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Abstract 
 
Genetic surveillance of seasonal influenza is largely focused upon sequencing of 
the haemagglutinin gene. Consequently, our understanding of the contribution of 
the remaining seven gene segments to the evolution and epidemiological dynamics 
of seasonal influenza is relatively limited. The increased availability of next 
generation sequencing technologies allows rapid and economic whole genome 
sequencing (WGS). Here, 150 influenza A(H3N2) positive clinical specimens with 
linked epidemiological data, from the 2014/15 season in Scotland, were sequenced 
directly using both Sanger sequencing of the HA1 region and WGS using the 
Illumina MiSeq platform. Sequences generated by both methods were highly 
consistent and WGS provided on average >90% whole genome coverage. As 
reported in other European countries during 2014/15, all strains belonged to 
genetic group 3C, with subgroup 3C.2a predominating. Inter-subgroup reassortants 
were identified (9%), including three 3C.3 viruses descended from a single 
reassortment event, which had persisted in the population. Significant 
phylogenetic associations with cases of severe acute respiratory illness observed 
herein warrant further investigation. Severe cases were also more likely to be 
associated with reassortant viruses (odds ratio: 4.4 (1.3-15.5)) and occur later in 
the season. These results suggest that increased levels of WGS, linked to clinical 
and epidemiological data, could improve influenza surveillance. 

Introduction 
 
Influenza viruses are a major cause of human morbidity and mortality worldwide, 
causing an estimated 250,000-500,000 deaths each year [1]. Influenza A virus (IAV) 
is an RNA virus, consisting of eight gene segments (PB2, PB1, PA, HA, NP, NA, M 
and NS). Classification of IAVs into subtypes is based on the combination of 
haemagglutinin (HA) and neuraminidase (NA) they possess. Influenza A viruses 
evolve rapidly by both mutation and reassortment. Mutations conferring 
incremental selective advantages result in the characteristic rapid antigenic drift 
of IAVs, while the segmented nature of the genome allows genomic reassortment 
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when a cell is coinfected by two or more strains. Inter-subtype reassortment 
occasionally gives rise to viruses with pandemic potential [2], the most recent of 
which emerged in 2009 [3]. Intra-subtype reassortment is likely to occur much 
more frequently and play an important role in increasing viral genetic diversity and 
adaptive potential [4]. 
 
Surveillance is required to ensure that vaccine components reflect the antigenic 
characteristics of circulating IAV strains [2]. The HA is the primary antigenic 
determinant and consequently the chief focus of genetic surveillance, with 
influenza viruses routinely characterised into genetic groups based on amino acid 
residues of the HA protein, as defined by the European Centre for Disease 
Prevention and Control (ECDC) [5]. Consequently there is relatively little sequence 
data available for the remaining seven segments. 

 
The West of Scotland Specialist Virology Centre (WoSSVC) is the Scottish influenza 
reference laboratory and is responsible for characterising several hundred IAV 
positive clinical specimens each year. Current characterisation of IAVs by the 
WoSSVC is based on Sanger sequencing of the HA1 region of the HA gene. Next 
generation sequencing (NGS) technology allows whole genome sequencing (WGS) of 
IAVs in a single reaction, permitting rapid and economical sequencing with the 
potential for high-throughput. In addition to viral characterisation, WGS enables 
the detection of reassortment events and antiviral resistance mutations anywhere 
in the genome. 
 
The aim of this study was to assess the benefits of WGS over current Sanger 
sequencing methods for IAV surveillance and whether WGS can provide a greater 
understanding of the evolutionary and epidemiological dynamics of seasonal 
influenza. To this end, 150 influenza A(H3N2) positive clinical specimens from the 
2014/15 influenza season in Scotland were sequenced using both methods. Genetic 
data and linked patient data were analysed to investigate rates of reassortment 
and potential associations between disease severity and phylogenies of each 
segment, reassortment status, and other patient details including location and 
age.  

Methods 

Samples  
 
All 150 samples were influenza A(H3N2) positive clinical specimens submitted to 
the WoSSVC for routine influenza characterisation. Inclusion criteria for the study 
were all samples collected between 1st August 2014 and 31st May 2015 which had 
previously been genetically characterised using Sanger sequencing, providing 
enough material was available. Samples were received from 11 Health Boards 
throughout Scotland and included throat swabs (n=85), combined nose and throat 
swabs (n=15), gargle (n=14), nasopharyngeal aspirate (n=11), sputum (n=6), nasal 
swabs (n=5), tracheal aspirate (n=2), bronchoalveolar lavage (n=1) and non-
classified respiratory specimens (n=11). The samples selected for Sanger 
sequencing at WoSSVC included a selection of sentinel surveillance samples 
collected from general practice surgeries (n=16), samples from patients with 
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severe acute respiratory illness (SARI), as defined by Health Protection Scotland 
(n=22) and 112 other clinical cases.  

RNA isolation  
 
Nucleic acid was extracted directly from clinical samples using automated 
extraction methods. Swabs, gargles and nasopharyngeal aspirates were extracted 
using the BioRobot MDx (Qiagen, Hilden, Germany) and sputum, tracheal aspirates 
and bronchoalveolar lavage were extracted using the NucliSENS easyMAG 
(bioMérieux, Marcy-l'Étoile, France). The same aliquot of extracted RNA was used 
for both Sanger sequencing and NGS. 
 

Sequencing of influenza viruses  
 
Sanger sequencing was performed as previously described [6]. To prepare samples 
for NGS, RNA was reverse transcribed and the entire genome of influenza was 
amplified in a single RT-PCR reaction using the Uni/Inf primer set, as described by 
Zhou et al. [7]. Amplification was performed in 50 µl reactions containing 10 µl 
sterile water, 25 µl 2X RT-PCR buffer, 0.8 µl Uni12/Inf1 (10 µM), 1.2 µl Uni12/Inf3 
(10 µM), 2 µl Uni13/Inf1 (10 µM), 1 µl SuperScript III Platinum Taq High Fidelity 
DNA Polymerase (Invitrogen, Carlsbad, CA, USA) and 10 µl RNA. Thermocycling 
conditions were as follows: 42°C for 60 min, 94°C for 2 min; 5 cycles (94°C for 30 
s, 44°C for 30 s and 68°C for 3 min) followed by 31 cycles (94°C for 30 s, 57°C for 
30 s and 68°C for 3 min), with a final extension step at 68°C for 5 min. DNA was 
diluted to a concentration of 175 ng in a volume of 50 µl and sheared acoustically 
using a Covaris S220 sonicator (Covaris, Woburn, MA, USA). NGS was performed on 
the Illumina MiSeq (Illumina, San Diego, CA, USA) as previously described by Wilkie 
et al. [8], with the following modifications: DNA was purified using 0.9 volumes of 
AMPure XP beads, adapter-ligated DNA was amplified using six PCR cycles and 
libraries were sequenced as 150-bp paired end reads.  

Bioinformatics  
 
Illumina adapter sequences were removed from the data, paired-end reads were 
trimmed using a Phred score of 30 and to a minimum length of 50 bp using Trim 
Galore!(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). 
Filtered reads were mapped to individual segments using the reference sequence 
A/Switzerland/9715293/2013. Two reference mapping software packages were 
employed: Tanoti (http://www.bioinformatics.cvr.ac.uk/tanoti.php) and Bowtie2 
(http://bowtie-bio.sourceforge.net/bowtie2/index.shtml), default settings were 
used for both packages. Files were converted to BAM format using SAMtools 
(http://samtools.sourceforge.net/) and consensus sequences were obtained using 
DiversiUtils (http://josephhughes.github.io/DiversiTools/). Genome coverage and 
mean depth were greater using Tanoti, hence all further analyses were performed 
using consensus sequences obtained using this tool.  

Phylogenetic analysis  
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Consensus nucleotide sequences were aligned using MUSCLE [9]. Viruses were 
characterised into A(H3N2) genetic groups (subdivisions/subgroups) based on amino 
acid residues of the HA protein [5]. Time resolved phylogenetic trees were 
reconstructed using BEAST v1.8.2 [10]. The general time reversible model with a 
proportion of invariant sites and a gamma distribution describing among-site rate 
variation with four categories estimated from the data (GTR + I + Γ4) was 
identified as the best model of nucleotide substitution through comparison of 
Bayes factors [11]. Bayes factor analysis also determined that a relaxed 
(uncorrelated) molecular clock model [12] with branch rates drawn from a 
lognormal distribution, and a minimally constrained Bayesian skyline demographic 
model [13]  should be used. Chains were run until convergence as identified using 
Tracer v1.6.0 and, after removing 10% of trees as burn-in, a sample of posterior 
trees was analysed using TreeAnnotator v1.8.2 to identify the maximum clade 
credibility (MCC) tree. The support for each node in the MCC tree is reflected by 
an associated posterior probability. Phylogenetic trees were visualised using the 
ggtree R package [14]. 
 
The positions of viruses of each genetic group were compared on phylogenies of 
each segment. Inconsistent positioning of single viruses or groups of viruses on 
these phylogenies was used to identify inter-subgroup reassortants. Phylogenetic 
mapping of reassortants was also performed computationally using the Graph-
incompatibility-based Reassortment Finder (GiRaF) software v1.02 [15]. Posterior 
samples of phylogenies generated for each segment using BEAST were thinned to 
1000 trees and analysed to identify both inter- and intra-subgroup reassortment 
events. Though every reassortment event must in reality split all eight segments 
into two subsets (retained and acquired segments), for some reassortment events 
the phylogenetic signal may be too weak for some segments to be assigned to one 
of the two reassorting sets of segments. Following the advice of the authors of the 
GiRaF software, to be considered a reassortment at least four segments were 
required to be confidently placed into either group. 
 
Bayesian Tip-association Significance (BaTS) analysis [16] was used to detect 
significant phylogeny-trait correlations, testing the null hypothesis that there is no 
correlation between phylogeny and viral trait. Each gene segment was tested for a 
phylogenetic association with severity of infection (classified into SARI and non-
SARI), patient age (categorised into <1 year, 1-5 years, 6-15 years, 16-64 years and 
≥65 years), location by Health Board and genetic subgroup. The association index 
(AI) was calculated for each tree in a posterior sample generated by BEAST (after 
excluding the first 10% of tree states as burn-in) and compared to a null 
distribution generated by random reassignment of traits to tips of the phylogeny 
performed 5000 times. The AI ratio was calculated by dividing the observed AI by 
the null AI. 

Logistic Regression 
 
Predictors of severe infection (defined by classification of a SARI case) were 
investigated by logistic regression using R v3.3.2 [17]. Sentinel surveillance 
samples were excluded from this analysis; the remaining 134 samples included 22 
SARI cases. Patient age, location by Health Board, the week of sampling, genetic 
subgroup and whether the virus was classified as an inter-subgroup reassortant 
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were tested as explanatory variables. To identify the best combination of 
explanatory variables, models were compared using AIC and likelihood ratio tests. 
 
 
Results 

Next generation sequencing of influenza A(H3N2) directly from clinical 
specimens 

 
The mean coverage across the entire influenza A(H3N2) genome was 91%. Of the 
150 samples sequenced, complete genome coverage was achieved for 71 samples 
and genome coverage of >90% was generated for 100 samples. Complete segment 
coverage was achieved for the two smallest segments, non-structural (NS) and 
matrix (M) protein, in all 150 samples. Segment coverage generally declined as the 
size of the segment increased, however average segment coverage of ≥80% was 
achieved for all segments (Table 1). 
 

Segment Size 
(nucleotides) 

Mean coverage Number of samples 
with 100% coverage 

PB2 2280 80% 82 

PB1 2274 83% 74 

PA 2151 89% 105 

HA 1701 96% 135 

NP 1497 94% 126 

NA 1410 98% 142 

M 982 100% 150 

NS 838 100% 150 

Whole genome 13133 91% 71 

 
Table 1. Nucleotide coverage of gene segments of influenza A(H3N2) using next 

generation sequencing. RNA polymerase subunits (PB2, PB1 and PA), 
haemagglutinin (HA), nucleoprotein (NP), neuraminidase (NA), matrix protein (M) 

and non-structural protein (NS) segments (n=150). 
 
Using NGS, the mean coverage of the HA gene was 1646 nucleotides, compared to 
an average length of 551 nucleotides when the HA1 region was sequenced using 
the Sanger method. When sequences generated from Sanger and NGS were 
compared >93% of the viral sequences had ≤2 amino acid differences in HA1, 
demonstrating a good correlation in the sequences obtained using both methods. 
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Influenza A(H3N2) characterisation, epidemiology and resistance using NGS 
data 

 
Full segment coverage of HA was achieved for 90% of samples using NGS and 
sufficient sequence data was available to characterise all 150 samples into genetic 
groups according to ECDC guidelines [5]. All viruses belonged to genetic group 3C, 
of which 107 viruses (71%) fell into genetic subgroup 3C.2a; five (3%) into 
subdivision 3C.3; six (4%) into subgroup 3C.3a, and 32 (21%) within subgroup 3C.3b. 
Nodes defining these four genetic groups on the HA phylogeny were associated 
with posterior probabilities exceeding 0.99, indicating strong support for the 
phylogenetic distinctiveness of each (Figure 1). Viruses of each genetic group did 
not appear to cluster geographically or in time during the 10-month study period 
(Figure 2), indicating co-circulation of distinct A(H3N2) lineages throughout the 
2014/15 influenza season. 
 

                         
Fig. 1. Phylogenetic tree of the haemagglutinin gene of 150 influenza A(H3N2) 
viruses obtained from the 2014/15 season. The maximum clade credibility, time-

resolved phylogeny for consensus sequences of the HA gene obtained using NGS. 
Genetic group is indicated by colour. Posterior probabilities associated with the 

nodes defining each of the four genetic groups were >0.99. 
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a) 

  b)  

       
Fig. 2. Circulation of 150 influenza A(H3N2) viruses throughout the 2014/15 

influenza season. a) The number and genetic group of viruses received each week 
throughout the study period. Each asterisk represents a case of severe acute 

respiratory illness (SARI). b) Health Board from which the samples were collected. 
AA=Ayrshire and Arran, BR=Borders, DG=Dumfries and Galloway, FF=Fife, FV=Forth 

Valley, GGC=Greater Glasgow and Clyde, GR=Grampian, HG=Highlands, 
LN=Lanarkshire, LO=Lothian, TA=Tayside. 
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Whole genome sequencing enabled the presence or absence of drug resistance 
mutations in both the NA and the matrix 2 (M2) proteins to be determined. The 
S31N mutation in the M2 protein, which confers amantadine resistance, was 
present in all 150 samples, consistent with previous studies [18]. Substitutions in 
NA resulting in resistance to neuraminidase inhibitors; E119V, D151E, I222V, 
R224K, E276D, R292K, and R371K [19] were not detected (n=147). 
 

Analysis of whole genome sequence data and identification of 
reassortments 
 
The sequences of all eight segments were concatenated to produce a single 
sequence for each virus and a whole genome phylogenetic tree was reconstructed. 
The concatenated genomes revealed a topology which was generally consistent 
with that of the phylogenetic tree generated using the HA gene only, with 
posterior probabilities of 1.00 on the nodes defining four distinct clades 
corresponding to genetic subgroups 3C.2a, 3C.3, 3C.3a and 3C.3b (Figure 3). The 
full genome phylogeny suggested the presence of some reassortant viruses and to 
determine the evolutionary relationships between gene segments, eight individual 
phylogenetic trees were generated (Figure 4). The position of viruses of each 
genetic group were compared on these phylogenies to identify inconsistencies 
arising from inter-subgroup reassortment. 
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Fig. 3. Phylogenetic tree of concatenated segments of 150 influenza A(H3N2) 
viruses from the 2014/15 season and schematic showing individual gene 

segment lineages. The maximum clade credibility, time-resolved phylogenetic 
tree was reconstructed for the whole genome of influenza A(H3N2) by 

concatenating all eight segments. Tips are coloured by genetic group (as 
characterised by HA sequence) according to the legend and triangles mark those 

identified as inter-subgroup reassortants (n=13). Sample numbers for these 
reassortants are also indicated, the three remaining unnumbered reassorted 

viruses make up the 3C.3 clade. Posterior probabilities associated with the nodes 
defining each of the four genetic groups were >0.99. To the right, a schematic 

representation of viral clustering of each gene segment is shown. Where samples 
could not be confidently assigned to a genetic group phylogenetically for a 

particular segment cells are coloured grey. 
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Fig 4. Phylogenetic trees of the eight individual gene segments from 150 
influenza A(H3N2) viruses obtained from the 2014/15 season. The maximum 
clade credibility, time-resolved phylogenetic trees for consensus sequences of 
each segment obtained using NGS. Genetic groups are indicated on the tree by 
colour (3C.2a in blue, 3C.3 in orange, 3C.3a in pink and 3C.3b in green). The 
positions of novel inter-subgroup reassortant viruses in each phylogeny are 

indicated by triangles and are identifiable by sample number, the three remaining 
unnumbered reassorted viruses belong to the 3C.3 clade. Highly supported internal 

nodes of each phylogeny (posterior probability >0.9) are indicated by black 
diamonds. 
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Generally viruses belonging to the same genetic group, as characterised by HA 
sequence, also clustered together on phylogenies generated from each of the 
remaining seven gene segments. This suggests an absence of reassortment in the 
recent evolutionary history of the majority of viruses. However, 13 viruses were 
identified to be inter-subgroup reassortments (marked with triangles in Figures 3 
and 4). A schematic representation of the position in the phylogenies of each of 
the eight gene segments is shown alongside the full genome tree in Figure 3. Ten 
of these reassortants were also detected using GiRaF, an automated reassortment 
detection tool. Of the remaining three (samples 17, 118 and 150), sample 118 was 
detected as a reassortant but below the significance threshold chosen. The GiRaF 
analysis additionally identified two intra-subgroup reassortment events in branches 
leading to two 3C.2a viruses and 18 3C.3b viruses respectively. 
 
Ten of the 13 inter-subgroup reassortants were identified as descending from 
reassortment events leading to individual viruses in this study. The remaining three 
inter-subgroup reassortants, characterised as genetic subdivision 3C.3, were 
inferred to descend from a single reassortment event. These three viruses formed 
a distinct clade in each of the individual segment phylogenies, however the 
position of this clade in the overall topology varied. In seven of the eight segment 
trees these viruses were placed either outside the clades of other subgroups or 
within the 3C.3b clade, however in the M segment tree the 3C.3 viruses cluster 
within the 3C.2a viruses (posterior probability >0.99) (Figure 4). The M segments of 
these 3C.3 viruses were on average 10 and 14 nucleotides divergent from the M 
sequences of viruses belonging to genetic subgroup 3C.3a and 3C.3b respectively, 
and differed by only 4 nucleotides on average to the M segment of 3C.2a viruses. 
The three clinical samples harbouring these viruses were collected between 
November 2014 and April 2015, demonstrating that this reassortant genotype has 
persisted in the population. To compare these 3C.3 viruses detected in Scotland 
with those observed in the rest of the United Kingdom, all UK whole genome 
sequences from the 2014/15 influenza season available on GISAID (www.gisaid.org) 
were genetically characterised (n=171). Six of these viruses belonged to genetic 
subdivision 3C.3. Consistent with the pattern observed in the Scottish sequences, 
the M segment of these six viruses clustered amongst viruses characterised as 
genetic subgroup 3C.2a (data not shown).  
 

Analysis of virus phylogeny and trait correlations 
 
To investigate predictors of a severe outcome in IAV infection, a logistic regression 
analysis was performed to analyse association between SARI cases and patient age, 
location, week of sampling, genetic subgroup and whether the virus was classified 
as an inter-subgroup reassortant (n=13). Week of sampling was found to be 
significantly correlated with severity of infection (likelihood ratio test (LRT), 
χ2=62.2, df=1, p<1x10-10), with SARI cases more likely to occur later in the season 
(as seen in Figure 2a). Severe cases were also found to be more likely to occur 
when patients were infected by a reassortant virus (LRT, χ2=4.9, df=1, p<0.05). 
The odds ratio for the association between inter-subgroup reassortants and SARI 
cases was calculated as 4.4 (95% CI: 1.3-15.5), or 4.8 (1.2-19.4) when only GiRaF-
confirmed reassortments were considered (n=10). However, model selection 
indicated that the best model included week of sampling only; including 
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reassortment status in addition to week did not result in an improved model (LRT, 
χ2=0.7, df=1, p>0.4). Further investigation showed that week of sampling was also 
correlated with reassortment status (LRT, χ2=7.3, df=1, p<0.01) therefore these 
could be confounding variables. No other explanatory variables tested were found 
to be significant (Table S1). 
 
BaTS analysis was used to test for a phylogenetic association with severity of 
infection, patient age, location, and genetic group. Severity of infection was found 
to be strongly associated with the nucleoprotein (NP) phylogeny (AI ratio=0.76, 
p<0.01), and slightly weaker correlations with the M, HA, and NA phylogenies were 
also identified (p<0.05). Patient age was also found to be more clustered on the NP 
gene phylogeny than expected by chance (AI ratio=0.90, p<0.05). Location and 
genetic group were strongly associated with phylogeny for all eight gene segments 
(p<1x10-10). These correlations indicate strong geographic clustering not apparent 
at the resolution of genetic subgroup (Figure 2b) and that, as expected, viruses of 
the same genetic group (characterised by HA) tend to also have more similar 
sequences in other segments. BaTS analysis results are shown in full in Table S2.  

Discussion 
 
The increased availability, decreased costs and turn-around times, both for 
sequencing and data analysis, of NGS is revolutionising microbiology. While Sanger 
sequencing of the HA1 region remains the predominant method used for IAV 
characterisation globally, this study demonstrates the applicability of NGS 
technology for influenza surveillance, allowing WGS directly from clinical 
specimens. The benefits of WGS over existing Sanger sequencing protocols for IAV 
surveillance include: 1. Greater resolution for genetic characterisation of IAV; 2. 
The level of drug resistance mutations in the NA and M segments can be evaluated; 
3. Reassortment events can be detected and analysed; and 4. Mutations in any 
region of the genome not yet understood to be important (e.g. virulence factors) 
are available for retrospective analysis. Such retrospective analysis of mutations in 
any region of the genome other than HA1 is not available using current surveillance 
methods. 
 
We demonstrate effective WGS direct from clinical specimens using only one 
nucleic acid extraction, RT-PCR and NGS reaction. Many previous studies have 
propagated patient isolates in cell culture prior to sequence analysis [20], however 
the results presented herein suggest that this additional step is unnecessary. In 
addition to the reduced time and costs involved, direct sequencing methods allow 
for analysis of non-culturable strains and avoid unwanted mutations that have been 
shown to occur during viral propagation [20-22].  
 
Using NGS, complete coverage of the HA gene was achieved for 90% of samples and 
was adequate to allow characterisation of 100% of samples into genetic groups. 
When sequence data from Sanger and NGS were compared, high amino acid 
sequence homology was observed, providing further confidence that NGS could 
replace Sanger sequencing for routine influenza surveillance. Since 2016, ECDC 
guidelines have included HA2 residues for genetic characterisation of both 
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influenza A(H3N2) and A(H1N1)pdm09 [5]. This means additional Sanger sequencing 
reactions are required, increasing time and costs, whereas these HA2 residues are 
routinely available with WGS, strengthening the case for NGS further. 
 
The data presented reveal spatiotemporal co-circulation of distinct viral lineages, 
supporting previous data suggesting co-circulation of different A(H3N2) subgroups 
is common during epidemics of seasonal influenza [23-25]. This co-circulation 
facilitated inter-subgroup reassortment, estimated to occur at a rate of around 9% 
among the viruses studied. This supports previous data suggesting multiple 
reassortment events during an influenza season [25]. The level of inter-subgroup 
reassortment has been suggested to be an underestimate of true reassortment, as 
there may be undetected reassortment of segments between highly homogenous 
viruses of individual subgroups [26]. This was demonstrated here by the detection 
of additional intra-subgroup reassortments using computational detection 
methods. The 3C.3 lineage also demonstrates that inter-subgroup reassortment 
events can persist in the population and spread geographically. A total of nine 
viruses characterised as genetic subdivision 3C.3 (excluding novel reassortments) 
were observed (three and six from the Scottish and UK datasets respectively) in 
2014/15. In all of these viruses the M segment clustered with viruses from genetic 
subgroup 3C.2a. 
 
Persistence of intra-subtype reassortants has been demonstrated previously [27]. 
The factors associated with such persistence at a population level requires further 
investigation, however intra-subtype reassortment has been shown to temporarily 
raise the amino acid substitution rates contributing to an increased adaptive 
potential [28]. Specific examples of adaptive intra-subtype reassortment include a 
reassortment event between two antigenically distinct A(H3N2) lineages in 2003 
that caused a major change in antigenic phenotype reducing vaccine effectiveness 
[23], and reassortment within A(H3N2) has also led to the global rise and spread of 
resistance to adamantane drugs [29]. Increased WGS over consecutive influenza 
seasons would allow for an increased understanding of the frequency and timing of 
such intra-subtype reassortment and the contribution to the evolutionary dynamics 
of seasonal influenza. 
 
Logistic regression analysis indicated that infection with an inter-subgroup 
reassortant may be a risk factor for a severe outcome. It is possible that 
disruptions to inter-gene co-adaptations, caused by reassortment, could result in 
deviations from normal replication rates and virulence levels. With more data from 
WGS attached to patient information, this association could be investigated 
further. Both inter-subgroup reassortants and SARI cases were found to be more 
likely to occur later in the influenza season. It is possible that these correlations 
could result from a bias away from sampling milder cases later in the season. 
However, the distinct tendency for severe cases to occur later suggests that 
increased surveillance later in the season may be required to better understand 
the risk factors associated with disease severity. 
 
There is currently limited data in the literature regarding risk factors associated 
with disease severity [30]. Broberg et al. [31] recently recommended influenza 
sequence data to be reported along with epidemiological data to allow for greater 
definition of factors which may increase the risk of severe influenza. BaTS analysis 
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identified a significant association between phylogenies generated from the NP, M, 
HA, and NA gene segments and severe disease, with a particularly strong signal for 
NP. While these results should be interpreted with caution, they demonstrate the 
potential power of WGS coupled with linked epidemiological data. With more data, 
these correlations could be explored further to identify particular mutations in 
these genes which may be related to virulence.  
 
In summary, this study demonstrates the benefit of NGS technology to provide 
whole genome sequence data for surveillance of seasonal influenza viruses. The 
results of both the logistic regression and BaTS analysis emphasise that WGS 
coupled to linked patient data could be an important tool for developing our 
understanding of the relationship between the influenza genome and disease 
severity. More generally, WGS provides the opportunity to further investigate the 
epidemiological consequences of within-subtype reassortment and both the intra- 
and inter-season evolutionary dynamics of seasonal IAV at the whole genome level.  
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Supplementary Materials 
 
Table S1. Logistic regression model quality as assessed by AIC. 
 
Model AIC 
Null intercept model 121.7 
Severity ~ Health Board 128.1 
Severity ~ Genetic subgroup 123.7 
Severity ~ Age 123.0 
Severity ~ Reassortant 118.8 
Severity ~ Week* 61.5 
Severity ~ Week + Reassortant 62.8 
Severity ~ Week + Age 63.4 
Severity ~ Week + Reassortant + Age 64.7 
 
Models are shown alongside values of AIC. Smaller AIC values indicate models of 
better quality (* marks best model). In models with a single explanatory variable, 
week is by far the most informative explanatory variable. Including reassortant or 
age in addition to week did not improve the model. Models including genetic 
subgroup or Health Board in addition to week could not be evaluated as fitted 
probabilities of 0 or 1 occurred, violating model assumptions. 
  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 28, 2017. ; https://doi.org/10.1101/121434doi: bioRxiv preprint 

https://doi.org/10.1101/121434
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

Table S2. Summary of results of BaTS analysis. 
 
Trait Segment Association index 

(AI) ratio1 
p-value2 

 
 
 
Severity of 
infection 

PB2 0.96 0.37 
PB1 0.94 0.30 
PA 0.92 0.22 
HA 0.80 0.03 
NP 0.76 <0.01 
NA 0.80 0.03 
M 0.82 0.01 
NS 1.00 0.50 

 
 
 
Age 

PB2 0.92 0.07 
PB1 0.92 0.08 
PA 0.93 0.08 
HA 0.93 0.11 
NP 0.90 0.02 
NA 0.93 0.12 
M 0.95 0.11 
NS 0.94 0.09 

 
 
 
Health Board 

PB2 0.62 <1x10-10 
PB1 0.63 <1x10-10 
PA 0.71 <1x10-10 
HA 0.62 <1x10-10 
NP 0.70 <1x10-10 
NA 0.62 <1x10-10 
M 0.78 <1x10-10 
NS 0.69 <1x10-10 

 
 
 
Genetic subgroup 

PB2 0.16 <1x10-10 

PB1 0.10 <1x10-10 
PA 0.13 <1x10-10 
HA 0.13 <1x10-10 
NP 0.14 <1x10-10 
NA 0.13 <1x10-10 
M 0.11 <1x10-10 
NS 0.13 <1x10-10 

1. Observed AI/null AI where null AI is derived from 5000 tree tip randomisations. 
Lower values indicate stronger phylogeny-trait associations in observed data. 
2. BaTS null hypothesis test. 
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