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Abstract 

Motivation: Whole genome sequencing is becoming a diagnostics of choice for the identification of 

rare inherited and de novo copy number variants in families with various pediatric and late-onset ge-

netic diseases. However, joint variant calling in pedigrees is hampered by the complexity of consen-

sus breakpoint alignment across samples within an arbitrary pedigree structure.   

Results:  We have developed a new tool, Canvas SPW, for the identification of inherited and de novo 

copy number variants from pedigree sequencing data. Canvas SPW supports a number of family 

structures and provides a wide range of scoring and filtering options to automate and streamline iden-

tification of de novo variants.  

Availability: Canvas SPW is available for download from https://github.com/Illumina/canvas. 

Contact: sivakhno@illumina.com  

Supplementary information: Supplementary data are available at Bioinformatics online. 

 

 

1 INTRODUCTION 

The advent of affordable high-throughput sequencing enables the charac-

terization of genes implicated in a wide range of genetic diseases and 

makes it possible to provide diagnosis in clinical settings as exemplified 

by Genomics England 100k Genomes Project for the National Health 

Service (https://www.genomicsengland.co.uk). Whole genome sequenc-

ing of families is becoming a standard approach for identifying highly 

penetrant variants that cause rare disease, such as de novo or recessive 

mutations. Accurate variant and genotype calling is crucial for successful 

identification of such disease-causing mutations (Acuna-Hidalgo et al. 

2016). Unfortunately, false positive and negative results can occur due to 

technical artifacts or reduced sequencing coverage, which especially 

impact copy number variants (CNVs) identified through read depth 

estimation (Teo et al. 2012). CNV calling accuracy in families can be 

improved over single-sample calling by incorporating pedigree structure 

into the genotyping model to ensure that copy number genotypes are 

consistent with Mendelian inheritance and low rates of de novo mutation. 

While a number of tools have been developed for the identification of 

germline CNVs from sequencing data (Boeva et al., 2011, Abyzov et al., 

2011 and Liu et al., 2016), most of them are limited to variant calling in 

single samples. Even those designed for family-based CNV detection are 

restricted to only deal with parent-offspring trios (Liu et al., 2016). To 

expand the number of analyzable family structures and provide explicit 

and easy-to-interpret de novo variant calls, we have developed a new 

workflow, Canvas SPW (Small Pedigree Workflow), for germline and de 

novo variant calling in pedigrees. In addition to trios, Canvas SPW pro-

cesses quads and can also perform joint variant calling in medium-size 

sample batches.  

2 METHOD 

Outline Canvas SPW comprises five distinct modules designed to (1) process 

aligned read data and estimate depth in coverage bins, (2) perform outlier removal 

and normalization of depth estimates, (3) partition bins into segments of uniform 

copy number, (4) calculate associated allele counts from single nucleotide variants 

(SNVs) and (5) assign germline and de novo copy numbers. While initial multi-

sample data processing and normalization steps are extensions of single-sample 

methods described elsewhere (Roller et al., 2016), segmentation and variant calling 

steps have been specifically developed for multi-sample pedigree-structured inputs. 

We briefly describe them below. More information is available in the Supplemen-

tary Material, Section 1.  

Segmentation The input to the segmentation module is a data matrix produced by 

processing the aligned read data from all samples. Each row of the input data 
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matrix represents a single genomic bin with the same genomic coordinates across 

all samples. In turn, each column represents the normalized depth estimate across 

all genomic bins for a given sample. A Hidden Markov Model (HMM) with multi-

variate negative binomial emission distribution uses this matrix for partitioning. 

HMM hidden states are initialized to approximately follow copy number states 

(exact CN assignment is done at the variant calling stage). First, the Expectation 

Maximization algorithm is used to optimize parameters of the emission and transi-

tion distributions. Next, the Viterbi algorithm is used to derive the final partitions. 

Variant calling and output For each segment determined by the HMM segmenta-

tion module, Canvas SPW uses the distribution of coverage across the various bins 

along with the allele-specific depths at each SNV within the segment to assign a 

copy number. As a rule, allele-specific depths are only used when a segment con-

tains enough SNV loci; allele-specific depths are not use in small segments con-

taining only a handful of SNV sites. A probabilistic model is fitted to estimate 

likelihood (L) of copy number (CN) assignments within a pedigree given coverage 

data (D) 𝐿(𝐶𝑁𝑀 ′𝐶𝑁𝐹 , 𝐶𝑁𝐶 𝐷⁄ )~ 𝑃(𝐷𝑀 𝐶𝑁𝑀  ⁄ ) 𝑃(𝐷𝐹 𝐶𝑁𝐹 ⁄ ) 𝑃(𝐷𝐶 𝐶𝑁𝐶⁄ )  ×

 𝑃(𝐶𝑁𝐶 𝐶𝑁𝑀 , 𝐶𝑁𝐹⁄ ) , where the last term incorporates both the Mendelian trans-

mission probabilities and the estimated de novo rate of CNVs. Likelihood evalua-

tion is done using exhaustive enumeration of all possible CN assignments within 

the pedigree up to the maximal CN threshold. A joint probability table from the 

model with the maximum likelihood is used to estimate single sample and de novo 

quality scores for variant calls and every variant inconsistent with Mendelian 

inheritance is assigned a de novo flag. A VCF 4.1 compliant file with common and 

de novo CNV calls is produced at the end of each Canvas SPW run. 

Implementation and performance Canvas SPW is implemented in the C# pro-

gramming language and can be run on Linux systems using mono/.NET Core or on 

Windows systems under the .NET. Using a Linux system with 32 cores and peak 

RAM consumption of less than 10G, the Canvas SPW runtime on a trio and a quad 

pedigree with 40X sequencing coverage per-sample was 1.3h and 2.1h respectively. 

3 RESULTS 

    Two key performance characteristics of Canvas SPW were evaluated: 

(1) ability to accurately call inherited germline variants and (2) correct 

de novo variant detection. To accomplish this we have created a number 

of pedigree sequencing samples using Platinum Genomes (PG) dataset 

(Eberle et al., 2016) that include: (1) normal trio, (2) negative control 

replicates of a single sample, (3) denovo enriched trio and quad where 

parents are derived from the same sample and (4) pedigree simulation 

through haplotype down-sampling. The latter is an adaptation of the 

previously described tHapMix simulation framework for somatic vari-

ants (Ivakhno et al., 2016) to germline CNVs within a pedigree relation-

ship structure. Truth sets were generated by merging structural variants 

found in PG data using orthogonal variant calling tools. Further valida-

tion of these truth sets was done by checking for full consistency with 

Mendelian inheritance and comparison with TruSeq synthetic long read 

data (full details of the assessment methodology and results are available 

in Supplementary Material, Section 2). Estimation of CNV calling accu-

racy, precision and recall was performed as previously reported (Roller 

et al., 2016).  We assessed the performance of Canvas SPW against a 

range of existing CNV calling tools: Control-FREEC (Boeva et al., 

2011), CNVnator (Abyzov et al., 2011) and TrioCNV (Liu et al., 2016). 

All tools were assessed for germline CNV calling accuracy, precision 

and recall. TrioCNV was also evaluated for its ability to call de novo 

variants. The assessment was done separately four on real synthetic 

(Table 1) and three haplotype-simulated pedigrees (Table 2). 

Table 1.  CNV calling performance metrics for real synthetic pedigrees 

Method Germline Variants  De novo variants  

Accu-

racy 

Preci-

sion 

Re-

call 

Accu-

racy 

Preci-

sion 
Recall 

Canvas 

SPW 

98.91 94.21 94.31 96.12 99.21 96.82 

CNVnator 91.22 85.69 85.62 NA NA NA 

FREEC  45.43 45.43 45.43 NA NA NA 

TrioCNV 25.87 16.77 18.89 22.17 16.41 14.59 

Table 2.  CNV calling performance metrics for haplotype simulated pedigrees 

Method Germline Variants  De novo variants  

Accu-

racy 

Preci-

sion 

Re-

call 

Accu-

racy 

Preci-

sion 
Recall 

Canvas 

SPW 

92.95 92.77 94.35 99.72 96.64 98.58 

CNVnator 81.22 78.21 75.12 NA NA NA 

FREEC 38.19 38.14 73.57 NA NA NA 

TrioCNV  21.12 10.12 12.51 21.21 13.18 12.22 

Canvas SPW showed superior performance in comparison with existing 

tools for both inherited and de novo germline variants. It also outper-

forms the single-sample germline Canvas workflow (Supplementary 

Material, Table 2), suggesting that joint CNV calling with pedigree 

information not only enables de novo variants detection, but also im-

proves performance on inherited germline variants. This is particularly 

true for the recall where the pooling of sequencing coverage from multi-

ple samples amplifies signal, thereby decreasing the number of false 

negatives. To conclude, Canvas SPW provides fast, accurate and easy to 

use workflow for the identification of inherited and de novo germline 

CNV variants in pedigrees. 
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