.

Thus, for the Net1, the Basic and Advanced algorithms show similar overall improvement when compared
to the Normal method, for all the performance metrics except the wrong edges. Only the Advanced algorithm
shows a reduction in the wrong edges and thus, shows an overall improvement across all the metrics.

4.2.2 Net3: the E. coli network

The performance of the three algorithms for the Net3, are given in Table 6. Similar to the results of Netl,
both the Basic and the Advanced algorithms show at least equal or generally, much better performance than
the Normal method in all the performance metrics. The Basic algorithm predicts higher true positives than
the Normal, which improves all the performance metrics except the false positives metric.

The Advanced algorithm is better than the Normal method in all the performance metrics, including the
false positives metric. Only the Advanced algorithm shows a reduction in the false positives when compared
to the Normal method or the Basic algorithm. However, the Advanced algorithm predicts a slightly lower
number of true positives than the Basic algorithm, similar to the Net1 results. In Table 6, for 10% edge priors,
the Advanced algorithm identifies and removes around 90 wrong interactions while loosing only around 3
correct interactions when compared to the Basic algorithm. Thus, the Advanced algorithm consistently
shows good overall performance among the three methods.

The improvements in the performance metrics (computed from Table 6) of the Basic and the Advanced
algorithms when compared to the Normal method are given in Table 7. In the table, the true positives and
the false positives show improvement in absolute number of edges while the other metrics show percentage
improvement. For the 10% edge priors, the Basic algorithm has the highest improvement for the true positives
with 148.4 more correct edges on an average, than the Normal method, which results in 24.2% better recall.
In the Advanced method the corresponding values are slightly lower at 145.4 improved true positives and
23.9% improved recall. However, for most of the other metrics the Advanced algorithm has comparable or
better performance than the Basic algorithm. For the 10% edge priors, the Advanced algorithm reduces
the false positives by around 90 edges, on an average. This means that it identifies and removes around 90
indirect interactions. Thus, even though the improvement in true positives is slightly lower than the Basic
algorithm, only the Advanced algorithm shows an overall improvement in all the performance metrics.

Similar to the Netl results, the performance comparison of the three algorithms for the different perfor-
mance metrics and edge prior percentages, for the Net3, is shown using radar charts in figure 5. Figure 5(a)
shows the performance comparison of the Normal and the Basic algorithms. The Basic algorithm shows
higher performance in all metrics, except the false positives metric. Further, as the prior percentage in-
creases for the Basic algorithm, all the performance metrics (except false positives) improve and the 100%
prior shows the best improvement.

Figure 5(b) shows the performance of the Normal and the Advanced algorithms. The Advanced algorithm
shows improvement in all the performance metrics including the false positives, when compared to the
Normal method. Figure 5(c) shows the performance of the Normal, the Basic, and the Advanced algorithms
in a single chart. From the symmetry of the plots in the chart, it can be seen that the Basic and the
Advanced algorithms show a similar performance for all the performance metrics across the different edge
prior percentages, except for the false positives metric. Only the Advanced algorithm shows a reduction in
the false positives and thus, a reduction in the wrong edges.

Thus, for the Net3 network, the Basic and Advanced algorithms show similar improvement when com-
pared to the Normal method in all the performance metrics, except the wrong edges. Only the Advanced
algorithm shows a reduction in the wrong edges and therefore, an overall improvement across all the perfor-
mance metrics. These results are similar to the Netl results.
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(a) Performance of the Basic algorithm at different edge prior percentages along with the Normal method. The
suffix ‘xx’ of the ‘Basic-xx’ represents the percentage of edge priors used.
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(b) Performance of the Advanced algorithm at different edge prior percentages along with the Normal method.
The suffix ‘xx’ of the ‘Advanced-xx’ represents the percentage of edge priors used.
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(¢) Comparison of all the performance metrics for the Basic and Advanced algorithms at different edge prior
percentage, and the Normal method. All the plots, except the FP plot, overlaps on each other.

Figure 4: A Comparison of performances of Normal, Basic, and Advanced algorithms on Netl for different perfor-
mance metrics at 10%, 25%, 50%, 75%, and 100% edge priors. The performance of the Normal method is considered
as the base performance at the value 0. A performance higher than Normal is in the range [0,1], and a performance
lower than Normal is in the range [-1,0]. In the performance metrics, TP is true positives and FP is false positives.
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Table 6: Performance metrics of Normal method, Basic post-inference (BPI), and Advanced post-inference (API)
algorithms on Net3, for different percentage of edge priors (Edge%). In the performance metrics, TP is true positives
and FP is false positives. A standard deviation equals to zero implies that its value is less than 0.001.

Edge% Method TP FP Precision Recall Fl-score Specificity AUROC AUPR
- Normal 614.0 99386.0 0.006  0.297 0.012 0.995 0.617  0.093
10 BPI 762.4 99386.0 0.008  0.369 0.015 0.995 0.656  0.211
API 759.4 99298 4 0.008  0.368 0.015 0.995 0.656  0.196
25 BPI 979.0 99386.0 0.010 0.474 0.019 0.995 0.713  0.358
API 971.4 99112.5 0.010  0.470 0.019 0.995 0.712 0.355
50 BPI 1340.7  99386.0 0.013  0.649 0.026 0.995 0.809  0.583
API 1333.1 98837.9 0.013  0.645 0.026 0.995 0.807  0.581
75 BPI 1702.2  99386.0 0.017 0.824 0.033 0.995 0.904  0.794
API 1697.6  98630.6 0.017  0.822 0.033 0.995 0.903  0.793
100 BPI 2066.0  99386.0 0.020  1.000 0.040 0.995 1.000 1.000
API 2066.0 98459.0 0.021  1.000 0.040 0.995 1.000 1.000
Sample standard deviation
10 BPI 7.792 0.000 0 0.004 0 0 0.002 0.002
API 8.656  36.713 0 0.004 0 0 0.002 0.005
25 BPI 10.066 0.000 0 0.005 0 0 0.003  0.003
API 9.732  34.375 0 0.005 0 0 0.002 0.003
50 BPI 6.945 0.000 0 0.003 0 0 0.002 0.002
API 7.824  57.398 0 0.004 0 0 0.002 0.002
75 BPI 13.164 0.000 0 0.006 0 0 0.003  0.003
API 12.963  44.970 0 0.006 0 0 0.003  0.003
100 BPI 0.000 0.000 0 0.000 0 0 0.000  0.000
API 0.000 0.000 0 0.000 0 0 0.000  0.000

Table 7: Improvement in performance metrics for Net3 with the Basic (BPI) and Advanced (API) algorithms when
compared to the Normal method. The best-performance values for 10% edge priors are highlighted in bold typeface.
In the performance metrics, TP is true positives and FP is false positives.

Edge% Method TP FP Precision% Recall% Fl-score% AUROC% AUPR%

10 BPI 148.4+7.8 0.0£0.0 33.3£0.0 24.2+1.4 25.0£0.0 6.3+0.3 126.9+2.1
API 145.4+£8.7 -87.6£36.7 33.3£0.0 23.9£1.4 25.0+0.0 6.3+0.3 110.8£5.4

25 BPI 365.04+10.1 0.0£0.0 66.7£0.0 59.6£1.7 58.3£0.0 15.6+0.5 284.9+3.2
API 357.4+9.7 -273.5+34.4 66.7£0.0 58.2£1.7 58.3£0.0 15.4+0.3 281.7+3.2

50 BPI 726.7+6.9 0.0£0.0 116.7£0.0 118.5+1.0 116.7£0.0 31.1£0.3 526.9+2.1
API 719.1+£7.8  -548.1+57.4 116.7£0.0 117.2+1.4 116.7£0.0 30.8+0.3 524.7+2.1

75 BPI 1088.24+13.2 0.0£0.0 183.3£0.0 177.4+£2.0 175.0£0.0 46.5£0.5 753.84+3.2
API 1083.6+13.0 -755.44+45.0 183.3£0.0 176.8£2.0 175.0£0.0 46.4£0.5 752.74+3.2

100 BPI 1452.0+0.0 0.0£0.0  233.3+£0.0 236.7£0.0 233.3+0.0 62.1£0.0 975.3+0.0
API 1452.0+0.0 -927.0+£0.0  250.0£0.0 236.7£0.0 233.340.0 62.1£0.0 975.3£0.0
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(a) Performance of the Basic algorithm at different edge prior percentages along with the Normal method. The
suffix ‘xx’ of the ‘Basic-xx’ represents the percentage of edge priors used.
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(b) Performance of the Advanced algorithm at different edge prior percentages along with the Normal method.
The suffix ‘xx’ of the ‘Advanced-xx’ represents the percentage of edge priors used.
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(¢) Comparison of all the performance metrics for the Basic and Advanced algorithms at different edge prior
percentage, and the Normal method. All the plots, except the FP plot, overlap on each other.

Figure 5: Comparative performance of Normal, Basic, and Advanced algorithms on Net3 for the different perfor-
mance metrics at 0%, 25%, 50%, 75%, and 100% edge priors. The Normal method performance is considered as the
base performance at the value 0. Performance higher than Normal is in the range [0,1], and performance lower than
Normal is in the range [-1,0]. In the performance metrics, TP is true positives and FP is false positives.
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Table 8: Performance metrics of Normal method, Basic post-inference (BPI), and Advanced post-inference (API)
algorithms on Net4, for different percentage of edge priors (Edge%). In the performance metrics, TP is true positives
and FP is false positives. A standard deviation equals to zero implies that its value is less than 0.001.

Edge% Method TP FP Precision Recall Fl-score Specificity AUROC AUPR
- Normal  332.0 99668.0 0.003  0.084 0.006 0.997 0.518  0.021
10 BPI 693.0 99668.0 0.007  0.176 0.013 0.997 0.566  0.132
API 691.4 99499.5 0.007  0.175 0.013 0.997 0.566  0.136
25 BPI 1238.0  99668.0 0.012 0.314 0.024 0.997 0.639 0.287
API 1233.5 99246.3 0.012  0.313 0.024 0.997 0.639 0.290
50 BPI 2131.9 99668.0 0.021  0.541 0.040 0.997 0.758 0.532
API 2126.2 98858.0 0.021  0.540 0.041 0.997 0.758 0.533
75 BPI 3037.3  99668.0 0.030 0.771 0.057 0.997 0.879 0.770
API 3033.2  98623.0 0.030 0.770 0.057 0.997 0.879 0.770
100 BPI 3940.0 99668.0 0.038  1.000 0.073 0.997 1.000 1.000
API 3940.0 98415.0 0.038  1.000 0.074 0.997 1.000 1.000
Sample standard deviation
10 BPI 4.944 0.000 0 0.001 0 0 0.001 0.000
API 5.038 29.387 0 0.001 0 0 0.001 0.001
25 BPI 5.735 0.000 0 0.001 0 0 0.001 0.001
API 5.482 46.555 0 0.001 0 0 0.001 0.001
50 BPI 7.109 0.000 0 0.002 0 0 0.001  0.001
API 7.843  48.854 0 0.002 0 0 0.001  0.001
75 BPI 6.584 0.000 0 0.002 0 0 0.001  0.001
API 6.391  41.266 0 0.002 0 0 0.001  0.001
100 BPI 0 0 0 0 0 0 0 0
API 0 0 0 0 0 0 0 0

4.2.3 Netj: the yeast network

The performances of the three algorithms in Net4 are in Table 8. Similar to the results of Netl and Net3,
both the Basic and the Advanced algorithms have at least equal or generally, much better performance
than the Normal method in all the performance metrics. The Basic algorithm is able to predict higher true
positives than the Normal which improves all the other performance metrics, except the false positives.

The Advanced algorithm is better than the Normal method in all the performance metrics, including the
false positives. Thus, only the Advanced algorithm shows a reduction in the false positives when compared
to the Normal method or the Basic algorithm. In Table 8, for the 10% edge priors, the Advanced algo-
rithm identifies and removes around 170 wrong interactions while loosing only around 1 correct interaction
when compared to the Basic algorithm. Thus, the Advanced method consistently shows the best overall
performance among the three algorithms.

The improvements in the performance metrics (computed from Table 8) of the Basic and the Advanced
algorithms when compared to the Normal method, are given in Table 9. For the 10% edge priors, the Basic
algorithm has the highest improvement for the true positives with 361 more correct edges on an average,
than the Normal method. This results in 109.5% better recall. For the Advanced method, the corresponding
values are comparable at 359.4 more true positives and 108.3% improved recall. For other metrics also the
Advanced algorithm has equal or better performance than the Basic algorithm. The Advanced algorithm
reduces the false positives by around 170 edges which is the magnitude of the indirect interactions that
are identified and removed. Thus, the Advanced algorithm shows the best overall improvement in all the
performance metrics.

Similar to the Netl and Net3 results, the performances of the three algorithms for Net4 are compared
using the radar charts in figure 6. Figure 6(a) compares the performance of the Normal and the Basic
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Table 9: Improvement in performance metrics for Net4 with the Basic (BPI) and Advanced (API) algorithms when
compared to the Normal method. The best-performance values for 10% edge priors are highlighted in bold typeface.
In the performance metrics, TP is true positives and FP is false positives.

Edge% Method TP FP Precision%  Recall% Fl-score’%s AUROC% AUPR%

10 BPI 361.0+4.9 0.0+£0.0 133.3+0.0 109.5+0.0 116.7+0.0 9.3+0.0 528.6+0.0
API 359.4+5.0 -168.5+29.4 133.3+0.0 108.3+£0.0 116.7+0.0 9.3+0.0 547.6+0.0

25 BPI 906.0£5.7 0.0£0.0 300.0£0.0 273.8+0.0 300.0£0.0 23.4+0.0 1266.7+0.0
API 901.5+5.5 -421.7+46.6 300.0+0.0 272.6+0.0 300.0+£0.0 23.4+0.0 1281.0%0.0

50 BPI 1799.9+7.1 0.0+0.0 600.0+0.0 544.0+0.0 566.7+0.0 46.3£0.0  2433.3£0.0
API 1794.2+7.8 -810.0+48.9 600.0+0.0 542.940.0 583.3+0.0 46.3£0.0 2438.1£0.0

75 BPI 2705.3£6.6 0.0+0.0 900.0+0.0 817.9+0.0 850.0£0.0 69.7+£0.0 3566.7+0.0
API 2701.2+6.4 -1045.0£41.3 900.0+0.0 816.71+0.0 850.0£0.0 69.7+£0.0 3566.7+0.0

100 BPI 3608.0£0.0 0.0£0.0 1166.7+0.0 1090.5+0.0 1116.7+0.0 93.0£0.0 4661.9£0.0
API 3608.0£0.0 -1253.0£0.0 1166.7£0.0  1090.5+0.0 1133.340.0 93.0£0.0 4661.9£0.0

algorithms. The Basic algorithm shows better performance in all the metrics, except for the false positives.
Further, as the prior percentage increases for the Basic algorithm, all the performance metrics (except
the false positives) improve and the 100% prior shows the best improvement. Figure 6(b) compares the
performance of the Normal and the Advanced algorithms. The Advanced algorithm shows improvement for
all the performance metrics, including the false positives metric, when compared to the Normal method.
Figure 6(c) compares the performance of the Normal, the Basic, and the Advanced algorithms in a single
chart. The symmetry in the plots and overlapping plots show that the Basic and the Advanced algorithms
have similar performances in all the performance metrics at the same edge prior percentages, except for
the false positives metric. Only the Advanced algorithm shows a reduction in the false positives and thus,
achieves reduction in the wrong edges.

Thus, for Net4, the Basic and the Advanced algorithms show similar improvements when compared to
the Normal method for all the performance metrics except the wrong edges. Only the Advanced algorithm
shows a reduction in wrong edges and therefore, an overall improvement across all the performance metrics.
These results are similar to the results from Netl and Net3.

4.2.4 Comparison of Basic and Advanced algorithm

Figure 7 shows the improvements in correct edges (true positives) and reduction in wrong edges (false
positives) given by the Basic and Advanced algorithms when compared to the Normal method in the three
networks, Netl, Net3, and Net4. The improvements are shown for the 10%, 256%, 50%, 75%, and 100% of
edge priors. For example, figure 7(a) shows that in Netl, for 10% edge priors, the Basic algorithm predicts
around 100 correct edges more than the Normal method but figure 7(b) shows that the Basic algorithm
exhibits no comparative reduction in the wrong edges. The Advanced algorithm, for the same conditions,
predicts around 100 correct edges higher (figure 7(a)) and around 700 wrong edges lower (figure 7(b)) than
the Normal method. The Advanced algorithm predicts slightly less number of correct edges than the Basic
algorithm but only the Advanced algorithm shows reduction in wrong edges. This pattern can be seen for
all the edge prior quantities and for all the three networks in figure 7. It can be seen from the figure that
for the three networks at half the quantity (50%) of edge priors, on an average, the Basic algorithm predicts
around 980 correct edges more than the Normal method while giving no reduction in the number of wrong
edges. In contrast, the Advanced algorithm for the same conditions predicts around 970 correct edges more
and removes around 1300 wrong edges when compared to the Normal method.
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(a) Performance of the Basic algorithm at different edge prior percentages along with the Normal method. The
suffix ‘xx’ of the ‘Basic-xx’ represents the percentage of edge priors used.
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(b) Performance of the Advanced algorithm at different edge prior percentages along with the Normal method.
The suffix ‘xx’ of the ‘Advanced-xx’ represents the percentage of edge priors used.
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(¢) Comparison of all the performance metrics for the Basic and Advanced algorithms at different edge prior
percentage, and the Normal method. Except the FP plot, all the other plots overlap each other.

Figure 6: Comparative performance of Normal, Basic, and Advanced algorithms on Net4 for the different perfor-
mance metrics at 10%, 25%, 50%, 75%, and 100% edge priors. The Normal method performance is considered as the
base performance at the value 0. Performance higher than Normal is in the range [0,1], and performance lower than
Normal is in the range [-1,0]. In the performance metrics, TP is true positives and FP is false positives.

29


https://doi.org/10.1101/122341
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/122341; this version posted March 30, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

a) b Edge prior %
) o 10 25 50 75 100
] 800 W Basic -
£ ® Advanced 2
z 600 S -1000
5 ki
E o
g 400 £ -2000
2 2
= o
4 a
©
g, hm £
-4000
o) d) o !
5 1200 5 l
Qo
% S 300
S 800 2
o 2
% 400 g o0
[
S o
ER
e)4000 f) 0 -
= c
] S -300
£ 3000 3
3 3
2 2 600
s e
£ 2000 3
g g
2 g -900
‘g 1000 =
Q
[} [
: L Em :
= 0
10 25 50 75 100

Edge prior %

Figure 7: Improvement in true positives and reduction in false positives for the three networks with the Basic and
Advanced algorithms when compared to the Normal method, at different edge prior percentages. a), c¢), and e) show
the improvement in true positives for the Netl, Net3, and Net4, respectively. b), d), and f) show the reduction in
false positives for the Netl, Net3, and Net4, respectively. Only the Advanced algorithm shows reduction in false
positives and the Basic algorithm shows no reduction in false positives compared to the Normal method.
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Table 10: Performance metrics of Normal method, Basic post-inference (BPI), and Advanced post-inference (API)
algorithms on Netl with edge and non-edge priors. All the available non-edge priors are incorporated in the Basic
and Advanced algorithms and only the quantity of the edge priors (Edge%) are varied. In the performance metrics,
TP is true positives and FP is false positives. A standard deviation equals to zero implies that its value is less than

0.001.
Edge% Method TP FP Precision Recall Fl-score Specificity AUROC AUPR
- Normal 3152.0 96848.0 0.032  0.786 0.061 0.964 0.815  0.291
10 BPI 3236.3 12083.0 0.211  0.807 0.335 0.996 0.903  0.817
API 3194.1 12017.1 0.210  0.796 0.332 0.996 0.898  0.807
25 BPI 3370.2 12083.0 0.218  0.840 0.346 0.996 0.920  0.849
API 3318.3 11908.3 0.218  0.827 0.345 0.996 0.914  0.837
50 BPI 3579.5 12083.0 0.229  0.892 0.364 0.996 0.946  0.898
API 3534.2 11784.6 0.231  0.881 0.366 0.996 0.940  0.888
75 BPI 3802.4 12083.0 0.239  0.948 0.382 0.996 0.974  0.951
API 3772.3 11699.2 0.244  0.940 0.387 0.996 0.970  0.944
100 BPI 4012.0 12083.0 0.249  1.000 0.399 0.996 1.000 1.000
API 4012.0 11628.0 0.257  1.000 0.408 0.996 1.000 1.000
Sample standard deviation
10 BPI 7.072 0.000 0.000  0.002 0.001 0 0.001 0.002
API 9.291  12.775 0.001  0.002 0.001 0 0.001 0.002
25 BPI 8.715 0.000 0.000  0.002 0.001 0 0.001 0.002
API 12.248  13.124 0.001  0.003 0.001 0 0.002  0.003
50 BPI 9.156 0.000 0.000  0.002 0.001 0 0.001 0.002
API 11.153  19.260 0.001  0.003 0.001 0 0.001 0.003
75 BPI 7.820 0.000 0.000  0.002 0.001 0 0.001 0.002
API 6.447  19.113 0.000  0.002 0.001 0 0.001 0.002
100 BPI 0 0 0 0 0 0 0 0
API 0 0 0 0 0 0 0 0

4.2.5 Incorporation of edge and non-edge priors

The results presented previously on the Netl, Net3, and Net4 incorporated only the edge priors. However,
the post-inference prior algorithms developed here can incorporate both the edge and the non-edge priors.
Net1 is selected for this study because it is the only gold standard network in which all the edge priors are
known. For the E. coli (Net3) and the yeast (Net4) networks all the edge priors may not be known (Marbach
et al., 2012) and consequently, the classification of the wrong edges could be incorrect. Thus, the wrong-
edge-removal procedure may not be quantified correctly.

As discussed in section 3.1, the Net1 has 1643 genes which can have 2,699,449 interactions (1643x1643).
Since there are 4012 edge priors, the total possible non-edges are 2,699,449-4012=2,695,437. Out of the
more than two-million non-edges, only around one-tenth (274,380) are available as priors in the DREAMb5
data. Due to the low quantity of the non-edge priors known, all the available non-edge priors are always
incorporated in the Basic and the Advanced algorithms; and only the edge prior quantity is varied between
0-100%. The results of this study are in Table 10.

It can be seen from Table 10 that the Basic and the Advanced algorithms perform better than the
Normal method for all the performance metrics. Since the non-edge priors are also considered, the Basic
algorithm shows a reduction in the false positives when compared to the Normal method. However, the
Advanced algorithm still predicts the least number of false positives. For example, at 10% edge priors, the
Advanced algorithm predicts 12,017 wrong edges on an average, which is eight times lower than the number
of false positives predicted by the Normal method, and 66 fewer false positives than the Basic algorithm.
The Advanced algorithm, however, predicts 40 true positives lower than the Basic algorithm, due to which
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Table 11: Performance metrics of Normal method and edge priors (edgePrior variable) for the Netl network. In
the performance metrics, TP is true positives and FP is false positives. The sample standard deviation was zero for
all the conditions.

Method Edge% TP FP Precision Recall Fl-score Specificity AUROC AUPR

Normal - 3152 96848 0.032  0.786 0.061 0.964 0.815 0.291
edgePrior 10 401 0 1.000  0.100 0.182 1.000 0.550 0.120
25 1003 0 1.000  0.250 0.400 1.000 0.625 0.273
50 2006 0 1.000  0.500 0.667 1.000 0.750 0.521
75 3009 0 1.000  0.750 0.857 1.000 0.875 0.763
100 4012 0 1.000  1.000 1.000 1.000 1.000 1.000

some performance metrics of the Basic algorithm is marginally better than the Advanced algorithm. As the
percentage of the edge priors increase, the number of wrong edges identified by the Basic algorithm does not
improve but the Advanced algorithm shows greater reduction in the number of wrong edges.

4.3 Performance of the different components of the algorithm

The Basic algorithm incorporates only the prior knowledge of interactions while the Advance algorithm, a)
incorporates the prior knowledge of interactions, b) includes the prior knowledge of regulators, c) identifies
and removes the wrong edges, and d) identifies the edge priors not supported by the data. In these four
components, the identification of the edge priors not supported by data does not influence the results and is
only for further studies in wet-lab. Moreover, in the networks used here, all the edge priors were supported
by the data. Thus, only the first three components are analysed individually to identify their effectiveness
in improving the performance of GRN inference.

4.3.1 Prior knowledge of interactions

The prior knowledge of interactions consists of the edge priors and the non-edge priors in the edgePrior
and the nEdgePrior variables, respectively. The performance metrics of these variables are computed and
compared with the Normal method to identify the improvements. As discussed in section 4.2, since the
non-edge prior incorporation is studied only with the Netl, the result of nEdgePrior is available only for
that network.

Tables 11, 12, and 13 show the performance metrics of the edge Prior in each of the three networks Net1,
Net3, and Net4, respectively for the different percentage of edge priors. They all show similar results. As the
edge prior% increases, the true positives, recall, F1-score, AUROC, and AUPR increase proportionately. The
false positives for the edgePrior are always zero, as expected, because there are only known correct edges.
Thus, the precision and specificity are 1. Table 14 shows the performance metrics of the nEdgePrior for the
Netl. Since the nEdgePrior contains only the known non-edge priors, its performance metrics should have
no true positives and the false positives should be equal to the number of non-edges known. The results in
Table 14 are as expected. Further, the recall is also zero, which implies that no correct edges are identified,
as required.

Thus, incorporating the edge Prior can increase the true positives without increasing the wrong edges.
This will also improve the other performance metrics. Incorporating the nEdge Prior will help to reduce the
wrong edges without affecting the correct edges.

4.3.2 Prior knowledge on regulators
The Advanced algorithm incorporates the knowledge of regulators by a) increasing the confidence weights
of the inferred edges from the known transcription factors, and b) removing the inferred wrong edges from
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Table 12: Performance metrics of Normal method and edge priors (edgePrior variable) for the Net3 network. In
the performance metrics, TP is true positives and FP is false positives. The sample standard deviation was zero for
all the conditions.

Method Edge% TP FP Precision Recall Fl-score Specificity AUROC AUPR

Normal - 614 99386 0.006  0.297 0.012 0.995 0.617  0.093
edgePrior 10 207 0 1 0.100 0.182 1.000 0.550 0.119
25 o17 0 1 0.250 0.400 1.000 0.625 0.272
50 1033 0 1 0.500 0.667 1.000 0.750 0.520
75 1550 0 1 0.750 0.857 1.000 0.875 0.763
100 2066 0 1 1 1 1 1 1

Table 13: Performance metrics of Normal method and edge priors (edge Prior variable) for the Net4 network. In
the performance metrics, TP is true positives and FP is false positives. The sample standard deviation was zero for
all the conditions.

Method Edge% TP FP Precision Recall Fl-score Specificity AUROC AUPR

Normal - 332 99668 0.003  0.084 0.006 0.997 0.518 0.021
edgePrior 10 394 0 1 0.100 0.182 1.000 0.550 0.124
25 985 0 1 0.250 0.400 1.000 0.625 0.277
50 1970 0 1 0.500 0.667 1.000 0.750 0.525
75 2955 0 1 0.750 0.857 1.000 0.875 0.765
100 3940 0 1 1 1 1 1 1

Table 14: Performance metrics of the non-edge priors (nEdgePrior variable) for the Netl network. In the perfor-
mance metrics, TP is true positives and FP is false positives. The sample standard deviation was zero for all the

conditions.
Edge% TP FP Recall
nEdgePrior 10 0 274380 O
25 0 274380 O
50 0 274380 O
75 0 274380 O
100 0 274380 O
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Table 15: Performance metrics of Normal method and the ppEdgeT F' for the Netl network. In the performance
metrics, TP is true positives and FP is false positives. A standard deviation equals to zero implies that its value is
less than 0.001.

Method Edge% TP FP Precision Recall Fl-score Specificity AUROC AUPR

Normal - 3152.0 96848.0 0.032  0.786 0.061 0.964 0.815 0.291

ppEdgeTF 10 2470.4 28368.8 0.081 0.616 0.142 0.989 0.753  0.050
25 2876.2 54870.1 0.050  0.717 0.093 0.980 0.751  0.036
50 3081.2 75211.7 0.039  0.768 0.075 0.972 0.736 0.030
75 3134.0 83953.6 0.036  0.781 0.069 0.969 0.725  0.028
100 3148.0 87143.0 0.035 0.785 0.067 0.968 0.721  0.027

Sample standard deviation

ppEdgeTF 10 49.2  2806.0 0.006  0.012 0.010 0.001 0.004  0.004
25 253  1713.7 0.001  0.006 0.002 0.001 0.003  0.001
50 14.2 2174.1 0.001  0.004 0.002 0.001 0.004 0.001
75 4.6  1209.6 0.000  0.001 0.001 0.000 0.002  0.000
100 0 0 0 0 0 0 0 0

Table 16: Performance metrics of Normal method and the ppEdgeT F' for the Net3 network. In the performance
metrics, TP is true positives and FP is false positives. A standard deviation equals to zero implies that its value is
less than 0.001.

Method Edge% TP FP Precision Recall Fl-score Specificity AUROC AUPR

Normal - 614.0 99386.0 0.006  0.297 0.012 0.995 0.617  0.093

ppEdgeTF 10 356.8 13648.8 0.026 0.173 0.045 0.999 0.577  0.041
25 501.6 23561.1 0.021  0.243 0.039 0.999 0.604 0.040
50 565.9  32085.5 0.017 0.274 0.033 0.998 0.612  0.036
75 591.2 37352.9 0.016  0.286 0.030 0.998 0.614  0.034
100 604.0 41330.0 0.014 0.292 0.027 0.998 0.615  0.033

Sample standard deviation

ppEdgeTF 10 21.9 1504.3 0.002  0.011 0.003 0 0.004 0.002
25 13.7  1770.1 0.001  0.007 0.002 0 0.002  0.003
50 9.5 14919 0.001  0.005 0.001 0 0.002  0.001
75 2.5 1402.6 0.001  0.001 0.001 0 0.001  0.001
100 0 0 0 0 0 0 0 0

the non-transcription factors. Since non-transcription factors were not available, the second procedure was
not performed. As discussed in section 2.7, the increased weights of the inferred edges from the known
transcription factors are in the ppEdgeT F. By comparing the performance metrics of the ppFEdgeT F' to the
Normal method the improvements given by the ppEdgeT F' can be identified.

The performance metrics of the ppEdgeT F and the Normal method for Netl, Net3, and Net4 are in
the tables 15, 16, and 17, respectively. It can be seen from the tables that the true positives detected
for the ppEdgeTF are less than the Normal method. This is because the inferred edges from the known
transcription factors are a subset of the total edges in the inferred network. Thus, the number of true positives
in ppEdgeTF can never be larger than the true positives in the Normal method. The false positives are
also much lower than the Normal method. Further, the precision, Fl-score, and specificity are better than
the Normal. This means that the procedure to increase the weights of transcription factor inferred edges, is
identifying more correct edges with a very high true positive-to—false positive ratio compared to the Normal
method. Thus, this component of the algorithm increases the weight of many true positives which will
increase the performance of the Advanced algorithm.
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Table 17: Performance metrics of Normal method and the ppEdgeT F' for the Net4 network. In the performance
metrics, TP is true positives and FP is false positives. A standard deviation equals to zero implies that its value is
less than 0.001.

Method Edge% TP FP Precision Recall Fl-score Specificity AUROC AUPR

Normal - 332.0  99668.0 0.003  0.084 0.006 0.997 0.518  0.021

ppEdgeTF 10 287.0 16490.8 0.017  0.073 0.028 1.000 0.523 0.022
25 3174 22562.9 0.014  0.081 0.024 0.999 0.523 0.021
50 327.3  26267.6 0.012  0.083 0.021 0.999 0.521  0.021
75 329.5 27626.0 0.012 0.084 0.021 0.999 0.520  0.021
100 331.0 28748.0 0.011  0.084 0.020 0.999 0.519  0.020

Sample standard deviation

ppEdgeTF 10 9.9 907.8 0.001  0.003 0.001 0 0.001 0
25 4.5 672.8 0 0.001 0.001 0 0.001 0
50 2.3 709.7 0 0.001 0.001 0 0.001 0
75 1.6 525.9 0 0 0 0 0 0
100 0 0 0 0 0 0 0 0

Table 18: The performance metrics of the ppN Edge that identifies and removes wrong edges for Netl at different
percentage of edge priors (Edge%). In the metrics TP is true positives and FP is false positives.

Method Edge% TP FP Recall FP/TP
ppNEdge 10 25.6£6.6 1362.9£193.8 0.006%0.002 53.2
25 56.7£6.2  3369.6£235.5 0.014+0.002 59.4
50 92.8£5.2 6255.5£197.3 0.023£0.001 67.4
75 112.14£5.2  8547.7£212.7 0.028+0.001 76.3
100 127.0£0.0  10360.0+0.0 0.032£0.000 81.6

4.3.3 Identifying and removing wrong edges

As discussed in section 2.7, the Advanced algorithm tries to identify and remove the wrong edges caused
by the indirect interactions. The identified wrong edges are in the ppN Edge. When the prior knowledge
of interactions are insufficient, the Advanced algorithm uses an approximate method to identify the wrong
edges which was observed to cause a slight reduction in the number of true positives; while removing many
false positives (see results in sections 4.2). Thus, computing the performance metrics of the ppN Edge will
help to understand its effectiveness in identifying the wrong edges and improving the performance.

To be effective, the ppN Edge should: detect all or a large number of non-edges; detect no or minimum
edges; and have a high non-edge—to—edge ratio. These conditions in the performance metric language implies
that, for the ppN Edge, the number of true positives should be as low as possible, the number of false positives
should be as high as possible, and the false positives—to—true positives ratio should be as high as possible.

Tables 18, 19, and 20 show the performance metrics of the pp N Edge in Net1, Net3, and Net4, respectively.
It can be seen from the tables that all the three networks have similar results. The true positives are much
lower than the false positives. The recall values are very low with their maximum values being 3.2%, 1.7%,
and 1.0% for Netl, Net3, and Net4, respectively. This means that the number of true positives detected for
each network is very low and is well below 4% of all the true positives. The number of false positives detected
is large. The false positives—to—true positives ratio is more than 53, 57 and 94 for the Netl, Net3, and Net4,
respectively for all the edge prior%. This means that, for the Netl, at least 53 false positives (wrong
edges) are identified and removed for each true positive lost. Thus, identifying-and-removing-wrong-edge
component is able to remove many wrong edges even when the prior knowledge is limited.
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Table 19: The performance metrics of the pp/N Edge that identifies and removes wrong edges for Net3 at different
percentage of edge priors (Edge%). In the metrics TP is true positives and FP is false positives.

Method Edge% TP FP Recall FP/TP
ppNEdge 10 6.1£2.0  353.4£67.3 0.003£0.001 97.9
25 14.8+3.3  974.0+67.0 0.007%0.002 65.8
50 25.3+1.6 1961.6£55.9 0.012+0.001 77.5
75 29.5£3.3 2775.2£78.7 0.014+£0.002 94.1

100 35.0£0.0  3570.0£0.0 0.017£0.000 102.0

Table 20: The performance metrics of the pp/N Edge that identifies and removes wrong edges for Net4 at different
percentages of edge priors (Edge%). In the metrics TP is true positives and FP is false positives.

Method  Edge% TP FP Recall FP/TP
ppNEdge 10 6.0+4.2 627.5+32.9 0.002+0.001 104.6
25 18.5£2.9 1746.0£77.6 0.005+0.001 94.4
50 27.8+1.8 3414.9£69.7 0.007=£0.000 122.8
75 35.9£2.0 4856.9£55.4 0.009+0.000 135.3

100 40.0£0.0  6219.0+£0.0 0.01040.000 155.5

4.4 Discussion

The prior biological knowledge was incorporated into the inferred network obtained from a GRN inference
method, that was the best-ranking method but was not known to be inherently capable of incorporating
the prior knowledge. Currently, the prior knowledge can be incorporated mainly with the Bayesian network
methods. However, these methods are not among the best-performing GRN inference methods (Marbach
et al., 2012). Also, the current best-performing method cannot take advantage of the prior knowledge to
improve its GRN inference accuracy. Since, the prior knowledge is incorporated in a post-inference step in
this work, any GRN inference method can be used. This overcomes the limitation that only a few GRN
inference methods can incorporate the prior knowledge.

Two post-inference prior algorithms were proposed, the Basic and the Advanced algorithms. The prior
knowledge incorporation studies were performed on the widely used prokaryotic, eukaryotic, and in silico
GRNs. The results of the studies showed that the proposed algorithms have much improved accuracy than
the best-ranked GRN inference method from the DREAMS.

All the current GRN inference techniques based on the gene expression data infer edges due to the
indirect interactions. This is because any edge that shows a statistical dependence at the gene expression
level can be inferred. Moreover, it is not possible to differentiate statistical dependence and actual biological
interaction due to the limitation in the data. The indirect interactions will be classified as wrong edges in
the performance metrics. The Advanced algorithm can identify and remove the wrong edges due to the
indirect interactions, when the prior knowledge of actual interactions are known. Thus, only the Advanced
algorithm showed a reduction in the wrong edges when the non-edge priors were not available. Even when
the non-edge priors were available, only the Advanced algorithm showed larger reduction in the wrong edges
with the increasing quantity of the edge priors.

The four main components of a post-inference algorithm are a) incorporation of the prior knowledge
of interactions, b) incorporation of the prior knowledge of regulators, ¢) identification and removal of the
wrong edges, and d) shortlisting of the edge priors not supported by the data. These components have
been separately analysed. The Basic algorithm uses only the first component while the Advanced algorithm
uses all the four components. The prior knowledge of interactions consists of the edge and non-edge priors.
Incorporating the edge priors increased the true positives without increasing the wrong edges, and incorpo-
rating the non-edge priors reduced the wrong edges without affecting the correct edges. Incorporating the
prior knowledge of regulators consisted of increasing the weights of transcription factor inferred edges and
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removing the non-edges from the non-transcription factors. Increasing the weights of the known transcrip-
tion factor inferred edges was found to increase the weights of many correct edges in the inferred network.
Identifying and removing the wrong edge component was able to remove many wrong edges even when the
prior knowledge was limited. The edge priors not supported by the data were detected using the MI metric
and they could be interesting candidates for further study in wet-lab.

5 Conclusion

This study proposed that the prior biological knowledge can be incorporated using a post-inference step
in a GRN inference method. Two post-inference prior algorithms — Basic and Advanced algorithms —
have been developed and demonstrated. It is shown that the prior knowledge can be incorporated into any
GRN inference technique with the post-inference prior algorithms. Both the algorithms show much better
accuracy than the best-performing GRN inference method from the DREAMS5. Further, it is also shown
that by using the post-inference step, the wrong edges due to the indirect interactions can be identified and
removed.

This work is significant because the prior knowledge integration is one of the common methods for
overcoming the limitations of the high-throughput gene expression data based GRN inference (Chasman
et al., 2016; Ghanbari et al., 2015; Gao and Wang, 2011; Hecker et al., 2009; Cooke et al., 2009; Hartemink
et al., 2002). Further, as time progresses, the prior knowledge will also increase. Thus, inclusion of the prior
knowledge along with the high-throughput data in the inference studies will be crucial.

The existing methods of incorporating the prior knowledge show better performance accuracy than the
inference based on the data alone. Moreover, with a larger quantity of priors, their performance is further
increased. The algorithms proposed here also show similar results. Moreover, one of the algorithms proposed
here also reduces the wrong edges. Quantitatively comparing the existing methods of prior incorporation
and the post-inference method of prior incorporation which is proposed here, is a subject for future study.
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