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Abstract

Background: The evolution of protein-coding genes can be quantitatively
modeled using phylogenetic methods. Recently, it has been shown that
high-throughput experimental measurements of mutational effects made via deep
mutational scanning can inform site-specific phylogenetic substitution models of
gene evolution. However, there is currently no software tailored for such analyses.

Results: We describe software that efficiently performs phylogenetic analyses
with substitution models informed by deep mutational scanning. This software,
phydms, is ∼100-fold faster than existing programs that accommodate such
substitution models. It can be used to compare the results of deep mutational
scanning experiments to the selection on genes in nature. For instance, phydms
enables rigorous comparison of how well different experiments on the same gene
describe natural selection. It also enables the re-scaling of deep mutational
scanning data to account for differences in the stringency of selection in the lab
and nature. Finally, phydms can identify sites that are evolving differently in
nature than expected from experiments in the lab.

Conclusions: The phydms software makes it easy to use phylogenetic
substitution models informed by deep mutational scanning experiments. As data
from such experiments becomes increasingly widespread, phydms will facilitate
quantitative comparison of the experimental results to the actual selection
pressures shaping evolution in nature.

Keywords: deep mutational scanning; ExpCM; amino-acid preferences; codon
substitution model; site-specific substitution model; positive selection; dN/dS

Background

It is widely appreciated that experiments in the lab can inform understanding of pro-

tein evolution in nature [1, 2]. Efforts to synthesize findings from experiments with

evolutionary data have typically involved generating protein variants of interest,

assaying their functionality in the lab, and qualitatively comparing the measured

functionality of each variant to its evolutionary fate in nature [1, 2]. The recent

advent of high-throughput deep mutational scanning techniques [3] has greatly ex-

panded the potential of such research. For instance, numerous recent papers have

reported measuring the effects of all amino-acid mutations on the functionality of a

range of proteins [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. This flood of

data necessitates new methods for comparing experimental measurements to evolu-

tion in nature, since simple qualitative inspection is insufficient when measurements

are available for tens of thousands of mutants.
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A solution is provided by the methods of molecular phylogenetics. Longstand-

ing phylogenetic algorithms enable calculation of the statistical likelihood of an

alignment of naturally occurring gene sequences given a phylogenetic tree and a

model for the evolutionary substitution process [20, 21]. Deep mutational scan-

ning data can be incorporated into this statistical framework via the substitution

model [9]. Such experimentally informed codon models (ExpCM) of substitution

can be used to test whether a deep mutational scanning experiment provides evo-

lutionarily relevant information [9], compare the stringency of selection in nature

and the lab [22, 23], assess how well different experiments describe natural selection

on the same gene [12, 15], and identify sites that are evolving differently in nature

than expected from experiments in the lab [23].

However, a hindrance to such analyses has been the lack of appropriate software.

Prior work using ExpCM has involved re-purposing an existing software package

(HyPhy [24] or Bio++ [25]) to optimize the phylogenetic likelihood. Because these ex-

isting software packages are not designed for such site-specific models, the resulting

analyses have been slow and cumbersome. Other software packages [26, 27, 28, 29]

that handle site-specific codon substitution models are also not suitable, as they are

designed to treat the effects of mutations as unknowns to be inferred rather than

as values that have been measured a priori.

Here we describe phydms, software for phylogenetics informed by deep mutational

scanning. We show that phydms is ∼100-fold faster than existing alternatives for

performing analyses with ExpCM, and demonstrate how it can be used to quan-

titatively compare measurements from deep mutational scanning with selection on

genes in nature. Readers who are interested in technical details of how phydms

works should read the Implementation section; readers who are primarily interested

in simply using phydms may prefer to jump directly to the Results and Discussion

section.

Implementation

Substitution models

Here we briefly describe the codon substitution models implemented in phydms.

Experimentally informed codon models (ExpCM)

The basic ExpCM implemented in phydms are identical to those described in [23].

We recap these ExpCM to introduce nomenclature needed to understand the ex-

tensions described in the next few subsections.

In an ExpCM, rate of substitution Pr,xy of site r from codon x to y is written in

mutation-selection form [30, 31, 32] as

Pr,xy = Qxy × Fr,xy (1)

where Qxy is proportional to the rate of mutation from x to y, and Fr,xy is pro-

portional to the probability that this mutation fixes. The rate of mutation Qxy is
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assumed to be uniform across sites, and takes an HKY85-like [33] form:

Qxy =





φw if x and y differ by a transversion to nucleotide w

κφw if x and y differ by a transition to nucleotide w

0 if x and y differ by > 1 nucleotide.

(2)

The κ parameter represents the transition-transversion ratio, and the φw values give

the expected frequency of nucleotide w in the absence of selection on amino-acid

substitutions, and are constrained by 1 =
∑
w φw.

The deep mutational scanning data are incorporated into the ExpCM via the Fr,xy
terms. The experiments measure the preference πr,a of every site r for every amino-

acid a (see the Results and Discussion section for more details on these preferences).

The Fr,xy terms are defined in terms of these experimentally measured amino-acid

preferences as

Fr,xy =





1 if A (x) = A (y)

ω ×
ln
[
(πr,A(y)/πr,A(x))

β
]

1−(πr,A(x)/πr,A(y))
β if A (x) 6= A (y)

(3)

where A (x) is the amino-acid encoded by codon x, β is the stringency parameter,

and ω is the relative rate of nonsynonymous to synonymous substitutions after ac-

counting for the amino-acid preferences. As shown in Figure 1, Equation 3 implies

that mutations to more preferred amino acids are favored, and mutations to less pre-

ferred amino acids are disfavored. The functional form in Equation 3 was derived by

Halpern and Bruno [30] and under certain (probably unrealistic) population-genetic

assumptions; under these assumptions, β is related to the effective population size.

When β > 1, natural evolution favors the same mutations as the experiments but

with greater stringency. The ExpCM have six free parameters (three φw values, κ,

β, and ω). The preferences πr,a are not free parameters since they are determined

by an experiment independent of the sequence alignment being analyzed.

ExpCM with empirical nucleotide frequency parameters

Phylogenetic substitution models commonly set the nucleotide frequency param-

eters (φw in the case of an ExpCM) so that the model’s stationary state equals

the empirical frequencies of the characters in the alignment. Setting the frequency

parameters in this way reduces the number of parameters that must be optimized

by maximum likelihood. Empirically setting the nucleotide frequency parameters

is easy for substitution models where the stationary state only depends on these

parameters.

However, the situation for an ExpCM is more complex. The φw values give the

expected nucleotide frequencies in the absence of selection on amino acids, but in

an ExpCM there is site-specific selection on amino acids. Therefore, the stationary

state of an ExpCM also depends on other quantities: the stationary state frequency

pr,x of codon x at site r is [23]

pr,x =

(
πr,A(x)

)β
φx0

φx1
φx2∑

z

(
πr,A(z)

)β
φz0φz1φz2

, (4)
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where xk indicates the nucleotide at position k in codon x. As this equation makes

clear, the stationary state of an ExpCM depends on the preferences πr,a and strin-

gency parameter β as well as the nucleotide frequency parameters φw.

So for an ExpCM, setting φw empirically means choosing their values such that

the alignment frequency gw of nucleotide w is as expected given the stationary state

pr,x. This will be the case if the following equation holds for all w:

gw =
1

L

∑

r

∑

x

1

3
Nw (x) pr,x (5)

where L is the length of the gene in codons, r ranges over all codon sites, x ranges

over all codon identities, and Nw (x) is the number of occurrences of nucleotide w

in codon x. We could not analytically solve this system of equations for φw in terms

of gw, so we instead used a non-linear equation solver to determine the values as

detailed in Additional file 1. Calculating φw empirically in this fashion is the default

for phydms. If you instead want to fit the φw values, use the --fitphi option.

ExpCM with gamma-distributed nonsynonymous-to-synonymous rate parameter

A common extension to traditional non-site-specific codon substitution models is

to allow the dN/dS ratio ω to come from several discrete categories by making the

overall likelihood at each site a linear combination of the likelihood computed for

each category [34, 35]. Such models are not site-specific since sites are not assigned

to a category during likelihood optimization, but they do capture the idea that

there are different strengths of selection on nonsynonymous mutations across sites.

One variant of this approach draws ω from a discrete gamma distribution. This

variant is referred to as the M5 variant [35] in PAML [36]. We implemented a similar

approach for ExpCM, following [37] to draw the ω in Equation 3 from the means

of equally weighted gamma-distributed categories (by default there are four cate-

gories). This option can be used via the --gammaomega switch to phydms, and adds

one free parameter, since there are two parameters controlling the gamma distri-

bution (a shape and inverse-scale parameter) rather than a single ω. This option

increases the runtime by ∼5-fold.

Using a gamma-distributed ω typically leads to less of an improvement in fit for

ExpCM than for non-site-specific models, since much of the site-to-site variation in

the selection is already captured by the amino-acid preferences. However, it can still

lead to substantial improvements if a subset of sites are under diversifying selection

or if the preferences do not fully capture selection on nonsynonymous mutations.

Traditional YNGKP-style models

To enable comparison of ExpCM with non-site-specific substitution models, phydms

implements several of these more traditional models. These models are referred to as

YNGKP as they are variants of the Goldman-Yang style models described by Yang,

Nielsen, Goldman, and Krabbe-Pedersen [35]. The M0 and M5 YNGKP models are

implemented in phydms. The M0 variant optimizes a single dN/dS ratio (ω) and so

is comparable with the basic ExpCM, while the M5 variant draws ω from a gamma

distribution and so is comparable to ExpCM with the --gammaomega option. The
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equilibrium codon frequencies are calculated empirically after correcting for stop

codons as described in [38] (the so-called CF3X4 method). The M0 variant has 11

parameters (9 empirical nucleotide frequencies plus ω and κ), while the M5 variant

has 12 parameters (there are two parameters for the gamma distribution over ω).

YNGKP models are less computationally expensive than ExpCM since they are

not site-specific. Therefore, YNGKP models are faster than ExpCM in phydms.

However, phydms is not optimized for maximal speed with YNGKP models, so if

you are only using those models then consider using PAML [36] or HyPhy [24].

Gradient-based optimization of the likelihood

Given one of the substitution models described above and a fixed phylogenetic tree

topology, phydms numerically optimizes the model parameters and branch lengths

to their maximum likelihood values via the Felsenstein pruning algorithm [21]. Nu-

merical optimization generally requires fewer steps if the gradient of the objective

function with respect to free parameters is computed explicitly [39], although this

advantage can be offset by the cost of computing the gradient. We were unable to

find clear published comparisons of the efficiency of phylogenetic optimization with

and without an explicit gradient, although there is literature describing how the

gradient (and Hessian matrix of second derivatives) can be computed [40].

We chose to use gradient-based optimization for phydms under the supposition

that it might be more efficient. The first derivatives with respect to branch lengths

and virtually all the model parameters can be computed analytically, propagated

through the matrix exponentials using the formula provided by [41] (see also [40,

42]), and evaluated along the tree by applying the chain rule to the Felsenstein

pruning algorithm. For the ExpCM empirical nucleotide frequencies φw and the

gamma-distributed ω, we used the numerical finite-difference method to compute

small portions of the derivatives for which we could not derive analytic results.

Additional file 1 details how phydms computes the likelihood and its gradient.

For the optimization, we used the limited-memory BFGS optimizer with

bounds [43, 44, 45]. This optimizer uses the gradient, although this can be turned

off with the --nograd option to phydms (doing so is not recommended as the ac-

curacy of phydms without gradients has not been extensively tested). Rather than

optimizing model parameters and branch lengths simultaneously, phydms takes an

iterative approach. First the model parameters are simultaneously optimized along

with a single scaling parameter that multiplies all branch lengths. After this op-

timization has converged, all branch lengths are simultaneously optimized while

holding the model parameters constant. This process is repeated until further opti-

mization leads to negligible improvement in the likelihood. Note that simultaneous

optimization of all branch lengths appears to be the minority approach in phyloge-

netics software [46] and is stated to be less efficient than one-at-a-time optimization

in [47]; however, we found it to work effectively on the trees that we tested. The

rationale for iterating between model parameters and branch lengths is that op-

timization of the former tends to be more difficult and more costly in terms of

the gradient computation. If you simply want to scale branch lengths by a single

parameter rather than optimize them, you can use the --brlen scale option. In

other contexts, scaling but not individually optimizing branch lengths has been
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shown to reduce runtime with little effect on final model parameters if the initial

tree is reasonably accurate [47, 48].

Design and implementation of phydms

The phydms software is written in Python. Most of the numerical computation is

performed with numpy and scipy, and a few parts of the code are written in com-

piled C extensions created via cython. The limited-memory BFGS optimizer used

by phydms is the one provided with scipy.optimize. The most computationally

costly part of the optimization performed by phydms is the matrix-matrix multipli-

cation performed when computing exponentials of the transition matrix, and the

second most costly part is the matrix-vector multiplication performed while imple-

menting the Felsenstein pruning algorithm. Both these steps are performed using

BLAS subroutines called via scipy.

In addition to the core phydms program, the software is distributed with auxillary

programs that make it easy to prepare alignments (phydms prepalignment) and

run multiple models for comparison (phydms comprehensive). Importantly, phydms

currently does not infer phylogenetic tree topologies, but rather optimizes branch

lengths and model parameters given a topology. The tree topology must therefore

be inferred using another program such as RAxML [49] with a simpler substitution

model.

Visualization of the results with logoplots

It is often instructive to visualize the amino-acid preferences that are used to in-

form ExpCM, as these preferences determine the unique properties of the models.

In addition, visualization can help understand how the stringency parameter β

optimized by phydms re-scales the preferences to increase concordance with natu-

ral selection. To aid such visualizations, phydms comes with an auxiliary program

(phydms logoplot) that renders the amino-acid preferences in the form of logoplots

via the weblogo libraries [50]. The Results and Discussion section below shows ex-

ample logoplots.

Results and Discussion
Testing phydms on two different genes

In the sections below, we use phydms to compare deep mutational scanning measure-

ments to natural sequence evolution for two genes: influenza hemagglutinin (HA)

and β-lactamase. We choose these genes because there are multiple published deep

mutational scanning datasets for each.

Analysis with ExpCM requires three pieces of input data: the experimentally mea-

sured amino-acid preferences, an alignment of naturally occurring gene sequences,

and a phylogenetic tree topology. The tree topology can be inferred from the se-

quence alignment. But like most other software for codon-based phylogenetic anal-

yses [24, 36], phydms is not designed to infer the tree topology – instead, it provides

easy ways to infer this tree using other software such as RAxML [49].

To prepare the required input data, we followed the workflow in Figure 2. The deep

mutational scanning experiments on HA [10, 15] directly reported amino-acid pref-

erences. However, the two β-lactamase deep mutational scanning experiments [6, 11]
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reported enrichment ratios for each mutation rather than amino-acid preferences.

There is a simple relationship between enrichment ratios and amino-acid prefer-

ences: the preferences are the enrichment ratios after normalizing the values to sum

to one at each site, enabling easy conversion between the two data representations

(Figure 2).

We also created codon-level alignments of naturally occurring HA and β-lactamase

sequences using phydms prepalignment. The alignments were trimmed to contain

only sites for which amino-acid preferences were experimentally measured. Table 1

summarizes basic information about these alignments.

Test if deep mutational scanning is informative about natural selection

A first simple test is whether the deep mutational scanning experiment provides any

information that is relevant to natural selection on the gene in question. This can be

determined by testing whether an ExpCM that uses the experimental data outper-

forms a standard substitution model that is agnostic to the site-specific preferences

measured in the experiments.

To perform such a test, we used phydms comprehensive to fit several substitution

models to the alignment of HA sequences. This program automatically generates

a phylogenetic tree topology from the alignment using RAxML [49]. It then fits an

ExpCM (in this case informed by the deep mutational scanning data in Doud and

Bloom [15]) as well as several substitution models that do not utilize site-specific

experimental information. The analysis was performed by running the following

command on the input data in Additional file 2:
phydms_comprehensive results/ HA_alignment.fasta HA_Doud_prefs.csv --raxml raxml

Table 2 lists the four tested substitution models: the ExpCM, an ExpCM with

the amino-acid preferences averaged across sites, and the M0 and M5 variants of

the standard Goldman-Yang style substitution models [35]. The ExpCM with aver-

aged preferences is a sensible control because averaging the preferences eliminates

any experimental information specific to individual sites in the protein. Because

the models have different numbers of free parameters, they are best compared us-

ing Akaike Information Criterion (AIC) [51], which compares log likelihoods after

correcting for the number of free parameters. Table 2 shows that the ExpCM has a

much smaller AIC than the other models (∆AIC > 2000 for all of the other models).

This result shows that the experimentally measured amino-acid preferences contain

information about natural selection on HA, since a substitution model informed

by these preferences greatly outperforms generic substitution models that do not

utilize experimental information.

Re-scale deep mutational scanning data to stringency of natural selection

Even if a deep mutational scanning experiment measures the authentic natural

selection on a gene, the stringency of selection in the experiment is not expected to

match the stringency of selection in nature. Differences in the stringency of selection

can be captured by the ExpCM stringency parameter β. If selection in nature prefers

the same amino acids as the selection in lab but with greater stringency, β will be

fit to a value > 1. Conversely, if selection in nature does not prefer the lab-favored

mutations with as much stringency as the deep mutational scan, β will be fit to a
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value < 1. Table 2 shows that ExpCM for HA informed by the experiments in [15]

have β = 2.11, indicating that natural selection favors the experimentally preferred

amino acids with higher stringency than selection in the lab.

The effect of this stringency re-scaling of the preferences can be visualized using

phydms logoplot as shown in Figure 3. Re-scaling by the optimal stringency pa-

rameter of 2.11 exaggerates the selection for experimentally preferred amino acids.

Conversely, if the analysis had fit a stringency parameter < 1, this would have flat-

tened the experimental measurements, and when β = 0 all information from the

experiments is lost (Figure 3). Because selection in the lab can probably never be

tuned to exactly match that in nature, stringency re-scaling is a valuable method

to standardize measurements across experiments.

Compare how well different experiments capture natural selection

The amino-acid preferences for both HA and β-lactamase have each been measured

by two independent experiments. For each gene, which of these experiments better

captures natural selection?

We can address this question by comparing ExpCM informed by each experiment.

For β-lactamase, this means comparing the preferences measured by Stiffler et al [11]

to those measured by Firnberg et al [6]. We did this with phydms comprehensive

by running the following command on the input data in Additional file 4:
phydms_comprehensive results/ betaLactamase_alignment.fasta

betaLactamase_Stiffler_prefs.txt betaLactamase_Firnberg_prefs.txt --raxml raxml

Table 3 shows that the ExpCM informed by the data of Stiffler et al [11] out-

perform ExpCM informed by the data of Firnberg et al [6], with a ∆AIC of 96.2.

Therefore, the former experiment better reflects natural selection on β-lactamase.

However, both experiments are clearly informative, as they both greatly outperform

the traditional YNGKP models.

We made a similar comparison of the two deep mutational scans of HA. As sum-

marized in Table 4 (and detailed in Additional file 5), the deep mutational scanning

of Doud and Bloom [15] better describes the natural evolution than the experiments

of Thyagarajan and Bloom [10] (∆AIC of 44.2). Again, both experiments are clearly

informative, as they both greatly outperform the YNGKP models.

Overall, these results show how phydms can rigorously compare how well different

experiments describe the evolution of a gene.

Identify sites of diversifying selection

In some cases, a few sites may evolve differently in nature than expected from the

experiments in the lab. For instance, sites under diversifying selection for amino-

acid change will experience more nonsynonymous substitutions than expected given

the experimentally measured amino-acid preferences. Such sites can be identified

by using the --omegabysite option to fit a parameter ωr that gives the relative

rate of nonsynonymous to synonymous substitutions after accounting for the ex-

perimentally measured preferences for each site r [23]. If the preferences capture

all the selection on amino acids, then we expect ωr = 1. Sites with ωr > 1 are un-

der diversifying selection for amino-acid change, while sites with ωr < 1 are under

additional purifying selection not measured in the lab.
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We tested for diversifying selection in HA by running the following command on

the data in Additional file 6:
phydms HA_alignment.fasta HA_RAxML_tree.newick ExpCM_HA_Doud_prefs.csv results/

--omegabysite

The results are visualized in Figure 4. While the majority of sites are evolving

with ωr not significantly different from one, some sites show evidence of ωr > 1. As

described in [23], these sites may be under diversifying selection due to immune pres-

sure. Overall, this analysis shows how phydms can identify individual sites evolving

differently in nature than expected from experiments in the lab.

phydms has vastly superior computational performance to existing alternatives

Our rationale for developing phydms was to enable the analyses described above to

be performed faster than with existing software. To validate the improved compu-

tational performance, we compared phydms (version 2.0.0) to alternative programs

that have been used to fit ExpCM. The comparisons used the HA sequences de-

scribed in Table 1 with ExpCM informed by the deep mutational scanning in [15],

and were performed on a single core of a 2.6 GHz Intel Xeon CPU.

Table 5 shows the results. With default settings, phydms took 10 minutes to op-

timize the model parameters and branch lengths. This runtime could be decreased

by scaling the branch lengths by a single parameter rather than optimizing them

individually (--brlen scale option); other work has shown that when the initial

tree is reasonably accurate, this approximation can improve runtime while only

slightly affecting model fit [47, 48]. Fitting the nucleotide frequency parameters φw

(--fitphi option) rather than determining them empirically doubled the runtime.

The log likelihood and values of the model parameters β and ω were nearly identical

for all three of these settings of phydms. Interestingly, the gradient-based optimiza-

tion appears to be important: using phydms without gradients (--nograd option)

increased the runtime over 5-fold while also yielding a poorer log likelihood.

Two alternative programs have previously been used to fit ExpCM. Early work [22]

with these models used a Python program phyloExpCM (https://github.com/

jbloom/phyloExpCM) to run HyPhy to optimize ExpCM similar to the ones used

here. Subsequent work [23] used an old version of phydms to fit ExpCM identical

to the ones here using the Bio++ libraries [25]. We ran both these programs on the

HA data set, using phyloExpCM version 0.3 with HyPhy version 2.22, and phydms

version 1.3.0 with Bio++. Table 5 shows that these programs were ∼100-fold and

∼200-fold slower than phydms version 2.0.0 with default settings. A small portion

of the slower runtime is because these earlier implementations cannot calculate

empirical nucleotide frequency φw parameters; however they remain much slower

than phydms even when these parameters are fit. Divining the reasons for the per-

formance differences was not possible, as the programs differ completely in their

implementations. But reassuringly, all programs yielded similar model parameters

β and ω despite independent implementations of the likelihood calculations and the

optimization.

Conclusions
We have described a new software package, phydms, that facilitates efficient phy-

logenetic analysis of gene sequences using substitution models informed by deep
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mutational scanning experiments. Using these ExpCM, phydms can quantitatively

compare deep mutational scanning measurements to selection on genes in nature.

It can re-scale deep mutational scanning data to account for differences in the strin-

gency of selection between the lab and nature, identify sites evolving differently in

nature than expected from the experiments, and compare how well different exper-

iments on the same gene describe natural selection.

The ability to perform these comparisons is useful because the rationale for many

deep mutational scanning experiments is to provide information about the effects of

mutations on genes in nature. For instance, there are many ways to design an exper-

iment, and it is often not obvious which choices are best if the goal is to make the

experiment reflect natural selection – using phydms, it is possible to quantitatively

compare how well different experiments describe natural selection. Likewise, it is

often useful to know which specific sites in a gene are evolving differently in nature

than expected from experiments in the lab [23]; phydms makes statistically rigorous

identification of these sites possible. The speed and ease of use of phydms makes

these analyses practical for real datasets. As deep mutational scanning data become

available for an increasing number of genes, phydms will facilitate comparison of the

experimental measurements to selection in nature.
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Figure 1
The ExpCM fixation term Fr,xy. In an ExpCM, the rate of fixation of a mutation from codon x
to codon y depends on the experimentally measured preferences of the amino acids A (x) and

A (y) encoded by these codons. Mutations to preferred amino acids, with
πr,A(y)

πr,A(x)
> 1, result in a

larger Fr,xy , and so are anticipated to fix more often. Re-scaling the preferences by a stringency
parameter β 6= 1 to reflect differences in selection between the lab and nature modulates Fr,xy .
When β > 1, the selection for preferred amino acids is exaggerated. When β < 1, the selection for
preferred amino acids is attenuated.
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Figure 2
Workflow for preparing input data to phydms. Analysis with phydms requires amino-acid
preferences measured by deep mutational scanning, a codon-level alignment of naturally occurring
sequences, and a phylogenetic tree topology. Deep mutational scanning involves performing a
functional selection on a library of mutant genes, and using deep sequencing to quantify the
enrichment or depletion of each mutation after selection. To process the deep mutational scanning
data referred to in Table 1, we converted enrichment ratios into amino-acid preferences by
normalizing the values to sum to one at each site. We created a filtered, codon-level alignment of
naturally occurring sequences using phydms prepalignment. We used phydms comprehensive to
automatically generate a tree topology from the filtered alignment using RAxML.
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Figure 3
Re-scaling of amino-acid preferences to reflect the stringency of selection in nature. Analysis
with phydms optimizes a stringency parameter β that relates the stringency of selection for
preferred amino acids in the deep mutational scanning experiment to that in nature. When β = 1,
the preferences are same as the values measured in the lab, suggesting a similar stringency of
selection in the experiments and in nature. When β > 1, selection in nature prefers the same
amino acids as selection in lab but with greater stringency – therefore, highly preferred amino
acids increase in preference while lowly preferred amino acids decrease. When β < 1, selection in
nature has less preference than the experiments for mutations favored in the lab, and when β = 0
then all site-specific information is lost. The actual optimized stringency parameter reported in
Table 2 is β = 2.11. We generated the logoplots shown above from the input data in Additional
file 3 with the following commands:

phydms_logoplot HA_Doud_1.pdf --prefs HA_Doud_prefs_short.csv
phydms_logoplot HA_Doud_2_11.pdf --prefs HA_Doud_prefs_short.csv --stringency

2.11
phydms_logoplot HA_Doud_0.pdf --prefs HA_Doud_prefs_short.csv --stringency 0
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Figure 4
Identifying sites of diversifying selection. The phydms option --omegabysite fits a site-specific
value for ωr, which gives the relative rate of nonsynonymous to synonymous substitutions at site
r after accounting for the selection due to the amino-acid preferences. This figure shows the
results of such an analysis for HA. The overlay bar represents the strength of evidence for ωr
being greater (red) or less (blue) than one. Because this approach accounts for the constraints
due to the amino-acid preferences, it can identify sites evolving faster than expected even if their
absolute relative rates of nonysnonymous to synonymous substitutions do not significantly differ
from one [23]. The logoplot in this figure uses the stringency parameter value of β = 2.11, and
was generated by running the following command on the data in Additional file 3:

phydms_logoplot results/omegabysite.pdf --prefs HA_Doud_prefs.csv --omegabysite
results/omegabysite.txt --stringency 2.11 --minP 0.001

In this figure, the HA sequence is numbered sequentially beginning with 1 for the first site with
deep mutational scanning data, which is the second residue in the protein.
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Tables

Table 1 Alignments and deep mutational scanning (DMS) studies for HA and β-lactamase.

gene DMS studies residues in protein residues with DMS data number of sequences
HA [15], [10] 565 564 34

β-lactamase [11], [6] 285 263 50

Table 2 Fitting of ExpCM informed by the HA preferences measured in [15] to natural sequences
using phydms comprehensive. Full code, data, and results are in Additional file 2.

model ∆AIC log likelihood number of parameters parameter values
ExpCM with Doud preferences 0.0 -4877.7 6 β=2.11, κ=5.14, ω=0.52

ExpCM with averaged Doud preferences 2090.6 -5922.9 6 β=0.68, κ=5.36, ω=0.22
YNGKP M5 2113.5 -5928.4 12 αω=0.30, βω=1.42, κ=4.68
YNGKP M0 2219.6 -5982.5 11 κ=4.61, ω=0.20

Table 3 Comparison of multiple β-lactamase deep mutational scanning results using
phydms comprehensive. Full code, data, and results are in Additional file 4.

model ∆AIC log likelihood number of parameters parameter values
ExpCM with Stiffler preferences 0.0 -2581.3 6 β=1.31, κ=2.67, ω=0.72

ExpCM with Firnberg preferences 96.2 -2629.4 6 β=2.42, κ=2.60, ω=0.63
YNGKP M5 739.2 -2944.9 12 αω=0.30, βω=0.49, κ=3.02
YNGKP M0 841.0 -2996.8 11 κ=2.39, ω=0.28

Table 4 Comparison of multiple HA deep mutational scanning results using phydms comprehensive.
Full code, data, and results are in Additional file 5.

model ∆AIC log likelihood number of parameters parameter values
ExpCM with Doud preferences 0.0 -4877.7 6 β=2.11, κ=5.14, ω=0.52

ExpCM with Thyagarajan preferences 44.2 -4899.7 6 β=1.72, κ=4.94, ω=0.55
YNGKP M5 2113.5 -5928.4 12 αω=0.30, βω=1.42, κ=4.68
YNGKP M0 2219.6 -5982.5 11 κ=4.61, ω=0.20

Table 5 Comparison of phydms to alternative software for optimizing a tree of 34 HA sequences.
HyPhy and Bio++ use models that fit φ, whereas by default phydms determines φw empirically. Log
likelihoods are not expected to be identical across software. Full code, data, and results are in
Additional file 7.

software runtime (min) log likelihood β ω
phydms, scale branches 7.8 -4877.9 2.11 0.52
phydms, default settings 10.5 -4877.7 2.11 0.52
phydms, fit φ values 23.2 -4876.5 2.11 0.53
phydms, no gradient 52.8 -4894.0 2.13 0.57
Bio++ via old phydms 962.6 -4880.6 2.09 0.53
HyPhy via phyloExpCM 2102.0 -4908.4 2.11 0.57

Additional Files

Additional file 1

This PDF contains details of the calculations of the likelihood and its gradient as implemented in phydms.

Additional file 2

This ZIP file contains the code, input data, and full results of the phydms HA analysis with preferences measured in

[15] summarized in Table 2.

Additional file 3

This ZIP file contains the code, input data, and full results of the stringency parameter comparison with

phydms logoplot summarized in Figure 3.

Additional file 4

This ZIP file contains the code, input data, and full results of the multiple β-lactamase deep mutational scan

comparison summarized in Table 3.
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Additional file 5

This ZIP file contains the code, input data, and full results of the multiple HA deep mutational scan comparison

summarized in Table 4.

Additional file 6

This ZIP file contains the code, input data, and full results of the phydms --omegabysite HA analysis with

preferences measured in [15] summarized in Figure 4.

Additional file 7

This ZIP file contains the code, input data, and full results of the program runtime comparison summarized in

Table 5.
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