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ABSTRACT 

In 2017 World Health Organization announced the list of the most dangerous superbugs 

and among them is Pseudomonas aeruginosa, which is an antibiotic resistant 

opportunistic human pathogen. . The central problem is that it affects patients suffering 

from AIDS, cystic fibrosis, cancer, burn victims etc. P. aeruginosa creates and inhabits 

surface-associated biofilms. Biofilms increase resistance to antibiotics and host immune 

responses, because of that current treatments are not effective. It is imperative to find new 

antibacterial treatment strategies against P. aeruginosa, but detailed molecular properties 

of the LasR protein are not clearly known to date. In the present study we tried to analyze 

the molecular properties of the LasR protein as well as the mode of its interactions with 

autoinducer (AI) the N-3-oxododecanoyl homoserine lactone (3-O-C12-HSL). We 

performed docking and molecular dynamics (MD) simulations of the LasR protein of P. 

aeruginosa with the 3-O-C12-HSL ligand. We assessed the conformational changes of 

the interaction and analyzed the molecular details of the binding of the 3-O-C12-HSL 

with LasR. A new interaction site of the 3-O-C12-HSL with the beta turns in the short 

linker region (SLR) of LasR protein was found. We have also performed LasR monomer 

protein docking and found a new form of dimerization. This study may offer new insights 

for future experimental studies to detect the interaction of the autoinducer with the beta 

turns in the short linker region (SLR) of LasR protein and a new interaction site for drug 

design. 

Keywords: AMR, LasR, 3-O-C12-HSL, autoinducer, SLR, homology, docking, dynamics 

Abbreviations: PDB, Protein data bank; MD, Molecular Dynamics; PCA, Principal 

Component Analysis; PC, Principal Component; 3-O-C12-HSL, N-3-oxododecanoyl 

homoserine lactone; AI, autoinducer; SLR, Short Linker Region; BLAST, Basic local 

alignment search tool; DBI, David-Bouldin Index; psF, pseudo-F statistic. 
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INTRODUCTION 

Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative, monoflagellated, 

obligatory aerobic bacteria (1, 2). It can be found in many diverse environments such as 

soil, plants, hospitals, etc. (1, 3). P. aeruginosa is an opportunistic human pathogen, 

because it rarely infects healthy persons. The central problem is that it affects patients 

suffering from AIDS, cystic fibrosis, cancer and burn victims (2, 4). Most of the deaths 

caused by cystic fibrosis are due to this pathogen (1, 5). The pathogenicity of P. 

aeruginosa occurs due to the synthesis of virulence factors such as proteases, hemolysins, 

exotoxin A, production of antibiotic pyocyanin, Hydrogen Cyanide (HCN), secretion 

systems of Types 1 (T1SS), 2 (T2SS), 3 (T3SS), 5 (T5SS), and 6 (T6SS) (6), ramnolipids 

and biofilm formation by this organism (7). Biofilm formation is characteristic to nearly 

all bacteria where cell-to-cell communication occurs as the population density increases 

in the human body during pathology. This system is called quorum sensing (QS) that uses 

hormone-like molecules called autoinducers (AI) that are accumulated in the extracellular 

matrix. When a threshold is reached, the AIs bind to its cognate receptor and then a 

response regulator modulates gene expression of QS genes virulence, which includes 

adaptation, colonization, antibiotic resistance, plasmid conjugation, etc. Among P. 

aeruginosa the AI type 1 system is represented by LuxI/LuxR-typed proteins. AI-1 

diffuses freely through the bacterial membrane and binds to the transcriptional activator 

LuxR. The latter has two LuxI/LuxR-type systems, the first LasI that produces 3-O-C12-

HSL and the second, RhlI that synthesizes C4-HSL, both AHLs regulate virulence and 

biofilm formation. Thus, in P. aeruginosa the operon called hcnABC is responsible of 

HCN biosynthesis through enzyme HCN synthase (8). Exposure to HCN can lead to 

neuronal necrosis through the inhibition of cytochrome c oxidase, the terminal 

component of the aerobic respiratory chain (9, 10). Three transcriptional regulators that 

perform in a cluster (8) control the transcription of hcnABC genes through LasR, ANR 

and RhlR (11). 

Nonetheless it was proposed that LasR was the crucial activator of hcnABC genes 

through mutagenesis experiments (11). The transcriptional activator protein LasR 

regulates the target gene expression by recognizing a conserved DNA sequence termed as 

lux box (12, 13). LasR has two domains, 1) ligand binding domain at N-terminus (LBD) 
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and 2) DNA binding domain at C-terminus (DBD) (14). In DBD LasR has a DNA 

binding Helix-Turn-Helix (HTH) motif. (15). Binding of AI 3-O-C12HSL stabilizes 

LasR and promotes its dimerization, thereby contributing to the resulting LasR-AI 

homodimer complex to contact the promoter of the target DNA and activate gene 

transcription (14). 

During colonization and invasion, both the pathogen and the host are exposed to 

molecules released by each other like bacterial AIs or hosts stress hormones and 

cytokines. The mechanisms and receptors that might be involved in cross-talk between 

microbial pathogens and their hosts are not well described to date. LuxR homologues 

studies have demonstrated that they are homodimers, and consist of two domains. These 

two functional domains are joined by a short linker region (16, 17). 

There remains a need for understanding of the LasR monomer, because till date there is 

no molecular detail information about LasR monomer behaviour. Hence, we analyzed the 

molecular details of the interactions of the 3-O-C12-HSL with LasR protein. So far this is 

the first report that shows that the 3-O-C12-HSL can interact as well with the beta turns 

in the short linker region (SLR) of LasR. This study may be utilized for the development 

of new therapeutics against P. aeruginosa by targeting both the LBD as well as the beta 

turns in the SLR of LasR and inhibit activation of genes. 

MATERIAL AND METHODS 

Analysis of LasR protein sequence 

The methodology was based on a previous study (1). The Amino acid sequence of LasR 

protein of P. aeruginosa was obtained from UniprotKB (Uniprot ID P25084). The crystal 

structure of the LBD of LasR protein (amino acid residues 7 to 169) from P. aeruginosa 

was acquired from the Protein Data Bank (PDB) (18) (PDB ID: 3IX3). However, the 

entire structure of LasR protein was needed in order to have a better understanding of 

LasR protein properties.  

For this reason the amino acid sequence was used to search in the PDB databank using 

BLAST (19) to identify suitable templates for homology modeling. The crystal structure 
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of QscR, bound to 3-O-C12-HSL was found to be the best fit (PDB code 3SZT) (16). The 

full list of similar structures obtained from BLAST search are shown in Table 1. 

Table 1 List of similar structures to LasR obtained from BLAST search (1).  

PDB ID Sequence 

identity 

(%) 

Query 

coverage 

(%) 

E-value Structure 

3SZT 30 97 2 × 10−26 Quorum Sensing Control Repressor, 

QscR, Bound to N-3-oxo-

dodecanoyl-L-Homoserine Lactone 

1FSE 37 28 2 × 10−4 Crystal structure of Bascillus subtilis 

regulatory protein gene 

4Y15 30 76 3× 10−16 Crystal structure of Sdia in complex 

with 3-oxo-c6-homoserine Lactone 

3ULQ 32 25 0.09 Crystal structure of the Anti 

Activator Rapf complexed with the 

response regulator coma DNA 

binding domain 

 

Reconstruction of LasR monomer 

HHPred web server (20) server was used for the homology modeling of the full LasR 

protein. The templates used for the homology modeling of LasR are 3SZT, 3IX3, 1FSE 

and 3ULQ. The aforementioned templates were used to reconstruct the final model of 

LasR. The final reconstructed model of LasR protein was verified using PROCHECK 

(21) (Figure S1, S2 of the Supporting Information), Verify3D (22) and Ramachandran 
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Plots. More than 96.65% of the amino acid residues in the final reconstructed model had 

a 3D–2D score > 0.2 as indicated by Verify3D (Figure S3 of the Supporting Information) 

for a good computational model (22). Ramachandran Plot (Figure S1 of the Supporting 

Information) revealed that no amino acid residues were found in the disallowed regions. 

The PROSA value of this model was -6.69 which suggests that the quality of the 

homology model is good (23), although the obtained model is slightly different (1), it is 

still viable. 

Constructing 3-O-C12-HSL model 

The 3D model of 3-O-C12-HSL (Figure 1) was acquired from PubChem (24) to study the 

interactions of the ligand with LasR. 

 

Figure 1: The stick representation of the 3O-C12-HSL AI ligand. 

The ligand parameters were calculated for the General Amber Force Field (25) by using 

the acpype tool (26) with AM1-BCC partial charges (27). 

Molecular Dynamics Simulations of LasR protein systems 

MD simulations of all systems were conducted with the GROMACS suite, version 5.1.2 

(28), utilizing the Amber ff99SB-ILDN force field (29).  

In all cases, Short-range non-bonded interactions were cut off at 1.4 nm. Particle Mesh 

Ewald (PME) (30, 31) was used for the calculation of long-range electrostatics.  
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Set 1. LasR monomer simulation. In order to generate the starting structure of LasR 

monomer before docking, it was placed in a dodecahedron box of TIP3P water (32), to 

which 100 mM NaCl was added, including neutralizing counter-ions. Following two 

steepest descents minimization, LasR monomer was equilibrated in two stages. The first 

stage involved simulating for 200 ps under a constant volume (NVT) ensemble. The 

second stage involved simulating for 200 ps under a constant-pressure (NPT) for 

maintaining pressure isotropically at 1.0 bar. Production MD simulation was conducted 

for 100 ns in the absence of any restraints. Temperature was sustained at 300 K using V-

rescale (33) algorithm. For isotropical regulation of the pressure the Parrinello-Rahman 

barostat (34) was used.  

Set 2. Molecular dynamics simulations using docked structures. It has been shown that 

docking has its limitations (35). For this reason after finishing molecular docking 

simulations we chose the structures of LasR bound to 3-O-C12-HSL to perform 

molecular dynamics (MD) simulations. A time step of 2 fs was used during heating and 

the production run and coordinates were recorded every 1 ps. Three simulations of 300 ns 

were performed. Further details about the simulation protocol can be found above. 

LasR–3-O-C12-HSL ligand blind docking experiments  

To build the LasR–ligand complex, the ligand 3-O-C12-HSL was docked with LasR 

monomer using Autodock Vina (36). However, AutoDock Vina currently uses several 

simplifications that affect the obtained results. The most notable simplification as the 

creators’ note (36) is the use of a rigid receptor. Vina provides a parameter called 

‘Exhaustiveness’ to change the amount of computational effort used during a docking 

experiment (36, 37). But the default exhaustiveness value is 8 and the creators claim that 

it should increase the time linearly and decrease the probability of not finding the 

minimum exponentially (36, 37), hence increasing this value leads to an exponential 

increase in the probability of finding the energy minima. 

The whole protein conformational space was searched, using grid box dimensions 

60×62× 48 A˚. Following exhaustiveness values were tested in this study: 8, 16, 32, 64, 

128, 256, 512, 1024, 2048 and 4096. 
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Principal component (PC) (38) and cluster analysis using K-means algorithm (39) was 

performed (Figure 2 and Figure S4 and Figure S5 of the Supporting Information). The 

results demonstrate that the number of interaction sites don’t change in the interval using 

exhaustiveness from 1024 to 4096. Exhaustiveness value of 1024 was chosen as it 

provides good results, good speed and thorough sampling of the docked configurations. 

 

Figure 2: Exhaustiveness determination by number of clusters. 

Exhaustiveness value was increased to a value of 1024 and maximum number of binding 

modes to generate set to 20. After that 100 independent docking calculations were carried 

out with random initial seeds.  

Analysis of docking conformations and trajectories 

We performed the analysis of docking conformations and trajectories by a combination of 

Autodock Vina (36), Gromacs (28) in addition to custom python scripts, which uses 

pandas (40), scikit-learn (41) and MDTraj (42). 

Here is the list of program packages we used for analysis: 

� The MDTraj python library (42) was used for the trajectory analysis. 

� Plot visualization was done using matplotlib (43) and Seaborn package (44).  
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� Figures and videos were prepared with PyMOL (45), VMD (46) and UCSF Chimera 

(47). 

The analysis protocol approach was similar to the works of Wolf et al. (48) and Zamora 

et al. (49) and the following techniques were used for the analysis: 

� Principal component analysis (PCA) is an unsupervised statistical technique that is 

often used to make data easy to explore and visualize. PCA tries to explain the 

maximum amount of variance with the fewest number of principal components (38). 

The process of applying PCA to a protein trajectory is called Essential Dynamics 

(ED) (49-51). PC analysis, performed on Cartesian coordinates has become an 

important tool for the examination of conformational changes. 

� Cluster analysis is another unsupervised technique that tries to identify structures 

within the data. It is a data exploration tool for dividing a multivariate dataset into 

groups. Clustering algorithms can be grouped into partitional and hierarchical 

clustering approaches (52). 

 

NMR calculations 

Finally, the trajectory of LasR monomer simulation was used for the calculation of 

chemical shifts. Sparta+ (53) and ShiftX2 (54) were used to predict the chemical shifts of 

backbone atoms of the protein with the help of wrapper functions of MDTraj (42). 

Protein-Protein Docking 

When docking homology models, it is best if there is an experimental evidence to suggest 

the general interaction site (within ~10 Å). Representative structures from molecular 

dynamics simulations were used for protein-protein docking using Cluspro (55). From the 

experimental X-ray data it was found that ‘Trp152’, ‘Lys155’ and ‘Asp156’ from H10 

play an important role during dimerization. 
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The distances between ‘Trp152’ from chain A and ‘Asp156’ from chain B was 0.276 nm, 

‘Asp156 from chain A and ‘Lys155’ from chain B was 0.279nm. These residues were 

used as attraction constraints. 

Entire flowchart 

The whole methodology is presented as a flowchart for a better comprehension:  

� LasR protein sequence taken from UniprotKB (sequence ID P25084) and performed 

blastp of LasR to identify suitable templates for reconstruction.  

� HH-pred web server was used for the reconstruction of LasR monomer structure and 

validated using Verify 3D, Procheck, Prosa.  

� The 3D model of 3-O-C12-HSL acquired from pubchem web server.  

� Docking of 3-O-C12-HSL ligand with the LasR monomer performed using 

Autodock Vina.  

� PCA and cluster analysis performed on docking conformations. 

� Extraction of centroid conformations from cluster analysis. 

� Ligand parameters generated using Acpype interface in the framework of the 

AMBER force field. 

� Using centroid conformations as starting points for molecular dynamics simulations 

using Gromacs. 

� Analysis of molecular dynamics trajectory files using MDTraj. 

� Performed protein-protein docking using ClusPro. 

RESULTS 

Compactization of LasR without 3-O-C12-HSL 

We performed a simulation run of 100 ns using a standard MD protocol for the 

assessment of conformational changes of LasR monomer (Movie 1 of the Supporting 
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Information). The overall stability of the molecule was assessed using the root-mean-

square-deviation (RMSD) of the protein atoms. RMSD was calculated with reference to 

the initial frame through time of MD run (Figure S6 of the Supporting Information). 

Another suitable measurement for the stability of the LasR monomer structure is radius 

of gyration (Figure S7 of the Supporting Information).  

During the examination of MD trajectories, Principal Component Analysis (PCA) (37) is 

usually used for the visualization of the motions of the system. Generally to capture more 

than 70% of the variance in the trajectory data the first handful of components are 

sufficient (49). PC analysis can uncover the fundamental movements contained in an MD 

trajectory, however it does not group the snapshots into different clusters (52). This can 

be accomplished by the clusterization of the PC data. 

 

Figure 3: LasR monomer simulation trajectory projected onto its first two principal 

components. The black scale indicates the time progression from 0 ns (white) to 100 ns 

(black). 

For the selection of initial starting structure of the LasR for docking study we performed 

cluster analysis on the LasR monomer run for the selection of a starting point. By 

identifying a distinct representative structure of the most populated cluster, this will allow 

to perform blind docking on the whole structure. It should be also noted that cluster 
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analysis allows to evaluate the frequent conformations of LasR. For the clustering 

analysis, we chose the Agglomerative Clustering algorithm with Ward linkage (56) as the 

most appropriate as they are deterministic, allowing for reproducibility of resulting 

clusters, thus minimizing the amount of bias.  

We performed several rounds of Agglomerative clustering with Ward linkage (details can 

be found in the methods section). The accuracy of the clustering was assessed by the help 

of the Davies–Bouldin Index (DBI) (57), Silhouette Score (58), Dunn Index (59) and the 

pseudo-F statistic (pSF or Calinski Harabasz) (60) metrics (Figure S8 of the Supporting 

Information). An optimal number of clusters were chosen, simultaneously accounting for 

a low DBI, high Silhouette, high Dunn Index and high pSF values. 

The distribution of clusters over simulation is visualized in Figure 4 and the four cases 

are: cluster 4 (black) at the beginning of the simulation (after equilibration), cluster 2 

(green) in the middle, cluster 1 (light green) and cluster 3 (dark blue) at its end. 

 

Figure 4: Clustering results of ward-linkage algorithm formed by first two PCs. The 

entire MD trajectory data was used for the clusterization. 

The clusterization defined by the first two PCs (Figure 4) provides a coherent picture and 

it also supported by a good DBI, Dunn, Silhouette Score and psF value (Figure S8 of the 
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Supporting Information). It also shows clearly that the simulation has converged (Figure 

5). 

 

Figure 5: Color-coded RMSD of the simulation obtained from Ward-linkage cluster 

analysis. The colors represent the clusters that are demonstrated in Figure 4. 

For the validation of the quality of molecular dynamic simulation, theoretical NMR shifts 

were calculated using Sparta+ (53) and ShiftX2 (54). For the NMR shifts calculation, 

snapshots from cluster 3 (Figure 4 and Figure 5) were used.  

In Figure 6 you can see that there is a strong linear relationship between experimental and 

simulated ShiftX2 NMR shift values (Figure S9 of the Supporting Information), thus this 

demonstrates the quality of MD simulation. 
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Figure 6: Chemical shifts of Cα- atoms. Experimental vs ShiftX2 predictions.  

In Figure 7 you can see that there is a strong linear relationship as well between 

experimental and simulated Sparta+ NMR shift values (Figure S9 of the Supporting 

Information). 

 

Figure 7: Chemical shifts of Cα- atoms. Experimental vs Sparta+ predictions.  
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After that for docking study the representative structure (Figure 8c) was extracted from 

cluster 3 (Figure 4 and Figure 5). 

 

Figure 8: 3D LasR protein structures: a) Crystal structure of the N-terminal LBD of LasR 

protein b) Homology Modeling c) Representative Structure after 100ns MD run. Images 

generated with UCSF Chimera (47). 

The representative structure of LasR system and its differences from the homology 

modeled structure are highlighted in Figure 8c. Secondary structure analysis of the 

representative structure was performed as well using PDBSum (61) (Figure S10 of the 

Supporting Information). 

To our opinion, this is the most complete study to include the dynamics of the full-length 

LasR molecule (residues 1 to 239). It has also been shown that the dynamics of the 

complete C-terminal region of LasR modulate N-terminal region, as will be discussed 

later. 

 

Docking analysis of with LasR monomer 

In this study, molecular docking approach was used to inspect the possible binding modes 

of 3-O-C12-HSL in LasR monomer. PCA and cluster analysis were performed on 

docking data (Figure 8c). The results show three binding sites, cluster 2 corresponds to 
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experimental data, while cluster 1 and cluster 3 do not (Figure 9). These results clearly 

support the findings of Bottomley et al. (14), where it was also demonstrated that 3-O-

C12-HSL binds to LBD. 

We performed several rounds of K-Means clustering (details are available in the section 

of methods). The accuracy of the cluster analysis was evaluated using the DBI (57), Dunn 

Index (58), Silhouette score (59) and the pSF (60) metrics (Figure S10 of the Supporting 

Information). An optimal number of clusters were chosen for docking results, 

simultaneously accounting for a low DBI, high Dunn, high Silhoeutte and high pSF 

values. 

We generated 2000 docked poses and performed representative structure extraction for 

use in MD simulations of the LasR 3-O-C12-HSL binding sites. The resulting 

representative structures from each cluster are shown in Figure 10. These cluster 

representative structures were produced by finding the centroid conformations. 

 

Figure 9: Silhouette plot and clustering results on the docking data using k-means 

algorithm formed by first two PCs. 
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Representative structures from each cluster were extracted. The binding energy for 

representative structure of cluster 1 is -5.4 kcal/mol, as for the mean binding affinity for 

the whole cluster is -5.257 ±0.233 kcal/mol (Figure S12 of the Supporting Information). 

Cluster 1 contains 839 docked poses from 2000, about 41.95%. For cluster 2 the binding 

affinity for the representative structure is -5.1 kcal/mol and for the whole cluster -5.593 

±0.386 kcal/mol (Figure S13 of the Supporting Information) and this one corresponds to 

the experimental binding site data (14). Cluster 2 contains 864 docked poses from 2000, 

about 43.2%. For cluster 3, the representative structure features the highest binding 

affinity -5.7 kcal/mol and for the whole cluster -5.264 ±0.27 kcal/mol (Figure S14 of the 

Supporting Information). Cluster 3 contains 297 docked poses from 2000, about 14.85%, 

which is a rather unstudied area. 

There is a huge amount of literature that suggests that molecular docking are not 

appropriate for the prediction of binding affinity or binding poses of protein-ligand 

complexes, however they can still provide important information (35, 62). 

 

Figure 10: 3D visualization of the analyzed docking data with their representative 

structures and clusters. 
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Binding Modes of 3-O-C12-HSL 

We performed three 300 ns simulations using standard MD protocol. Overall, 900ns of 

simulation data was used for the analysis of 3-O-C12-HSL interaction with LasR 

monomer. The representative structures were taken from docking results (Figure 10) and 

used as starting points for MD simulation with LasR. Simulations were conducted for 

sufficient time to allow the positions of 3-O-C12-HSL to reach equilibrium in LasR 

molecule.  

The overall stability of the molecule was assessed using the mass-weighted root-mean-

square-deviation (RMSD) of the backbone atoms. RMSD was calculated with reference 

to the initial snapshot for the different independent MD runs. Figure 11 shows that 

Simulation 2 and 3 experience a substantial RMSD deviation from the initial starting 

point. Simulation 2 corresponds to cluster 2 in docking simulations, while Simulation 3 

corresponds to cluster 3 (Figure 10). Simulation 1 which corresponds to cluster 1, the 

molecule of 3-O-C12-HSL did not fixate and reach equilibrium, so further research was 

not performed (Figure 11) (Movie 2 of the Supporting Information). 

Simulation 2 (Movie 3 of the Supporting Information) shows that after 230ns, the 

structure becomes stable. While Simulation 3 (Movie 4 of the Supporting Information) 

changes its conformation in 100ns and becomes stable till 300ns. 
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Figure 11: RMSD evolution during 300 ns of simulation for 3 independent runs using 

representative structures of 3-O-C12-HSL docking poses as starting points.  

The root-mean-square fluctuation (RMSF) was used for the assessment of the flexibility 

of the LasR monomer. In Figure 12 the average per-residue RMSF for each cluster 

simulation runs is plotted.  

 

Figure 12: RMSF comparison for each individual run. 

From Figure 12 it visible that the residues from 165 to 176, which correspond to beta 

turns in the SLR of LasR, are of high mobility (Figure S10 of the Supporting 

Information). Simulations 2 and 3 show that 3-O-C12-HSL has two binding modes, one 

with LBD, which corresponds to experimental data and simulation 3 with the beta turns 

region (Figure S10 of the Supporting Information) in the SLR of LasR. 

PCA and Cluster analysis were performed on simulation 2 (Figure S15 of the Supporting 

Information) as well as hydrogen bond analysis based on cutoffs distance and angle 

according to the criterion of Wernet Nilson (63) using MDTraj (42). Over the course of 

cluster 1, 3-O-C12-HSL with LasR established an average of 0.655±0.651 of hydrogen 

bonds, while in cluster 2 the average is 0.042±0.202 (Figure S16 of the Supporting 

Information). Over the course of simulation 2, 3-O-C12-HSL establishes a large number 

of hydrophobic contacts with amino acid side chains of the LBD of LasR protein (Figure 
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S13 of the Supporting Information), a phenomenon that is not unexpected, given the large 

hydrophobic surface area of the LasR LBD and the low solubility of 3-O-C12-HSL in 

water. In simulation 2, 3-O-C12-HSL has hydrophobic interactions mainly with amino 

acids from H8, H10 and A strand (Figure S17 from supplementary material). RMSD 

analysis of the conformations between LasR monomer and LasR bound to 3-O-C12-HSL 

in LBD is equal to 7.027 Ångström (Figure 13). 

 

Figure 13: LasR monomer structures blue color) LasR monomer without 3-O-C12-HSL, 

red color) LasR monomer with 3-O-C12-HSL bound to LBD. 

Residues that participate in hydrophobic interactions are shown in Figure 14 and Figure 

S17 of the Supporting Information. 
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Figure 14: Insertion of 3-O-C12-HSL in LBD of LasR, from centroid snapshot of cluster 

2 in simulation 2 (Figure S15 of the Supporting Information). 

The second binding mode involves the interaction of 3-O-C12-HSL with the beta turns in 

the region of 170-175 amino acids. 

PCA, cluster and hydrogen bond analysis were also performed on simulation 3 (Figure 

S14 of the Supporting Information). Over the course of cluster 2, 3-O-C12-HSL with 

LasR established an average of 1.506±0.742 hydrogen bonds, for cluster 3 the average 

0.228±0.492 (Figure S13 of the Supporting Information), while in cluster 1 the average is 

0.652±0.654. Over the course of simulation 3, 3-O-C12-HSL establishes hydrogen bonds 

and large number of hydrophobic contacts with amino acid side chains in the beta turns in 

the SLR of LasR protein (Figure S15 of the Supporting Information). In simulation 3, 3-

O-C12-HSL forms hydrogen bonds mainly with ‘Lys182’ and ‘Leu177’ of the beta turns 

in the SLR of LasR (Figure S15 of the Supporting Information). RMSD analysis of the 

conformations between LasR monomer and LasR bound to 3-O-C12-HSL in DBD is 

equal to 1.677 Ångström (Figure 15). 
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Figure 15: LasR monomer structures. blue color) LasR monomer without 3-O-C12-HSL, 

red color) LasR monomer with 3-O-C12-HSL bound to beta turns in the SLR of LasR. 

Residues that participate in hydrogen and hydrophobic interactions are shown in Figure 

16. 

 

Figure 16: Putative hydrogen bonds of 3-O-C12-HSL with Lys182 and Leu177 from 

centroid snapshot of cluster 1 of simulation 3 (Figure S18 of the Supporting Information).  

Complete data sets for MD simulations are available as Supporting Information (Figures 

S15-S20). 
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Protein Docking of MD models 

It is known that to LasR binds to the corresponding promoter DNA region as a dimer (1). 

Thus, the monomeric LasR–3-O-C12-HSL complexes were subjected to dimerization. 

The protein docking experiments using structures from MD runs were performed with 

ClusPro 2.0 (55, 64–66) because of its success in the CAPRI (Critical Assessment of 

Predicted Interaction). Each centroid conformation was extracted from simulations 2 and 

3 and was used for docking. For the selection of the model we used the approach as 

recommended by the authors of ClusPro (55), suggesting to find the most populated 

clusters.  

From simulation 2 the top model contains 122 members and the scores for the docking 

model were -1440.7 for the center and -1517.9 for the lowest energy, suggesting a 

favorable binding mode (Figure 17). 

 

Figure 17: LasR Protein-Protein docking result based on centroid conformation from 

cluster 2 of simulation 2 (3-O-C12-HSL with LBD). Left and front views. 

For simulation 3 docking the top model contains 80 Members and the scores for the 

docking model were -951.4 for the Center and -1332.0 and for the lowest energy, thus 

suggesting a favorable binding mode (Figure 18). 
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Figure 18: LasR Protein-Protein docking result based on centroid conformation from 

cluster 3 of simulation 3 (3-O-C12-HSL with beta turns in the SLR). Left and front 

views. 

The interaction of 3-O-C12-HSL with the beta turns in the region of 170-175 creates a 

favorable conformation for dimerization. From our analysis, it is observed that 3-O-C12-

HSL has two binding modes to LasR protein. The 3-O-C12-HSL, AI ligand (Figure 1) 

having a long hydrophobic tail is capable of binding both to LBD and to the beta turns in 

the SLR of LasR protein. The binding of 3-O-C12-HSL provokes conformational 

transitions. The two binding conformations are capable of dimerization. 

CONCLUSION 

From the simulations it can be safely concluded that the AI ligand 3-O-C12-HSL, can 

bind to LBD and to the beta turns in the SLR of LasR protein. The interaction with the 

beta turn is a novel site. Both conformational transitions favor dimerization, so this raises 

the question what would be the roles of different binding sites, it could be a two-step 

activation or resistance mechanism. This part needs further research. This study may 

reveal new insights of the interactions of the autoinducer 3-O-C12-HSL ligand with LasR 

protein. Results from this study may be used for future drug development endeavors. 
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