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Abstract		
	

The	recent	advent	of	methods	for	high-throughput	single-cell	molecular	profiling	

has	 catalyzed	 a	 growing	 sense	 in	 the	 scientific	 community	 that	 the	 time	 is	 ripe	 to	

complete	 the	 150-year-old	 effort	 to	 identify	 all	 cell	 types	 in	 the	 human	 body,	 by	

undertaking	a	Human	Cell	Atlas	Project	as	an	international	collaborative	effort.	The	aim	

would	 be	 to	 define	 all	 human	 cell	 types	 in	 terms	 of	 distinctive	molecular	 profiles	 (e.g.,	

gene	 expression)	 and	 connect	 this	 information	 with	 classical	 cellular	 descriptions	 (e.g.,	

location	and	morphology).	A	comprehensive	reference	map	of	the	molecular	state	of	cells	

in	 healthy	 human	 tissues	 would	 propel	 the	 systematic	 study	 of	 physiological	 states,	

developmental	trajectories,	regulatory	circuitry	and	interactions	of	cells,	as	well	as	provide	

a	framework	for	understanding	cellular	dysregulation	in	human	disease.	Here	we	describe	

the	idea,	its	potential	utility,	early	proofs-of-concept,	and	some	design	considerations	for	

the	Human	Cell	Atlas.		
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Introduction			

The	cell	is	the	fundamental	unit	of	living	organisms.	Hooke	reported	the	discovery	

of	cells	in	plants	in	1665	(Hooke,	1665)	and	named	them	for	their	resemblance	to	the	cells	

inhabited	 by	 monks,	 but	 it	 took	 nearly	 two	 centuries	 for	 biologists	 to	 appreciate	 their	

central	role	in	biology.	Between	1838	and	1855,	Schleiden,	Schwann,	Remak,	Virchow	and	

others	 crystalized	 an	 elegant	 Cell	 Theory	 (Harris,	 2000)—stating	 that	 all	 organisms	 are	

composed	of	one	or	more	cells;	 that	cells	are	 the	basic	unit	of	 structure	and	 function	 in	

life;	and	that	all	cells	are	derived	from	pre-existing	cells	(Mazzarello,	1999)	(Figure	1).		

To	 study	 human	 biology,	 we	 must	 know	 our	 cells.	 Human	 physiology	 emerges	

from	normal	 cellular	 functions	 and	 intercellular	 interactions.	Human	disease	entails	 the	

disruption	 of	 these	 processes	 and	may	 involve	 aberrant	 cell	 types	 and	 states,	 as	 seen	 in	

cancer.	Genotypes	give	 rise	 to	organismal	phenotypes	 through	 the	 intermediate	of	 cells,	

because	 cells	 are	 the	 basic	 functional	 units,	 each	 regulating	 their	 own	 program	 of	 gene	

expression.	Therefore,	genetic	variants	 that	contribute	to	disease	 typically	manifest	 their	

action	 through	 impact	 in	 a	 particular	 cell	 types—for	 example,	 genetic	 variants	 in	 the	

IL23R	 locus	 increase	 risk	 of	 autoimmune	 diseases	 by	 altering	 the	 function	 of	 dendritic	

cells	 and	 T-cells	 (Duerr	 et	 al.,	 2006),	 and	 DMD	 mutations	 cause	 muscular	 dystrophy	

through	specific	effects	in	skeletal	muscle	cells	(Murray	et	al.,	1982).		

For	more	 than	 150	 years,	 biologists	have	 sought	 to	 characterize	 and	 classify	 cells	

into	 distinct	 types	 based	 on	 increasingly	 detailed	 descriptions	 of	 their	 properties—

including	 their	 shape,	 their	 location	 and	 relationship	 to	 other	 cells	within	 tissues,	 their	

biological	function,	and,	more	recently,	their	molecular	components.	At	every	step,	efforts	

to	 catalog	 cells	 have	 been	 driven	 by	 advances	 in	 technology.	 Improvements	 in	 light	

microscopy	 were	 obviously	 critical.	 So	 too	 was	 chemists’	 invention	 of	 synthetic	 dyes	
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(Nagel,	1981),	which	biologists	rapidly	found	stained	cellular	components	in	different	ways	

(Stahnisch,	2015).	In	pioneering	work	beginning	in	1887,	Santiago	Ramón	y	Cajal	applied	a	

remarkable	 staining	 process	 discovered	 by	 Camillo	 Golgi	 to	 show	 that	 the	 brain	 is	

composed	of	distinct	neuronal	cells,	rather	than	a	continuous	syncytium,	with	stunningly	

diverse	architectures	found	in	specific	anatomical	regions	(Ramón	y	Cajal,	1995);	the	pair	

shared	the	1906	Nobel	Prize	for	their	work.		

Starting	 in	 the	 1930s,	 electron	 microscopy	 provided	 up	 to	 5000-fold	 higher	

resolution,	making	 it	possible	 to	discover	 and	distinguish	 cells	based	on	 finer	 structural	

features.	Immunohistochemistry,	pioneered	in	the	1940s	(Arthur,	2016)	and	accelerated	by	

the	 advent	 of	 monoclonal	 antibodies	 (Kohler	 and	 Milstein,	 1975)	 and	 Fluorescence-

Activated	 Cell	 Sorting	 (FACS)	 (Dittrich	 and	 Göhde,	 1971;	 Fulwyler,	 1965)	 in	 the	 1970s,	

made	it	possible	to	detect	the	presence	and	levels	of	specific	proteins.	This	revealed	that	

morphologically	 indistinguishable	 cells	 can	 vary	 dramatically	 at	 the	molecular	 level	 and	

led	to	exceptionally	fine	classification	systems,	for	example,	of	hematopoietic	cells,	based	

on	cell-surface	markers.	In	the	1980s,	Fluorescence	 in	 situ	Hybridization	(FISH)	(Langer-

Safer	et	al.,	1982)	enhanced	the	ability	to	characterize	cells	by	detecting	specific	DNA	loci	

and	RNA	transcripts.	Along	 the	way,	 studies	 showed	 that	distinct	molecular	phenotypes	

typically	signify	distinct	functionalities.	Through	these	remarkable	efforts,	biologists	have	

achieved	an	impressive	understanding	of	specific	systems,	such	as	the	hematopoietic	and	

immune	systems	(Chao	et	al.,	2008;	Jojic	et	al.,	2013;	Kim	and	Lanier,	2013)	or	the	neurons	

in	the	retina	(Sanes	and	Masland,	2015).		

Despite	this	progress,	our	knowledge	of	cell	types	remains	incomplete.		Moreover,	

current	classifications	are	based	on	different	criteria,	such	as	morphology,	molecules	and	

function,	 which	 have	 not	 always	 been	 related	 to	 each	 other.	 In	 addition,	 molecular	
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classification	of	cells	has	largely	been	ad	hoc—based	on	markers	discovered	by	accident	or	

chosen	 for	convenience—rather	 than	systematic	and	comprehensive.	Even	 less	 is	known	

about	cell	states	and	their	relationships	during	development:	the	full	lineage	tree	of	cells	

from	the	single-cell	zygote	to	the	adult	is	only	known	for	the	nematode	C.	elegans,	which	

is	transparent	and	has	just	~1000	cells.		

At	a	conceptual	 level,	one	challenge	 is	 that	we	 lack	a	 rigorous	definition	of	what	

we	mean	by	the	intuitive	terms	“cell	type”	and	“cell	state.”	Cell	type	often	implies	a	notion	

of	 persistence	 (e.g.,	 being	 a	 hepatic	 stellate	 cell	 or	 a	 cerebellar	 Purkinje	 cell),	while	 cell	

state	often	refers	to	more	transient	properties	(e.g.,	being	in	the	G1	phase	of	the	cell	cycle	

or	experiencing	nutrient	deprivation).	But,	the	boundaries	between	these	concepts	can	be	

blurred,	 because	 cells	 change	 over	 time	 in	 ways	 that	 are	 far	 from	 fully	 understood.	

Ultimately,	data-driven	approaches	will	likely	refine	our	concepts.		

The	 desirability	 of	 having	 much	 deeper	 knowledge	 about	 cells	 has	 been	 well	

recognized	for	a	long	time	(Brenner,	2010;	Eberwine	et	al.,	1992;	Shapiro,	2010;	Van	Gelder	

et	 al.,	 1990).	 However,	 only	 in	 the	 past	 few	 years	 has	 it	 begun	 to	 seem	 feasible	 to	

undertake	 the	 kind	 of	 systematic,	 high-resolution	 characterization	 of	 human	 cells	

necessary	to	create	a	systematic	cell	atlas.	

The	key	has	been	the	recent	ability	to	apply	genomic	profiling	approaches	to	single	

cells.	By	“genomic	approaches,”	we	mean	methods	for	large-scale	profiling	of	the	genome	

and	 its	 products—including	 DNA	 sequence,	 chromatin	 architecture,	 RNA	 transcripts,	

proteins,	and	metabolites	(Lander,	1996).	It	has	long	been	appreciated	that	such	methods	

provide	 rich	 and	 comprehensive	 descriptions	 of	 biological	 processes.	 Historically,	

however,	 they	could	only	be	applied	to	bulk	 tissue	samples	comprised	of	an	ensemble	of	

many	 cells—providing	 average	 genomic	 measures	 for	 a	 sample,	 but	 masking	 their	
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differences	 across	 cells.	 The	 result	 is	 as	 unsatisfying	 as	 trying	 to	 understand	New	York,	

London	or	Mumbai	based	on	the	average	properties	of	their	inhabitants.		

The	first	single-cell	genomic	characterization	method	to	become	feasible	at	large-

scale	 is	 trancriptome	analysis	by	 single	 cell	RNA-Seq	 (Box	 1)	 (Hashimshony	et	 al.,	 2012;	

Jaitin	et	al.,	2014;	Picelli	et	al.,	2013;	Ramskold	et	al.,	2012;	Shalek	et	al.,	2013).	Initial	efforts	

first	 used	microarrays	 and	 then	 RNA-seq	 to	 profile	 RNA	 from	 small	 numbers	 of	 single	

cells,	which	were	obtained	either	by	manual	picking	from	in	situ	 fixed	tissue,	using	flow-

sorting,	or	–	later	on	–with	microfluidic	devices,	adapted	from	devices	developed	initially	

for	 qPCR-based	 approaches	 (Crino	 et	 al.,	 1996;	Dalerba	 et	 al.,	 2011;	Marcus	 et	 al.,	 2006;	

Miyashiro	et	al.,	1994;	Zhong	et	al.,	2008).	Now,	massively	parallel	assays	can	process	tens	

and	hundreds	of	thousands	of	single	cells	simultaneously	to	measure	their	transcriptional	

profiles	at	rapidly	decreasing	costs	(Klein	et	al.,	2015;	Macosko	et	al.,	2015;	Shekhar	et	al.,	

2016)	 with	 increasing	 accuracy	 and	 sensitivity	 (Svensson	 et	 al.,	 2016;	 Ziegenhain	 et	 al.,	

2017).	 In	 some	 cases,	 it	 is	 even	 possible	 to	 register	 these	 sorted	 cells	 to	 their	 spatial	

positions	 in	 images	 (Vickovic	 et	 al.,	 2016).	 Single-cell	 RNA	 sequencing	 (scRNA-seq)	 is	

rapidly	becoming	widely	disseminated.		

Following	this	initial	wave	of	technologies	are	many	additional	methods	at	various	

stages	 of	 development	 and	 high-throughput	 implementation.	 Techniques	 are	 being	

developed	to	assay:	 in	 situ	gene	expression	 in	 tissues	at	single-cell	and	even	sub-cellular	

resolution	(Chen	et	al.,	2015c;	Ke	et	al.,	2013;	Lee	et	al.,	2014;	Lubeck	et	al.,	2014;	Shah	et	al.,	

2016;	 Stahl	 et	 al.,	 2016);	 the	 distribution	 of	 scores	 of	 proteins	 at	 cellular	 or	 sub-cellular	

resolution	 (Angelo	 et	 al.,	 2014;	 Chen	 et	 al.,	 2015a;	 Giesen	 et	 al.,	 2014;	Hama	 et	 al.,	 2011;	

Susaki	et	al.,	2014;	Yang	et	al.,	2014);	various	aspects	of	chromatin	state	(Buenrostro	et	al.,	

2015;	Cusanovich	et	al.,	2015;	Farlik	et	al.,	2015;	Guo	et	al.,	2013;	Lorthongpanich	et	al.,	2013;	
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Mooijman	et	al.,	2016;	Rotem	et	al.,	2015a;	Rotem	et	al.,	2015b;	Smallwood	et	al.,	2014);	and	

DNA	 mutations	 to	 allow	 precise	 reconstruction	 of	 cell	 lineages	 (Behjati	 et	 al.,	 2014;	

Biezuner	et	al.,	2016;	Shapiro	et	al.,	2013;	Taylor	et	al.,	2003;	Teixeira	et	al.,	2013).	Various	

groups	 are	 also	 developing	 single-cell	 multi-omic	 methods	 to	 simultaneously	 measure	

several	types	of	molecular	profiles	in	the	same	cell	(Albayrak	et	al.,	2016;	Angermueller	et	

al.,	 2016;	 Behjati	 et	 al.,	 2014;	 Darmanis	 et	 al.,	 2016;	 Dey	 et	 al.,	 2015;	 Frei	 et	 al.,	 2016;	

Genshaft	et	al.,	2016;	Macaulay	et	al.,	2015).		

	 As	a	 result,	 there	 is	a	growing	sense	 in	 the	scientific	community	 that	 the	 time	 is	

now	right	for	a	project	to	complete	the	“Human	Cell	Atlas”	that	pioneering	histologists	

began	150	years	ago.	Various	discussions	have	taken	place	in	a	number	of	settings	over	the	

past	 two	 years,	 culminating	 in	 an	 international	meeting	 in	 London	 in	October	 2016.1	In	

addition,	several	pilot	efforts	are	already	underway	or	in	planning—for	example,	related	to	

brain	cells	 and	 immune	cells.	Prompted	by	 such	efforts,	 funding	agencies,	 including	 the	

NIH,	have	sought	information	from	the	scientific	community	about	the	notion	of	creating	

cell	or	tissue	atlases2.	

The	 goal	 of	 this	 article	 is	 to	 engage	 the	 wider	 scientific	 community	 in	 this	

conversation.	We	articulate	the	concept	of	a	cell	atlas	and	explore	its	potential	utility	for	

biology	 and	 medicine.	 We	 discuss	 how	 an	 atlas	 can	 lead	 to	 new	 understanding	 of	

histology,	 development,	 physiology,	 pathology,	 and	 intra-	 and	 inter-cellular	 regulation,	

and	enhance	our	ability	 to	predict	 the	 impact	of	perturbations	on	cells.	 It	will	also	yield	

molecular	 tools	 with	 applications	 in	 both	 research	 and	 clinical	 practice.	 As	 discussed	

																																																								
	
1www.humancellatlas.org	
2	https://grants.nih.gov/grants/guide/notice-files/NOT-RM-16-025.html	
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below,	a	Human	Cell	Atlas	Project	would	be	a	shared	international	effort	involving	diverse	

scientific	communities.	

	

What	is	the	Human	Cell	Atlas?		

At	 its	 most	 basic	 level,	 the	 Human	 Cell	 Atlas	 must	 include	 a	 comprehensive	

reference	catalog	of	all	human	cells	based	on	their	stable	properties	and	transient	features,	

as	well	as	their	locations	and	abundances.	Yet,	an	atlas	is	more	than	just	a	catalog:	it	is	a	

map	 that	 aims	 to	 show	 the	 relationships	 among	 its	 elements.	 By	 doing	 so,	 it	 can	

sometimes	 reveal	 fundamental	 processes—akin	 to	 how	 the	 atlas	 of	 Earth	 suggested	

continental	drift	through	the	correspondence	of	coastlines.		

To	be	useful,	an	atlas	must	also	be	an	abstraction—comprehensively	representing	

certain	 features,	 while	 ignoring	 others.	 The	 writer	 Jorge	 Luis	 Borges—a	 master	 at	

capturing	 the	 tension	 between	 grandeur	 and	 grandiosity—distilled	 this	 challenge	 in	 his	

one-paragraph	story,		"On	Exactitude	in	Science",	about	an	empire	enamored	with	science	

of	cartography3	(Borges	and	Hurley,	2004).	Over	time,	the	cartographers’	map	of	the	realm	

grew	more	and	more	elaborate,	and	hence	bigger,	until—expandio	ad	absurdum—the	map	

reached	the	size	of	the	entire	empire	itself	and	became	useless.	

Moreover,	 an	 atlas	 must	 provide	 a	 system	 of	 coordinates	 on	 which	 one	 can	

represent	and	harmonize	concepts	at	many	levels	(geopolitical	borders,	topography,	roads,	

																																																								
	
3	On	Exactitude	in	Science.	Jorge	Luis	Borges	(1946)	“.	.	.	In	that	Empire,	the	Art	of	Cartography	attained	
such	Perfection	that	the	map	of	a	single	Province	occupied	the	entirety	of	a	City,	and	the	map	of	the	Empire,	
the	entirety	of	a	Province.	In	time,	those	Unconscionable	Maps	no	longer	satisfied,	and	the	Cartographers	
Guilds	struck	a	Map	of	the	Empire	whose	size	was	that	of	the	Empire,	and	which	coincided	point	for	point	
with	it.	The	following	Generations,	who	were	not	so	fond	of	the	Study	of	Cartography	as	their	Forebears	had	
been,	saw	that	that	vast	map	was	Useless,	and	not	without	some	Pitilessness	was	it,	that	they	delivered	it	up	to	
the	Inclemencies	of	Sun	and	Winters.	In	the	Deserts	of	the	West,	still	today,	there	are	Tattered	Ruins	of	that	
Map,	inhabited	by	Animals	and	Beggars;	in	all	the	Land	there	is	no	other	Relic	of	the	Disciplines	of	
Geography.”	Purportedly	from	Suárez	Miranda,	Travels	of	Prudent	Men,	Book	Four,	Ch.	XLV,	Lérida,	1658.		
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climate,	 restaurants,	 and	 even	 dynamic	 traffic	 patterns).	 Features	 can	 be	 viewed	 at	 any	

level	of	magnification,	and	high-dimensional	information	collapsed	into	simpler	views.	

So,	a	key	question	is	how	a	Human	Cell	Atlas	should	abstract	key	features,	provide	

coordinates,	and	show	relationships.	A	natural	solution	would	be	to	describe	each	human	

cell	by	a	defined	set	of	molecular	markers.	For	example,	one	might	describe	each	cell	by	

the	expression	level	of	each	of	the	~20,000	human	protein-coding	genes—that	is,	each	cell	

would	 be	 represented	 as	 a	 point	 in	 ~20,000-dimensional	 space.	 Of	 course,	 the	 set	 of	

markers	 could	 be	 expanded	 to	 include	 the	 expression	 levels	 of	 non-coding	 genes,	 the	

levels	 of	 the	 alternatively	 spliced	 forms	 of	 each	 transcript,	 the	 chromatin	 state	 of	 every	

promoter	 and	 enhancer,	 and	 the	 levels	 of	 each	 protein	 or	 each	 post-translationally	

modified	form	of	each	protein.	The	optimal	amount	and	type	of	information	to	collect	will	

emerge	based	on	a	balance	of	technological	feasibility	and	the	biological	insight	provided	

by	each	layer	(Corces	et	al.,	2016;	Lorthongpanich	et	al.,	2013;	Paul	et	al.,	2015).	For	specific	

applications,	it	will	be	useful	to	employ	reduced	representations.	Solely	for	concreteness,	

we	will	largely	refer	below	to	the	20,000-dimensional	space	of	gene	expression,	which	can	

already	be	assayed	at	high-throughput.	

The	 Atlas	 should	 have	 additional	 coordinates	 or	 annotations	 to	 represent	

histological	 and	 anatomical	 information	 (e.g.,	 a	 cell’s	 location,	 morphology,	 or	 tissue	

context),	temporal	information	(e.g.,	the	age	of	the	individual	or	time	since	an	exposure),	

and	 disease	 status.	 Such	 information	 is	 essential	 for	 harmonizing	 results	 based	 on	

molecular	 profiles	with	 rich	 knowledge	 about	 cell	 biology,	 histology	 and	 function.	How	

best	to	capture	and	represent	this	information	requires	serious	attention.	

In	some	respects,	the	Human	Cell	Atlas	Project	(whose	fundamental	unit	is	a	cell)	

is	analogous	to	the	Human	Genome	Project	(whose	fundamental	unit	is	a	gene).	Both	are	
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ambitious	efforts	to	create	“Periodic	Tables”	for	biology	that	comprehensively	enumerate	

the	two	key	“atomic”	units	that	underlie	human	life	(cells	and	genes)	and	thereby	provide	

a	crucial	 foundation	for	biological	research	and	medical	application.	As	with	the	Human	

Genome	Project,	we	will	also	need	corresponding	atlases	for	important	model	organisms,	

where	 conserved	 cell	 states	 can	 be	 identified	 and	 genetic	 manipulations	 and	 other	

approaches	can	be	used	to	probe	function	and	lineage.	Yet,	the	Human	Cell	Atlas	differs	in	

important	 ways	 from	 the	 Human	 Genome	 Project—owing	 to	 unique	 aspects	 of	 cell	

biology,	which	requires	a	distinct	experimental	toolbox,	and	includes	choices	concerning	

molecular	and	cellular	descriptors	and	challenges	in	assessing	the	distance	to	completion.		

As	a	Borgesian	 thought	experiment,	we	could	conceive	of	 an	 imaginary	Ultimate	

Human	Cell	 Atlas	 that	 represents	 all	 conceivable	markers	 in	 (i)	 every	 cell	 in	 a	 person’s	

body;	(ii)	every	cell’s	spatial	position	(by	adding	three	dimensions	for	the	body	axes);	(iii)	

every	cell	at	every	moment	of	a	person’s	 lifetime	(by	adding	another	dimension	for	time	

relating	the	cells	by	a	lineage);	and	(iv)	the	superimposition	of	such	cell	atlases	from	every	

human	 being,	 annotated	 according	 to	 differences	 in	 health,	 genotype,	 lifestyle	 and	

environmental	exposure.		

Of	 course,	 it	 is	 not	 possible	 to	 construct	 such	 an	Ultimate	 Atlas.	However,	 it	 is	

increasingly	feasible	to	sample	richly	from	the	distribution	of	points	to	understand	the	key	

features	and	relationships	among	all	human	cells.	We	return	below	to	the	question	of	how	

the	scientific	community	might	go	about	creating	a	Human	Cell	Atlas.	First,	we	consider	

the	central	scientific	question:	What	could	we	hope	to	learn	from	a	Human	Cell	Atlas?		

	

Learning	Biology	from	a	Human	Cell	Atlas	
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	 A	Human	Cell	Atlas	would	have	 a	profound	 impact	 on	biology	 and	medicine	by	

bringing	our	understanding	of	anatomy,	development,	physiology,	pathology,	intracellular	

regulation,	 and	 intercellular	 communication	 to	 a	 new	 level	 of	 resolution.	 It	 would	 also	

provide	invaluable	markers,	signatures	and	tools	for	basic	research	(facilitating	detection,	

purification	 and	 genetic	 manipulation	 of	 every	 cell	 type)	 and	 clinical	 applications	

(including	diagnosis,	prognosis	and	monitoring	response	to	therapy).	

In	 the	 following	 sections,	we	 outline	 reasonable	 expectations	 and	 describe	 some	

early	examples.	We	recognize	that	these	concepts	will	evolve	based	on	emerging	data.	It	is	

clear	 that	a	Human	Cell	Atlas	Project	will	 require	and	will	motivate	 the	development	of	

new	 technologies.	 It	will	 also	 necessitate	 the	 creation	 of	 new	mathematical	 frameworks	

and	 computational	 approaches	 that	may	have	 applications	 far	 beyond	biology—perhaps	

analogous	 to	how	biological	 “big	data”	 in	agriculture	 in	 the	 1920s	 led	to	 the	creation,	by	

R.A.	Fisher	and	others,	of	key	statistical	methods,	 including	 the	analysis	of	variance	and	

experimental	design	(Parolini,	2015).	

	

Taxonomy:	Cell	types		

The	most	fundamental	level	of	analysis	is	the	identification	of	cell	types.	In	an	atlas	

where	cells	are	represented	as	points	in	a	high-dimensional	space,	“similar”	cells	should	be	

“close”	in	some	appropriate	sense—although	not	identical,	owing	to	differences	in	

physiological	states	(e.g.,	cell-cycle	stage),	the	inherent	noise	in	molecular	systems	(Eldar	

and	Elowitz,	2010;	Kharchenko	et	al.,	2014;	Kim	et	al.,	2015;	Shalek	et	al.,	2013),	and	

measurement	errors	(Buettner	et	al.,	2015;	Kharchenko	et	al.,	2014;	Kim	et	al.,	2015;	Shalek	

et	al.,	2013;	Shalek	et	al.,	2014;	Wagner	et	al.,	2016).	Thus,	a	cell	“type”	might	be	defined	as	

a	region	or	a	probability	distribution	(Kim	and	Eberwine,	2010;	Sul	et	al.,	2012)	—either	in	
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the	full-dimensional	space	or	in	a	projection	onto	a	lower-dimensional	space	that	reflects	

salient	features.		

	While	this	notion	is	intuitively	compelling,	it	is	challenging	to	give	a	precise	

definition	of	a	“cell	type.”	Cell-type	taxonomies	are	often	represented	as	hierarchies	based	

on	morphological,	physiological,	and	molecular	differences	(Sanes	and	Masland,	2015).	

Whereas	higher	distinctions	are	easily	agreed	upon,	finer	ones	may	be	less	obvious	and	

may	not	obey	a	strict	hierarchy,	either	because	distinct	types	share	features,	or	because	

some	distinctions	are	graded	and	not	discrete.	Critically,	it	remains	unclear	whether	

distinctions	based	on	morphological,	molecular,	and	physiological	properties	agree	with	

each	other.	New	computational	methods	will	be	required	both	to	discover	types	and	to	

better	classify	cells—and	ultimately	to	refine	the	concepts	themselves	(Grun	and	van	

Oudenaarden,	2015;	Shapiro	et	al.,	2013;	Stegle	et	al.,	2015;	Tanay	and	Regev,	2017;	Wagner	

et	al.,	2016).	Unsupervised	clustering	algorithms	for	high-dimensional	data	provide	an	

initial	framework	(Grun	et	al.,	2015;	Grun	et	al.,	2016;	Jaitin	et	al.,	2014;	Levine	et	al.,	2015;	

Macosko	et	al.,	2015;	Shekhar	et	al.,	2016;	Vallejos	et	al.,	2015),	but	substantial	advances	will	

be	needed	in	order	to	select	the	“right”	features,	“right”	similarity	metric,	and	the	“right”	

level	of	granularity	for	the	question	at	hand,	control	for	distinct	biological	processes,	

handle	technical	noise,	and	connect	novel	clusters	with	legacy	knowledge.	Once	cell	types	

are	defined	based	on	regions	in	feature	space,	it	will	be	important	to	distill	them	into	

simpler	molecular	signatures	that	can	be	used	to	index	cells	in	the	atlas,	aggregate	and	

compare	results	from	independent	labs	and	different	individuals,	and	create	tools	and	

reagents	for	validation	and	follow	up	studies.		

Despite	these	challenges,	recent	studies	in	diverse	organs—including	immune,	

nervous,	and	epithelial	tissues—support	the	prospects	for	comprehensive	discovery	of	cell	
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types,	as	well	as	harmonization	of	genomic,	morphological,	and	functional	classifications	

(Figure	2A-C).	For	example,	analysis	of	immune	cells	from	mouse	spleen	(Jaitin	et	al.,	

2014)	and	human	blood	(Horowitz	et	al.,	2013)	showed	that	well-established	functional	

immune	cell	types	and	subtypes	could	be	readily	distinguished	by	unsupervised	clustering	

of	single-cell	expression	profiles.	Similarly,	single-cell	expression	profiles	of	epithelial	cells	

from	gut	organoids	(Grun	et	al.,	2015)	distinguished	known	cell	subtypes,	each	with	

distinctive	functional	and	histological	characteristics,	while	also	revealing	a	new	subtype	

of	enteroendocrine	cells,	which	was	subsequently	validated	experimentally.		

The	nervous	system,	where	many	cell	types	have	not	yet	been	characterized	by	any	means,	

illustrates	both	the	promise	and	the	challenge.		Whereas	each	of	the	302	individual	

neurons	in	C.	elegans	can	be	distinctly	defined	by	its	lineage,	position,	connectivity,	

molecular	profile	and	functions,	the	extent	to	which	the	~	1011	neurons	in	the	human	brain	

are	distinctly	defined	by	morphological,	physiological,	lineage,	connectivity,	and	

electrical-activity	criteria,	and	have	distinct	molecular	profiles,	remains	unknown.		

Cellular	neuroanatomy	is	deeply	rooted	in	the	concept	of	cell	types	defined	by	their	

morphologies	(a	proxy	for	connectivity)	and	electrophysiological	properties	(Petilla	

Interneuron	Nomenclature	et	al.,	2008),	and	extensive	efforts	continue	to	classify	the	

types	in	complicated	structures	like	the	retina	and	neocortex	(Jiang	et	al.,	2015;	Markram	

et	al.,	2015;	Sanes	and	Masland,	2015).	Critically,	it	remains	unclear	whether	distinctions	

based	on	morphological,	connectional,	and	physiological	properties	agree	with	their	

molecular	properties.			

The	mouse	retina	provides	an	ideal	testing	ground	to	test	this	correspondence	

because	cell	types	follow	highly	stereotyped	spatial	patterns	(Macosko	et	al.,	2015;	Sanes	

and	Masland,	2015).	Analysis	of	31,000	retinal	bipolar	cells	(Shekhar	et	al.,	2016)	
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automatically	re-discovered	the	13	subtypes	that	had	been	defined	over	the	past	quarter-

century	based	on	morphology	and	lamination,	while	also	revealing	two	new	subtypes	with	

distinct	morphological	and	laminar	characteristics.	These	subtypes	included	one	with	a	

“bipolar”	expression	pattern	and	developmental	history,	but	a	unipolar	morphology	in	the	

adult	(Shekhar	et	al.,	2016),	which	has	distinct	functional	characteristics	in	the	neural	

circuits	of	the	retina	(Della	Santina	et	al.,	2016).	In	this	example,	known	morphological	

and	other	non-molecular	classifications	matched	perfectly	to	molecular	types,	and	new	

molecularly-defined	cell	types	discovered	in	the	single-cell	transcriptomic	analysis	

corresponded	to	unique	new	morphology	and	histology.	In	other	complex	brain	regions	

such	as	the	neocortex	and	hippocampus	there	are	also	a	large	number	of	transcriptionally	

defined	types	(Darmanis	et	al.,	2015;	Gokce	et	al.,	2016;	Habib	et	al.,	2016;	Lake	et	al.,	2016;	

Pollen	et	al.,	2014;	Tasic	et	al.,	2016;	Zeisel	et	al.,	2015),	but	it	has	been	more	difficult	to	find	

consensus	between	data	modalities,	and	the	relationship	between	transcriptomic	types	

and	anatomical	or	morphological	types	is	unclear.		In	this	light,	technologies	that	can	

directly	measure	multiple	cellular	phenotypes	are	essential.		For	example,	

electrophysiological	measurements	with	patch	clamping	followed	by	scRNA-seq	used	in	a	

recent	study	of	a	particular	inhibitory	cortical	cell	type	showed	that	the	transcriptome	

correlated	strongly	with	the	cell’s	physiological	state	(Cadwell	et	al.,	2016;	Foldy	et	al.,	

2016).		Thus,	the	transcriptome	appears	to	provide	a	proxy	for	other	neuronal	properties,	

but	much	more	investigation	is	needed.	

	

Histology:	Cell	neighborhood	and	position		

Histology	examines	the	spatial	position	of	cells	and	molecules	within	tissues.	Over	

the	 past	 century,	 it	 has	 accumulated	 tremendous	 knowledge	 about	 cell	 types,	markers,	

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 8, 2017. ; https://doi.org/10.1101/121202doi: bioRxiv preprint 

https://doi.org/10.1101/121202
http://creativecommons.org/licenses/by/4.0/


	
	

	
	

20 

and	tissue	architecture,	which	will	need	to	be	further	refined	and	woven	seamlessly	 into	

the	 Human	 Cell	 Atlas.	 With	 emerging	 highly	 multiplexed	 methods	 for	 in	 situ	

hybridization	(Chen	et	al.,	2015c;	Shah	et	al.,	2016)	or	protein	staining	(Angelo	et	al.,	2014;	

Giesen	et	al.,	2014),	it	should	be	possible	to	spatially	map	multiple	cell	types	at	once	based	

on	expression	signatures	to	see	how	they	relate	to	each	other	and	to	connect	them	with	

cell	 types	 defined	 by	 morphology	 or	 function.	 It	 should	 also	 be	 possible	 to	 extend	

observations	of	continuous	gradients	for	individual	genes	(such	as	morphogens)	to	multi-

gene	signatures.		

Computational	 approaches	 could	 then	 allow	 iterative	 refinement	 of	 cellular	

characterization	 based	 on	 both	 a	 cell’s	 molecular	 profile	 and	 information	 about	 its	

neighborhood;	 methods	 perfected	 in	 the	 analysis	 of	 networks	 could	 provide	 a	 helpful	

starting	point	(Blondel	et	al.,	2008;	Rosvall	and	Bergstrom,	2008).	Conversely,	expression	

data	from	a	cell	can	help	map	its	position	in	absolute	coordinates	or	relative	terms,	as	well	

as	in	the	context	of	pathology,	highlighting	how	disease	tissue	differs	from	typical	healthy	

tissue.	 Combining	 molecular	 profiles	 with	 tissue	 architecture	 will	 require	 new	

computational	methods,	drawing	perhaps	on	advances	in	machine	vision	(Xu	et	al.,	2015;	

Zheng	et	al.,	2015).	

New	methods	for	integrating	single-cell	genomics	data	into	a	spatial	context	have	

been	developed	 recently.	Single-cell	 analyses	of	 tissues	 from	early	embryos	 (Satija	 et	 al.,	

2015;	 Scialdone	 et	 al.,	 2016)	 to	 adult	 (Achim	 et	 al.,	 2015)	 demonstrate	 how	 physical	

locations	can	be	imprinted	in	transcriptional	profiles	(Durruthy-Durruthy	et	al.,	2014)	and	

can	be	used	 to	 infer	 tissue	organization	 (Figure	 2D).	 In	 the	 early	 zebrafish	 embryo,	 for	

example,	a	cell’s	expression	profile	specifies	its	location	to	within	a	small	neighborhood	of	

~100	 cells;	 the	 related	expression	patterns	of	 individual	 genes	 in	 turn	 fall	 into	only	nine	
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spatial	archetypes	(Satija	et	al.,	2015).	In	the	early	mouse	embryo,	key	spatial	gradients	can	

be	recovered	by	a	“pseudospace”	inferred	from	reduced	dimensions	of	single	cell	profiles	

(Scialdone	 et	 al.,	 2016).	 In	 adult	 mouse	 hippocampus,	 cell	 profiles	 show	 clear	 clusters	

corresponding	to	discrete	functional	regions	as	well	as	gradients	following	dorsal/ventral	

and	 medial/lateral	 axes	 (Habib	 et	 al.,	 2016).	 In	 the	 annelid	 brain,	 even	 finer	 punctate	

spatial	patterns	can	be	resolved	(Achim	et	al.,	2015).		

	

Development:	transitions	to	differentiated	cell	types	

Cells	 arrive	 at	 their	 final	 differentiated	 cell	 types	 through	 partly	 asynchronous	

branching	 pathways	 of	 development,	 which	 are	 driven	 by	 and	 reflected	 in	 molecular	

changes,	especially	gene-expression	patterns	(e.g.,	(Chao	et	al.,	2008;	Jojic	et	al.,	2013)).	It	

should	 therefore	 be	 possible	 to	 reconstruct	 development	 as	 trajectories	 in	 high-

dimensional	 space,	 mirroring	 Waddington’s	 landscape	 (Waddington,	 1957)—just	 as	 it	

would	 be	 possible	 to	 infer	 the	 ski	 lifts	 and	 trails	 on	 a	mountain	 from	 snapshots	 of	 the	

positions	of	enough	skiers.	One	can	even	infer	sharp	transitions,	provided	enough	cells	are	

observed.	 The	 required	 sampling	density	will	 depend	on	 the	number	 and	 complexity	 of	

paths	 and	 intersections,	 and	 sorting	 strategies	 can	 help	 to	 iteratively	 enrich	 for	 rare,	

transient	 populations.	 Notably,	 the	 relative	 proportions	 of	 cells	 observed	 at	 different	

points	along	the	developmental	paths	can	help	convey	critical	information,	both	about	the	

duration	 of	 each	 phase	 (Antebi	 et	 al.,	 2013;	 Kafri	 et	 al.,	 2013)	 and	 the	 balance	 of	 how	

progenitor	cells	are	allocated	among	fates	(Antebi	et	al.,	2013;	Lönnberg	et	al.,	2017;	Moris	

et	al.,	2016),	especially	when	information	about	the	rate	of	cell	proliferation	and/or	death	

can	be	incorporated	as	inferred	from	the	profiles.		
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In	animal	models,	 it	 should	be	possible	 to	create	 true	 lineage	trees	by	marking	a	

common	progenitor	cell	type.	For	example,	one	might	use	synthetic	circuits	that	introduce	

a	molecular	barcode	only	in	cells	expressing	an	RNA	pattern	characteristic	of	the	cell	type	

in	 order	 to	 recognize	 its	 descendants	 (Gagliani	 et	 al.,	 2015;	 McKenna	 et	 al.,	 2016).	 In	

humans,	immune	cells	naturally	contain	lineage	barcodes	through	VDJ	recombination	in	

T	 and	 B	 cells	 and	 somatic	 hypermutation	 in	 B	 cells	 (Stubbington	 et	 al.,	 2016).	 More	

generally,	 it	 may	 be	 feasible	 to	 accomplish	 lineage	 tracing	 in	 human	 cells	 by	 taking	

advantage	of	the	steady	accumulation	of	DNA	changes	(such	as	somatic	point	mutations,	

or	 repeat	 expansions	 at	 microsatellite	 loci)	 at	 each	 cell	 division	 (Behjati	 et	 al.,	 2014;	

Biezuner	et	al.,	2016;	Martincorena	et	al.,	2015;	Reizel	et	al.,	2012;	Shlush	et	al.,	2012)	or	as	a	

molecular	clock	(Taylor	et	al.,	2003;	Teixeira	et	al.,	2013).	

Initial	computational	methods	have	already	been	developed	for	inferring	dynamic	

trajectories	from	large	numbers	of	single-cell	profiles,	although	better	algorithms	are	still	

needed.	Critical	 challenges	 include	 accurately	 inferring	branching	 structures,	where	 two	

or	more	 paths	 diverge	 from	 a	 single	 point;	 reconstructing	 “fast”	 transitions,	where	 only	

few	cells	can	be	captured;	and	accounting	for	the	fact	that	a	cell	may	be	following	multiple	

dynamic	paths	simultaneously—for	example,	differentiation,	the	cell	cycle,	and	pathogen	

response	(see	below)—that	may	affect	each	other.		

Recent	 studies	 provide	 proofs-of-principle	 for	 how	 simultaneous	 and	 orthogonal	

biological	processes	can	be	inferred	from	single-cell	RNA-seq	data	(Figure	 3)	(Angerer	et	

al.,	 2016;	Bendall	 et	 al.,	 2014;	Chen	et	 al.,	 2016b;	Haghverdi	 et	 al.,	 2015;	Haghverdi	 et	 al.,	

2016;	 Lönnberg	 et	 al.,	 2017;	 Marco	 et	 al.,	 2014;	 Moignard	 et	 al.,	 2015;	 Setty	 et	 al.,	 2016;	

Trapnell	 et	 al.,	 2014;	 Treutlein	 et	 al.,	 2016).	 Linear	 developmental	 trajectories	have	 been	

reconstructed,	 for	 example,	 from	 single-cell	 protein	 expression	 during	 B-cell	
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differentiation	 (Bendall	 et	 al.,	 2014),	 and	 from	 single-cell	 RNA	 expression	 during	

myogenesis	 in	 vitro	 (Trapnell	 et	 al.,	 2014),	 early	 hematopoiesis	 (Nestorowa	 et	 al.,	 2016),	

neurogenesis	 in	 vivo	 (Habib	 et	 al.,	 2016;	 Shin	 et	 al.,	 2015),	 and	 reprogramming	 from	

fibroblasts	 to	 neurons	 (Treutlein	 et	 al.,	 2016).	 With	 a	 large	 enough	 number	 of	 cells,	

analysis	 of	 B-cell	 development	 was	 able	 to	 highlight	 a	 rare	 (0.007%)	 population	

corresponding	 to	 the	 earliest	 B-cell	 lymphocytes	 and	 confirm	 the	 identification	 by	

reference	 to	 rearrangements	 at	 the	 IgH	 locus.	 In	 direct	 reprogramming	 to	 neurons,	

scRNA-seq	revealed	unexpected	trajectories	(Treutlein	et	al.,	2016).	Bifurcated	trajectories	

have	also	been	reconstructed	in	the	differentiation	of	embryonic	stem	cells,	T	helper	cells,	

and	hematopoietic	cells	(Chen	et	al.,	2016b;	Haghverdi	et	al.,	2015;	Haghverdi	et	al.,	2016;	

Lönnberg	et	al.,	2017;	Marco	et	al.,	2014;	Moignard	et	al.,	2015;	Setty	et	al.,	2016),	and	have	

helped	 address	 open	questions	 about	whether	myeloid	progenitor	 cells	 in	 bone	marrow	

are	already	skewed	towards	distinct	fates	(Olsson	et	al.,	2016;	Paul	et	al.,	2015)	and	when	T	

helper	cell	commit	to	their	fate(Lönnberg	et	al.,	2017).	

	

Physiology	and	homeostasis:	cycles,	transient	responses	and	plastic	states	

In	 addition	 to	 development	 and	 differentiation,	 cells	 are	 constantly	 undergoing	

multiple	 dynamic	 processes	 of	 physiological	 change	 and	 homeostatic	 regulation	 (Yosef	

and	Regev,	2011,	2016).	These	include	cyclical	processes,	such	as	the	cell	cycle	and	circadian	

rhythms;	 transient	 responses	 to	 diverse	 factors,	 from	 nutrients	 and	 microbes	 to	

mechanical	forces	and	tissue	damage;	and	plastic	states	that	can	be	stably	maintained	over	

longer	 time	scales,	but	can	change	 in	 response	 to	new	environmental	cues.	 (The	precise	

boundary	between	plastic	states	and	cell	types,	it	must	be	noted,	remains	to	be	clarified.)	
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The	molecular	phenotype	of	a	cell	reflects	a	superposition	of	these	various	processes	and	

their	interactions	(Wagner	et	al.,	2016).	

Studies	 of	 physiological	 processes	 from	 bulk	 tissue	 samples	 are	 hampered	 by	

asynchrony	and	heterogeneity	among	cells,	which	blur	the	signals	of	individual	processes	

and	 states;	 investigators	 strive	 to	 create	 homogeneous	 cell	 populations	 through	

synchronization	and	purification.	By	contrast,	single-cell	analysis	exploits	asynchrony	and	

heterogeneity,	 leveraging	 variation	 within	 a	 cell	 population	 to	 reveal	 underlying	

structures.	 The	 difference	 is	 analogous	 to	 two	 approaches	 in	 structural	 biology:	 X-ray	

crystallography,	which	 requires	molecules	 to	be	 in	a	 crystalline	order,	 and	cryo-electron	

microscopy,	 which	 depends	 on	 observing	 large	 numbers	 of	 molecules	 in	 randomly	

sampled	poses.	

From	asynchronous	observations	of	 cyclical	and	 transient	processes,	 it	 should	be	

possible	 to	 “order”	 cells	 with	 respect	 to	 the	 process	 (as	 for	 development),	 with	 cell	

proportions	reflecting	residence	time	(e.g.,	the	length	of	a	phase	of	the	cell	cycle).	As	was	

initially	shown	for	single-cell	measurement	of	a	few	features	of	the	cell	cycle	(Kafri	et	al.,	

2013),	 analysis	 of	 many	 systems	 could	 yield	 a	 near-continuous	 model	 of	 the	 process,	

provided	 that	 a	 sufficient	 number	 of	 cells	 is	 sampled.	 This	 can	 occur	 either	 because	 all	

phases	co-occur	(e.g.,	in	asynchronously	cycling	cells)	or	because	enough	time	points	are	

sampled	 to	 span	 the	 full	 process.	 If	 very	 rapid	 and	 dramatic	 discontinuities	 exist,	

recovering	them	would	likely	require	direct	tracing,	for	example	by	genetic	tracers	or	live	

analysis	in	cell	cultures,	organoids,	or	animal	models.		

Once	the	cells	are	ordered,	one	can	derive	gene-signatures	that	reflect	each	phase	

and	use	them	to	further	sharpen	and	refine	the	model.	With	sufficient	data,	it	should	also	

be	possible	to	tease	apart	interactions	among	processes	occurring	in	parallel	(such	as	the	
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cell	 cycle,	 response	 to	 a	 pathogen,	 and	 differentiation).	 For	 plastic	 states,	 it	 may	 be	

possible	to	capture	transient	transitions	between	them,	especially	if	they	can	be	enriched	

by	appropriate	physiological	cues.	Finally,	we	will	 likely	 learn	about	 the	nature	of	 stable	

states:	 while	 we	 often	 think	 of	 stable	 states	 as	 discrete	 attractor	 basins	 (Waddington,	

1957),	there	may	also	be	troughs	that	reflect	a	continuous	spectrum	of	stable	states	(e.g.,	

the	ratio	of	two	processes	may	vary	across	cells,	but	are	stable	in	each	(Antebi	et	al.,	2013;	

Gaublomme	et	al.,	2015)).	Some	key	aspects	of	processes	may	be	difficult	to	uncover	solely	

from	observations	of	 transitions	among	molecular	states,	and	will	 likely	 require	directed	

perturbations	and	detailed	mechanistic	studies.		

Recent	studies	have	shown	that	cyclical	processes	and	transient	responses—from	

the	cell	cycle	(Buettner	et	al.,	2015;	Gut	et	al.,	2015;	Kafri	et	al.,	2013;	Kowalczyk	et	al.,	2015;	

Macosko	et	al.,	2015;	Proserpio	et	al.,	2016;	Tirosh	et	al.,	2016a)	to	the	response	of	immune	

cells	 to	 pathogen	 components	 (Avraham	 et	 al.,	 2015;	 Shalek	 et	 al.,	 2013;	 Shalek	 et	 al.,	

2014)—can	 be	 traced	 in	 single-cell	 profiles.	 It	 is	 possible	 to	 order	 the	 cells	 temporally,	

define	coordinately	expressed	genes	with	high	precision,	identify	the	time	scale	of	distinct	

phases,	and	relate	these	findings	to	orthogonal	measures	(Figure	 4).	For	example,	in	the	

cell	 cycle,	 analysis	 of	 single-cell	 profiles	 readily	 shows	 a	 robust,	 reproducible	 and	

evolutionarily	 conserved	 program	 that	 can	 be	 resolved	 in	 a	 near-continuous	way	 across	

human	and	mouse	cell	lines	(Macosko	et	al.,	2015),	primary	immune	cells	(Buettner	et	al.,	

2015;	Kowalczyk	et	al.,	2015),	and	healthy	and	disease	tissues	(Patel	et	al.,	2014;	Tirosh	et	

al.,	 2016a;	 Tirosh	 et	 al.,	 2016b).	 This	 approach	 has	 made	 it	 possible	 to	 determine	 the	

relative	rates	of	proliferation	of	different	cell	subpopulations	within	a	dataset	(Buettner	et	

al.,	2015;	Kolodziejczyk	et	al.,	2015;	Kowalczyk	et	al.,	2015;	Tsang	et	al.,	2015),	a	feat	difficult	

to	accomplish	using	bulk	synchronized	populations	along	the	cell	cycle	(Bar-Joseph	et	al.,	
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2008;	 Lu	 et	 al.,	 2007).	 Notably,	 the	 cell	 cycle	 could	 also	 be	 reconstructed	 by	 similar	

approaches	 when	 applied	 to	 imaging	 data	 of	 very	 few	 molecular	 markers	 along	 with	

salient	spatial	features	(Gut	et	al.,	2015).	Similar	principles	apply	to	transient	responses.	In	

the	response	of	dendritic	cells	to	pathogen	components,	single-cell	profiling	uncovered	a	

small	 subset	 (<1%)	of	 “precocious”	 cells:	 these	 early-appearing	 cells	 express	 a	distinctive	

module	 of	 genes,	 initiate	 production	 of	 interferon	 beta,	 and	 coordinate	 the	 subsequent	

response	of	other	cells	through	paracrine	signaling	(Shalek	et	al.,	2014).		

	

Disease:	Cells	and	cellular	ecosystems		

The	 Human	 Cell	 Atlas	 will	 be	 a	 critical	 reference	 for	 studying	 disease,	 which	

invariably	 involves	 disruption	 of	 normal	 cellular	 functions,	 interactions,	 proportions,	 or	

ecosystems.	 The	 power	 of	 single-cell	 analysis	 of	 disease	 is	 evident	 from	 decades	 of	

histopathological	 studies	 and	 FACS	 analysis.	 It	 will	 be	 substantially	 extended	 by	 the	

routine	ability	to	characterize	cells	and	tissues	with	rich	molecular	signatures,	rather	than	

focusing	 on	 a	 limited	 number	 of	 pre-defined	 markers	 or	 cell	 populations.	 It	 will	 also	

support	 the	 growing	 interest	 in	 understanding	 interactions	 between	 frankly	 abnormal	

cells	 and	 all	 other	 cells	 in	 a	 tissue’s	 ecosystem	 in	 promoting	 or	 suppressing	 disease	

processes	(e.g.,	between	malignant	cells	and	the	tumor	microenvironment).		

Single-cell	 analysis	 of	 disease	 samples	 will	 also	 likely	 be	 critical	 to	 see	 the	 full	

range	 of	 normal	 cellular	 physiology,	 because	 disease	 either	 elicits	 key	 perturbs	 cellular	

circuitry	 in	 informative	ways.	A	 clear	 example	 is	 the	 immune	 system,	where	only	 in	 the	

presence	 of	 a	 “challenge”	 is	 the	 full	 range	 of	 appropriate	 physiological	 behaviors	 and	

potential	responses	by	a	cell	revealed.		
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Single-cell	information	across	many	patients	will	allow	us	to	learn	about	how	cell	

proportions	 and	 states	 vary	 and	 how	 this	 variation	 correlates	 with	 genome	 variants,	

disease	 course	 and	 treatment	 response.	 From	 initial	 studies	 of	 a	 limited	 number	 of	

patients,	 it	 should	 be	 possible	 to	 derive	 signatures	 of	 key	 cell	 types	 and	 states	 and	 use	

them	 to	 deconvolute	 cellular	 proportions	 in	 conventional	 bulk-tissue	 or	 blood	 samples	

(Levine	et	al.,	2015;	Tirosh	et	al.,	2016a).	Future	studies	may	expand	single-cell	analysis	to	

thousands	 of	 patients	 to	 directly	 investigate	 how	 genetic	 variation	 affects	 gene	

transcription	and	regulation.	

The	 hematopoietic	 system	will	 be	 an	 early	 and	 fruitful	 target.	 A	 study	 involving	

signatures	of	cell-signaling	assays	by	single-cell	mass	cytometry	of	healthy	hematopoietic	

cells	 led	 to	 more	 accurate	 classification	 of	 hematopoietic	 stem	 and	 progenitor	 cells	

(HSPCs)	 in	 Acute	Myeloid	 Leukemia;	 a	 previous	 classification	was	 error-prone,	 because	

the	 “classical”	 cell-surface	 markers	 of	 healthy	 cells	 do	 not	 correctly	 identify	 the	

corresponding	 population	 in	 disease,	 whereas	 a	 richer	 signature	 allows	 accurate	

identification	(Levine	et	al.,	2015).	Monitoring	rare	immune	populations	first	discovered	in	

a	normal	setting	can	help	zero	in	on	the	relevant	aberrations	in	disease.	For	example,	the	

rare	population	associated	with	VDJ	recombination	first	identified	by	trajectory	analysis	of	

B	 cell	 development	 (Bendall	 et	 al.,	 2014)	 (above)	 is	 expanded	 in	 pediatric	 Acute	

Lymphoblastic	Leukemia,	and	drastically	more	so	in	recurrence	(Gary	Nolan,	unpublished	

results).		

The	 greatest	 impact,	 at	 least	 in	 the	 short	 term,	 is	 likely	 to	 be	 in	 cancer.	 Early	

studies	 used	 single-cell	 qPCR	 to	 investigate	 the	 origin	 of	 radioresistance	 in	 cancer	 stem	

cells	 (Diehn	 et	 al.,	 2009)	 and	 to	 dissect	 the	 heterogeneity	 and	 distortions	 of	 cellular	

hierarchy	 in	 colon	 cancer	 (Dalerba	 et	 al.,	 2011).	 With	 the	 advent	 of	 high-throughput	
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methods,	 single-cell	 genome	 analysis	 has	 been	 used	 to	 study	 the	 clonal	 structure	 and	

evolution	 of	 tumors	 in	 both	 breast	 cancer	 (Wang	 et	 al.,	 2014)	 and	 acute	 lymphoblastic	

leukemia	(Gawad	et	al.,	2014),	and	to	infer	the	order	of	earliest	mutations	that	cause	acute	

myeloid	leukemia	(Corces-Zimmerman	et	al.,	2014;	Jan	et	al.,	2012).		

In	 recent	 studies	 of	 melanoma	 (Tirosh	 et	 al.,	 2016a),	 glioblastoma	 (Patel	 et	 al.,	

2014),	 low-grade	glioma	(Tirosh	et	al.,	2016b),	and	myeloproliferative	neoplasms	(Kiselev	

et	 al.,	 2017),	 single-cell	 RNA-seq	 of	 fresh	 tumors	 resected	 directly	 from	 patients	 readily	

distinguished	 among	 malignant,	 immune,	 stromal	 and	 endothelial	 cells.	 Among	 the	

malignant	 cells,	 it	 identified	 distinct	 cell	 states—such	 as	 cancer	 stem	 cells	 (Patel	 et	 al.,	

2014;	 Tirosh	 et	 al.,	 2016b),	 drug-resistant	 states	 (Tirosh	 et	 al.,	 2016a),	 proliferating	 and	

quiescent	 cells	 (Patel	 et	 al.,	 2014;	 Tirosh	 et	 al.,	 2016a;	 Tirosh	 et	 al.,	 2016b)—and	 related	

them	 to	 each	 other,	 showing,	 for	 example,	 that	 only	 stem-like	 cells	 proliferate	 in	 low-

grade	glioma	(Tirosh	et	al.,	2016b)	and	that	individual	sub-clones	can	be	readily	identified	

in	 one	 patient	 (Kiselev	 et	 al.,	 2017).	 Among	 the	 non-malignant	 cells,	 it	 found	 distinct	

functional	states	for	T-cells,	and	revealed	that,	while	activation	and	exhaustion	programs	

are	coupled,	the	exhausted	state	is	also	controlled	by	an	independent	regulatory	program	

in	both	human	tumors	(Tirosh	et	al.,	2016a)	and	a	mouse	model	 (Singer	et	al.,	2016).	To	

associate	 patterns	 observed	 in	 a	 few	 (5-20)	 patients	with	 effects	 on	 clinical	 phenotypes,	

single-cell	 based	 signatures	 were	 used	 to	 deconvolute	 hundreds	 of	 bulk	 tumor	 profiles	

that	had	been	collected	with	rich	clinical	information	(Levine	et	al.,	2015;	Patel	et	al.,	2014;	

Tirosh	et	al.,	2016a).		

	

Molecular	mechanisms:	Intracellular	and	inter-cellular	circuits	
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A	Human	Cell	Atlas	can	also	shed	light	on	the	molecular	mechanisms	that	control	

cell	 type,	 differentiation,	 responses	 and	 states—within	 cells,	 between	 cells,	 as	 well	 as	

between	cells	and	their	tissue	matrix.		

For	 example,	 over	 the	 past	 several	 decades,	 biologists	 have	 sought	 to	 infer	 the	

circuitry	underlying	gene	regulation	by	observing	correlations	between	the	expression	of	

particular	 regulators	 and	 specific	 cellular	 phenotypes,	 drawing	 inferences	 about	

regulation,	 and	 testing	 their	 models	 through	 targeted	 genetic	 perturbations.	 Single-cell	

data	provide	a	massive	 increase	not	only	 in	 the	quantity	of	observations,	but	also	 in	 the	

range	of	perturbations.	The	number	of	cells	profiled	in	a	single-cell	RNA-seq	experiment	

can	far	exceed	the	number	of	profiles	produced	even	by	large	consortia	(such	as	ENCODE,	

FANTOM,	TCGA,	and	GTEx).	Moreover,	each	single	cell	is	a	perturbation	system	in	which	

the	 levels	 of	 regulatory	 molecules	 vary	 naturally—sometimes	 subtly,	 sometimes	

dramatically—due	 to	both	 stochastic	 and	 controlled	phenomena	within	 a	 single	 genetic	

background,	 providing	 rich	 information	 from	 which	 to	 reconstruct	 cellular	 circuits	

(Krishnaswamy	et	al.,	2014;	Sachs	et	al.,	2005;	Shalek	et	al.,	2013;	Stewart-Ornstein	et	al.,	

2012).		

Initial	studies	have	shown	that	such	analyses	can	uncover	 intracellular	regulators	

governing	cell	differentiation	and	 response	 to	 stimuli.	For	example,	 co-variation	of	RNA	

levels	 across	 a	 modest	 number	 of	 cells	 from	 a	 relatively	 “pure”	 population	 of	 immune	

dendritic	 cells	 responding	 to	 a	 pathogen	 component	 was	 sufficient	 to	 connect	 antiviral	

transcription	factors	to	their	target	genes,	because	of	asynchrony	in	the	responses	(Shalek	

et	 al.,	 2013).	 Similarly,	 co-variation	 analysis	 of	 a	 few	 hundred	 Th17	 cells	 spanning	 a	

continuum	 from	 less	 to	 more	 pathogenic	 states	 revealed	 regulators	 that	 control	

pathogenicity,	but	not	other	features,	such	as	cell	differentiation	(Gaublomme	et	al.,	2015).	
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Co-variation	identified	a	role	for	pregnenolone	biosynthesis	in	the	response	of	Th2	cells	to	

helminth	 infection	 (Mahata	 et	 al.,	 2014),	 and	 new	 regulators	 of	 pluripotency	 in	mESCs	

(Kolodziejczyk	 et	 al.,	 2015).	 Computationally	 ordering	 cells	 along	 a	 time-course	 of	

development	provides	another	way	to	infer	regulators—a	strategy	that	has	been	successful	

in,	 for	 example,	 differentiating	 B	 cells	 (Bendall	 et	 al.,	 2014),	 myoblasts	 (Trapnell	 et	 al.,	

2014),	neurons	 (Habib	et	 al.,	 2016;	 Shin	et	 al.,	 2015),	 and	T	helper	 cells	 (Lönnberg	et	 al.,	

2017).	Finally,	when	circuitry	is	already	known,	variation	across	single	cells	can	be	used	to	

infer	exquisite—and	functionally	important—quantitative	distinctions	about	how	signal	is	

processed	and	propagated.	An	elegant	example	is	a	recent	analysis	of	signaling	pathways	

downstream	 from	 the	T	cell	 receptor,	where	 single-cell	proteomics	data	has	 shown	how	

the	 same	 cellular	 circuitry	 processes	 signals	 differently	 in	 naïve	 and	 antigen-exposed	 T	

cells	(Krishnaswamy	et	al.,	2014).	

Beyond	transcriptome	analysis,	single-cell	multi-omic	profiles	(Box	1)	will	improve	

the	inference	of	cellular	circuitry	by	connecting	regulatory	mechanisms	and	their	targets	

(Tanay	 and	 Regev,	 2017).	 For	 example,	 simultaneous	 measurement	 of	 chromatin	

accessibility	and	RNA	levels	may	help	identify	which	regulatory	regions—and	by	inference	

which	 trans–acting	 regulators—control	 the	 levels	 of	 which	 genes.	 Concomitant	

measurement	 of	 DNA	mutations	 and	 transcriptional	 profiles	 in	 cancer	 cells	 may	 allow	

similar	causal	connections	to	be	drawn,	as	has	been	recently	shown	for	mutations	in	the	

CIC	gene	and	the	expression	of	its	regulatory	targets	(Tirosh	et	al.,	2016b).		

Studies	 can	 be	 extended	 from	 naturally	 occurring	 variation	 among	 cells	 to	

engineered	 perturbations,	 by	 using	 pooled	 CRISPR	 libraries	 to	 manipulate	 genes	 and	

reading	out	both	the	perturbation	and	its	effects	on	cellular	phenotype	in	single	cells—for	

example,	by	single-cell	RNA-Seq	(Adamson	et	al.,	2016;	Dixit	et	al.,	2016;	Jaitin	et	al.,	2016).	
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A	 cell	 atlas	 can	 also	 help	 shed	 light	 on	 intercellular	 communication,	 based	 on	

correlated	 profiles	 across	 cell	 types	 and	 patients.	 For	 example,	 analysis	 of	 single-cell	

profiles	from	many	small	clusters	of	a	few	aggregated	cells	allowed	the	construction	of	a	

cell-cell	interaction	network	in	the	bone	marrow,	uncovering	specific	interaction	between	

megakaryocytes	 and	 neutrophils,	 as	 well	 as	 between	 plasma	 cells	 and	 neutrophil	

precursors	 (Alexander	 van	 Oudenaarden,	 unpublished	 results).	 Cell-cell	 interactomes	

have	also	been	 inferred	 from	profiles	of	purified	 cell	populations,	based	on	 the	 secreted	

and	cell	surface	molecules	that	they	express	(Ramilowski	et	al.,	2015).		

In	tumors	from	melanoma	patients,	gene-expression	analysis	(involving	single-cell	

data	 obtained	 from	 some	 patients	 and	 bulk	 tumor	 data	 from	 many	 more	 patients,	

deconvoluted	 based	 on	 signatures	 learned	 from	 the	 single	 cells)	 found	 genes	 that	 are	

expressed	in	one	cell	type,	but	whose	expression	levels	are	correlated	with	the	proportion	

of	 a	 different	 cell	 type	 that	 does	 not	 express	 them;	 this	 analysis	 revealed	 that	 high	

expression	 of	 the	 complement	 system	 in	 cancer-associated	 fibroblasts	 in	 the	 tumor	

microenvironment	is	correlated	with	increased	infiltration	of	T	cells	(Tirosh	et	al.,	2016a).	

Analysis	of	 individual	 subcutaneous	adipose	 stem	cells	 revealed	 the	existence	of	 a	novel	

cell	population	that	negatively	controls	the	differentiation	of	the	resident	stem	cells	 into	

adipocytes,	 thus	 influencing	 adipose	 tissue	 growth	 and	 homeostasis	 (Bart	 Deplancke,	

unpublished	 results).	 In	 breast	 cancer	 tissues,	 spatial	 analysis	 of	 multiplex	 protein	

expression	 by	 imaging	 mass	 cytometry	 (Giesen	 et	 al.,	 2014)	 allowed	 classification	 of	

infiltrating	immune	cells	and	malignant	cells	based	on	the	neighborhood	of	surrounding	

cells,	 highlighting	 new	 functional	 interactions	 (Bernd	 Bodenmiller,	 personal	

communication).		
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A	User’s	Guide	to	the	Human	Cell	Atlas:	Applications	in	research	and	medicine		

The	Human	Genome	Project	had	a	major	 impact	on	biomedicine	by	providing	 a	

comprehensive	reference—a	DNA	sequence	in	which	answers	could	be	readily	looked	up	

and	 from	 which	 unique	 ‘signatures’	 could	 be	 derived	 (e.g.,	 to	 recognize	 genes	 on	

microarrays	 or	 protein	 fragments	 in	 mass	 spectrometry).	 A	 Human	 Cell	 Atlas	 could	

provide	similar	benefits	from	basic	research	to	clinically	relevant	applications.		

Scientists	will	be	able,	for	example,	to	look	up	precisely	in	which	cell	types	a	gene	

of	 interest	 is	expressed	and	at	which	level.	Today,	 it	 is	surprisingly	challenging	to	obtain	

definitive	 answers	 for	 most	 human	 genes	 beyond	 tissue-	 or	 organ-level	 resolution	

(although	there	have	been	pioneering	efforts	for	the	brain	and	immune	system	in	mouse	

(Bakken	et	al.,	2016;	Hawrylycz	et	al.,	2012;	Kim	and	Lanier,	2013;	Miller	et	al.,	2014).	Yet,	

the	 question	 is	 of	 enormous	 importance	 to	 basic	 biologists	 studying	 development	 or	

comparing	a	model	system	to	human	biology,	medical	scientists	examining	the	effect	of	a	

disease-causing	mutation,	and	drug	developers	concerned	about	the	potential	toxicities	of	

a	small	molecule	or	a	CAR-T	cell	 targeting	a	specific	protein	(Brudno	and	Kochenderfer,	

2016).		

Researchers	will	also	be	able	to	derive	expression	signatures	that	uniquely	identify	

cell	 types.	 Such	 signatures	 provide	 a	 starting	 point	 for	 a	 vast	 range	 of	 experimental	

assays—from	molecular	 markers	 for	 isolating,	 tagging,	 tracing	 or	 manipulating	 cells	 in	

animal	 models	 or	 human	 samples,	 to	 characterization	 of	 the	 effect	 of	 drugs	 on	 the	

physiological	state	of	a	tissue.	Such	descriptors	of	cellular	 identity	will	be	widely	used	in	

clinical	 assays.	For	example,	 today’s	Complete	Blood	Count	 (CBC),	 a	 census	of	 a	 limited	

number	of	blood	components,	may	be	supplemented	by	a	“CBC	2.0”	that	provides	a	high-

resolution	picture	of	the	nucleated	cells,	including	the	number	and	activity	states	of	each	
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type	 in	 comparison	 with	 healthy	 reference	 samples.	 Analogous	 measures	 should	 be	

possible	for	other	tissues	as	well.	For	example,	gut	biopsies	from	patients	with	ulcerative	

colitis	or	colon	cancer	could	be	analyzed	for	the	type,	response,	state	and	location	of	each	

of	the	diverse	epithelial,	immune,	stromal	and	neural	cells	that	comprise	them.	

	

Toward	a	Human	Cell	Atlas	

How	 might	 the	 biomedical	 community	 build	 a	 Human	 Cell	 Atlas?	 As	 with	 the	

Human	Genome	Project,	a	 robust	plan	will	need	 to	emerge	 from	wide-ranging	scientific	

discussions	 and	 careful	 planning	 involving	 biologists,	 technologists,	 pathologists,	

physicians,	 surgeons,	 computational	 scientists,	 statisticians,	 and	others.	As	noted	above,	

various	discussions	have	taken	place	for	over	two	years	about	the	idea	of	a	comprehensive	

Human	Cell	Atlas,	as	well	as	about	specific	atlases	for	the	brain	and	the	immune	system.	

Several	pilot	efforts	are	already	underway.	It	is	now	time	to	broaden	the	discussion,	with	

the	aim	of	developing	a	plan	for	an	international	collaborative	project.		

As	a	starting	point,	we	suggest	several	points	for	consideration:		

(1)	Phasing	of	goals.	While	the	overall	goal	is	to	build	a	comprehensive	atlas	with	

diverse	 molecular	 measurements,	 spatial	 organization,	 and	 interpretation	 of	 cell	 types,	

histology,	 development,	 physiology	 and	 molecular	 mechanisms,	 it	 will	 be	 wise	 to	 set	

intermediate	 goals	 for	 “draft”	 atlases	 at	 increasing	 resolution,	 comprehensiveness,	 and	

depth	 of	 interpretation.	 The	 value	 of	 a	 phased	 approach	 was	 illustrated	 by	 the	Human	

Genome	Project,	which	defined	milestones	 along	 the	way	 (genetic	maps,	physical	maps,	

rough-draft	sequence,	finished	sequence)	that	held	the	project	accountable	and	provided	

immediate	utility	to	the	scientific	community.		
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(2)	Sampling	 strategies.	While	 an	 adult	human	has	~2	 x	 1013	 nucleated	 cells,	 it	 is	

neither	 possible	 nor	 necessary	 to	 study	 them	 all	 to	 recover	 the	 fine	 distinctions	 among	

human	cells.	The	key	will	be	to	combine	sound	statistical	sampling,	biological	enrichment	

purification,	and	insights	from	studies	of	model	organisms.	It	is	likely	beneficial	to	apply	

an	adaptive,	iterative	approach	with	respect	to	both	the	number	of	cells	and	the	depth	of	

profiles,	with	initial	sparse	sampling	driving	decisions	about	further	sampling.	

Such	approaches	can	be	facilitated	by	experimental	techniques	that	allow	fast	and	

inexpensive	“banking”	of	partially	processed	samples,	to	which	one	can	return	for	deeper	

analysis.	Advances	in	handling	fixed	or	frozen	tissues	would	further	facilitate	the	process	

(Box	 1).	With	 respect	 to	depth	of	profiling,	 recent	 studies	 suggest	 the	utility	of	a	mixed	

strategy:	relatively	low	coverage	of	the	transcriptome	can	identify	many	cell	types	reliably	

(Heimberg	et	al.,	2016;	Shekhar	et	al.,	2016)	and	a	smaller	set	of	deep	profiles	can	be	help	

interpret	the	low-coverage	data	to	further	increase	detection	power.		

(3)	Breadth	of	profiles.	While	transcriptome	analysis	of	sorted	single	cells	or	nuclei	

will	likely	be	the	workhorse	for	efforts	in	the	first	few	years,	it	will	be	important	to	develop	

a	 wide	 variety	 of	 robust,	 high-throughput	 profiling	 methods—including	 for	 analysis	 of	

spatial	patterns	of	RNA	and	proteins	 in	situ,	chromatin	and	genome	folding,	and	somatic	

mutations.	While	some	of	these	methods	are	already	rapidly	maturing,	others	will	benefit	

from	focused	development	efforts,	as	well	as	from	comparison	across	different	techniques.	

	(4)	 Biological	 scope.	 It	 will	 be	 important	 to	 consider	 the	 balance	 among	 tissue	

samples	 from	 healthy	 individuals	 at	 various	 stages;	 small	 cohorts	 of	 individuals	 with	

diseases;	 and	 samples	 from	model	organisms,	where	key	developmental	 stages	 are	more	

accessible	and	manipulations	more	 feasible.	Well-chosen	pilot	projects	could	help	refine	

strategies	 and	 galvanize	 communities	 of	 biological	 experts.	 Some	 communities	 and	
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projects	 would	 be	 organized	 around	 organs	 (e.g.,	 liver,	 heart,	 brain),	 others	 around	

systems	(e.g.,	 immune	system,	 fibroblasts)	or	disease	(e.g.,	cancer),	 the	 latter	distributed	

across	many	organs	and	tissues.	

(5)	Quality.	In	creating	a	reference	map	to	be	used	by	thousands	of	investigators,	it	

is	critical	to	ensure	that	the	results	are	of	high	quality	and	technically	reproducible.	This	is	

especially	 important	 in	 view	 of	 the	 inherent	 biological	 variation	 and	 expected	

measurement	 noise.	 Substantial	 investment	 will	 be	 needed	 in	 the	 development,	

comparison,	 and	 dissemination	 of	 rigorous	 protocols,	 standards,	 and	 benchmarks.	 Both	

individual	 groups	 and	 larger	 centers	 will	 likely	 have	 important	 roles	 in	 defining	 and	

ensuring	high	quality.	It	will	also	be	important	that	the	collected	samples	be	accompanied	

by	excellent	clinical	annotations,	captured	in	consistent	meta-data	across	the	atlas.	

Tissue	processing	poses	special	challenges,	including	the	need	for	robust	methods	

for	dissociating	samples	into	single	cells	so	as	to	preserve	all	cell	types,	fixation	for	in	situ	

methods,	 and	 freezing	 for	 transport.	 A	 related	 challenge	 is	 the	 difference	 in	 the	

amenability	of	specific	cell	types	for	different	assays	(T	cells	are	very	small	and	yield	lower	

quality	scRNA-seq;	the	fat	content	 in	adipocyte	 is	challenging	for	many	spatial	methods;	

many	 neurons	 cannot	 currently	 be	 isolated	 with	 their	 axons	 and	 dendrites	 from	 adult	

tissue).	 Careful	 attention	 will	 also	 be	 needed	 to	 data	 generation	 and	 computational	

analysis,	 including	 validated	 standard	 operating	 procedures	 for	 experimental	 methods,	

best	 practices,	 computational	 pipelines,	 and	 benchmarking	 samples	 and	 data	 sets	 to	

ensure	comparability.			

	(6)	Global	equity.	Geographical	atlases	of	the	Earth	were	largely	developed	to	serve	

global	 power	 centers.	 The	 Human	 Cell	 Atlas	 should	 be	 designed	 to	 serve	 all	 people:	 it	

should	span	genders,	ethnicities,	environments,	and	the	global	burden	of	diseases—all	of	
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which	 are	 likely	 to	 affect	 the	 molecular	 profiles	 of	 cells	 and	 must	 be	 characterized	 to	

maximize	 the	 atlas’s	 benefits.	 The	 project	 itself	 should	 encourage	 and	 support	 the	

participation	 of	 scientists,	 research	 centers	 and	 countries	 from	 around	 the	 globe—

recognizing	 the	 value	 of	 respecting	 and	 learning	 from	 diverse	 populations,	 cultures,	

mores,	beliefs,	and	traditions.		

	(7)	Open	 data.	 The	Human	Genome	Project	made	 clear	 the	power	of	 open	data	

that	 can	 be	 used	 by	 all	 and	 freely	 combined	 with	 other	 datasets.	 A	 Human	 Cell	 Atlas	

should	similarly	be	an	open	endeavor,	to	the	full	extent	permitted	by	participants’	wishes	

and	legal	regulation.	While	the	underlying	sequence	data	contains	many	polymorphisms	

that	make	it	“identifiable,”	it	should	be	possible	to	map	the	data	onto	“standard	models”	of	

each	gene	to	substantially	mitigate	this	issue.	To	make	the	Atlas	useful,	it	will	be	critical	to	

develop	data	platforms	that	can	provide	efficient	aggregation	and	storage,	quality	control,	

analytical	software,	and	user-friendly	portals.	

(8)	 Flexibility.	 A	 Human	 Cell	 Atlas	 Project	 should	 be	 intellectually	 and	

technologically	 flexible.	 The	 project	 should	 embrace	 the	 fact	 that	 its	 biological	 goals,	

experimental	 methods,	 computational	 approaches,	 overall	 scale,	 and	 criteria	 for	

‘completion’	will	evolve	rapidly	as	 insights	and	tools	develop.	For	historical	context,	 it	 is	

useful	 to	 remember	 that	 discussions	 about	 a	Human	Genome	 Project	 began	 before	 the	

development	of	automated	DNA	sequencing	machines,	the	polymerase	chain	reaction,	or	

large-insert	DNA	cloning—and	the	project	drove	technological	progress	on	many	 fronts.	

Moreover,	the	criteria	for	a	‘finished’	genome	sequence	were	only	agreed	upon	during	the	

last	third	of	the	project.	

(9)	Forward	looking.		Any	data	produced	today	will	be	easier,	faster,	more	accurate	

and	 cheaper	 to	 produce	 tomorrow.	 Any	 intermediate	 milestones	 achieved	 during	 the	
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project	will	be	supplanted	by	a	deeper,	broader,	more	accurate	and	more	comprehensive	

successors	within	a	few	short	years.		However,	as	we	define	the	goal	of	a	Human	Cell	Atlas	

Project,	we	should	view	it	not	as	a	final	product,	but	as	a	critical	stepping-stone	to	a	future	

when	the	study	of	human	biology	and	medicine	is	increasing	tractable.		

	

Conclusion			

	 The	 past	 quarter-century	 has	 shown	 again	 and	 again	 the	 value	 of	 the	 scientific	

community	joining	together	in	collaborative	efforts	to	generate	and	make	freely	available	

systematic	 information	 resources	 to	accelerate	 scientific	 and	medical	progress	 in	 tens	of	

thousands	 of	 laboratories	 around	 the	 world.	 The	 Human	 Cell	 Atlas	 builds	 on	 this	 rich	

tradition,	extending	it	to	the	fundamental	unit	of	biological	organization:	the	cell.	

Many	 challenges	will	 arise	 along	 the	way,	 but	we	 are	 confident	 that	 they	 can	be	

met	through	scientific	creativity	and	collaboration.	It	is	time	to	begin.	
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Box	1:	Key	experimental	methods	for	single-cell	genomics	
	

Over	 the	past	 several	years,	powerful	approaches	have	emerged	 that	make	 it	possible	 to	

measure	molecular	profiles	and	signatures	at	single-cell	resolution.	The	field	remains	very	

active,	with	new	methods	being	rapidly	developed	and	existing	ones	improved.	

	

Single-cell	 RNA-Seq	 (scRNA-seq)	 refers	 to	 a	 class	 of	 methods	 for	 profiling	 the	

transcriptome	of	individual	cells.	Some	may	take	a	census	of	mRNA	species	by	focusing	on	

3’-	or	5’-ends	(Islam	et	al.,	2014;	Macosko	et	al.,	2015),	while	others	assess	mRNA	structure	

and	splicing	by	collecting	near-full-length	sequence	(Hashimshony	et	al.,	2012;	Ramskold	

et	al.,	 2012).	Strategies	 for	 single-cell	 isolation	span	manual	cell	picking,	 initially	used	 in	

microarray	studies	(Eberwine	et	al.,	1992;	Van	Gelder	et	al.,	1990),	FACS-based	sorting	into	

multi-well	plates	(Ramskold	et	al.,	2012;	Shalek	et	al.,	2013),	microfluidic	devices	(Shalek	et	

al.,	 2014;	 Treutlein	 et	 al.,	 2014),	 and,	 most	 recently,	 droplet-based	 (Klein	 et	 al.,	 2015;	

Macosko	 et	 al.,	 2015)	 and	 microwell-based	 (Fan	 et	 al.,	 2015;	 Yuan	 and	 Sims,	 2016)	

approaches.	The	droplet	and	microwell	approaches,	which	are	currently	coupled	to	3’-end	

counting,	have	the	largest	throughput—allowing	rapid	processing	of	tens	of	thousands	of	

cells	 simultaneously	 in	 a	 single	 sample.	 scRNA-seq	 is	 typically	 applied	 to	 freshly	

dissociated	 tissue,	 but	 emerging	 protocols	 use	 fixed	 cells	 (Nichterwitz	 et	 al.,	 2016;	

Thomsen	et	 al.,	 2016)	or	nuclei	 isolated	 from	 frozen	or	 lightly	 fixed	 tissue	 (Habib	 et	 al.,	

2016;	Lake	et	al.,	2016).	Applications	to	fixed	or	frozen	samples	would	simplify	the	process	

flow	 for	 scRNA-seq,	 as	 well	 as	 open	 the	 possibility	 of	 using	 archival	 material.	 Power	

analyses	 provides	 a	 framework	 for	 comparing	 the	 sensitivity	 and	 accuracy	 of	 these	

approaches	(Svensson	et	al.,	2016;	Ziegenhain	et	al.,	2017).	Finally,	there	has	been	progress	
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in	scRNA-Seq	with	RNA	isolated	from	live	cells	 in	their	natural	microenvironment	using	

transcriptome	in	vivo	analysis	(Lovatt	et	al.,	2014).		

	

Mass	 cytometry	 (CyTOF)	 and	 related	 methods	 allow	 multiplexed	 measurement	 of	

proteins	based	on	antibodies	barcoded	with	heavy	metals	 (Bendall	et	al.,	 2014;	Levine	et	

al.,	 2015).	 In	 contrast	 to	 comprehensive	 profiles,	 these	 methods	 involve	 pre-defined	

signatures	and	require	an	appropriate	antibody	for	each	target,	but	they	can	process	many	

millions	of	cells	for	a	very	low	cost	per	cell.	They	are	applied	to	fixed	cells.	Recently,	the	

approach	 has	 been	 extended	 to	 the	measurement	 of	 RNA	 signatures	 through	multiplex	

hybridization	of	nucleic-acid	probes	tagged	with	heavy	metals	(Frei	et	al.,	2016).	

	

Single-cell	 genome	 and	 epigenome	 sequencing	 characterizes	 the	 cellular	 genome.	

Genomic	methods	 aim	either	 to	 characterize	 the	whole	 genome	or	 capture	 specific	pre-

defined	 regions	 (Gao	 et	 al.,	 2016).	 Epigenomic	 methods	 may	 capture	 regions	 based	 on	

distinctive	histone	modifications	(single-cell	ChIP-Seq	(Rotem	et	al.,	2015a)),	accessibility	

(single-cell	 ATAC-Seq	 (Buenrostro	 et	 al.,	 2015;	 Cusanovich	 et	 al.,	 2015)),	 or	 likewise	

characterize	DNA	methylation	patterns	(single-cell	DNAme-Seq	(Farlik	et	al.,	2015;	Guo	et	

al.,	2013;	Mooijman	et	al.,	2016;	Smallwood	et	al.,	2014))	or	3D	organization	(single-cell	Hi-

C	(Nagano	et	al.,	2013;	Ramani	et	al.,	2017)).	Combinatorial	barcoding	strategies	have	been	

used	 to	 capture	 measures	 of	 accessibility	 and	 3D	 organization	 in	 tens	 of	 thousands	 of	

single	cells	(Cusanovich	et	al.,	2015;	Ramani	et	al.,	2017).	Single	cell	epigenomics	methods	

are	 usually	 applied	 to	 nuclei,	 and	 can	 thus	 use	 frozen	 or	 certain	 fixed	 samples.	 Some	

methods,	such	as	single-cell	DNA	sequencing,	are	currently	applied	to	relatively	few	cells,	

due	to	the	size	of	the	genome	and	the	sequencing	depth	required.	Other	methods,	such	as	
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single-cell	analysis	of	chromatin	organization	(by	either	single-cell	ATAC-Seq	(Buenrostro	

et	al.,	2015;	Cusanovich	et	al.,	2015)	or	single-cell	ChIP-Seq	(Rotem	et	al.,	2015a)),	currently	

yield	 rather	 sparse	 data,	 which	 presents	 analytic	 challenges	 and	 benefits	 from	 large	

numbers	of	profiled	cells.	Computational	analyses	have	begun	to	address	these	 issues	by	

pooling	of	 signal	across	cells	and	across	genomic	regions	or	 loci	 (Buenrostro	et	al.,	2015;	

Rotem	et	al.,	2015a)	and	by	imputation	(Angermueller	et	al.,	2016).	

	

Single-cell	 multi-omics	 techniques	 aim	 to	 collect	 two	 or	 more	 types	 of	 data	

(transcriptomic,	genomic,	epigenomic,	and	proteomic)	 from	the	same	single	cell.	Recent	

studies	have	 simultaneously	profiled	 the	 transcriptome	 together	with	either	 the	genome	

(Angermueller	 et	 al.,	 2016;	 Dey	 et	 al.,	 2015;	 Macaulay	 et	 al.,	 2015),	 the	 epigenome	

(Angermueller	 et	 al.,	 2016),	 or	 protein	 signatures	 (Albayrak	 et	 al.,	 2016;	Darmanis	 et	 al.,	

2016;	Frei	et	al.,	2016;	Genshaft	et	al.,	2016).	Efforts	to	combine	three	and	more	approaches	

are	 underway	 (Cheow	 et	 al.,	 2016).	Multi-omic	methods	 could	 help	 fill	 in	 causal	 chains	

from	genetic	variation	to	regulatory	mechanisms	and	phenotypic	outcome	in	health	and	

in	disease,	especially	cancer.		

	

Multiplex	in	situ	analysis	and	other	spatial	techniques	aim	to	detect	a	limited	number	

of	 nucleic	 acids	 and/or	 proteins	 in	 situ	 in	 tissue	 samples—by	 hybridization	 (for	 RNA),	

antibody	staining	(for	proteins),	sequencing	(for	nucleic	acids),	or	other	tagging	strategies.	

These	 in	 situ	 results	 can	 then	 be	 used	 to	map	massive	 amounts	 of	 single-cell	 genomic	

information	 from	 dissociated	 cells	 onto	 the	 tissue	 samples	 providing	 important	 clues	

about	 spatial	 relationships	 and	 cell-cell	 communication.	 Some	 strategies	 for	 RNA	

detection,	such	as	MERFISH	(Chen	et	al.,	2015c;	Moffitt	et	al.,	2016b)	or	Seq-FISH	(Shah	et	
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al.,	2016),	combine	multiplex	hybridization	with	microscopy-based	quantification	to	assess	

distributions	at	both	the	cellular	and	subcellular	level;	other	early	studies	have	performed	

in	 situ	 transcription	 (Tecott	 et	 al.,	 1988),	 followed	by	direct	manual	harvesting	of	 cDNA	

from	individual	cells	(Crino	et	al.,	1996;	Tecott	et	al.,	1988).	Some	approaches	for	protein	

detection,	such	as	Imaging	Mass	Cytometry	(IMC)	(Giesen	et	al.,	2014)	and	Mass	Ion	Bean	

Imaging	 (MIBI)	 (Angelo	et	al.,	 2014),	 involve	 staining	a	 tissue	 specimen	with	antibodies,	

each	labeled	with	a	barcode	of	heavy	metals,	and	rastering	across	the	sample	to	measure	

the	proteins	in	each	‘pixel’.	This	technique	permits	the	reconstruction	of	remarkably	rich	

images.	 Finally,	 more	 recent	 studies	 have	 performed	 RNA-seq	 in	 situ	 in	 cells	 and	 in	

preserved	tissue	sections	(Ke	et	al.,	2013;	Lee	et	al.,	2014).	Many	in	situ	methods	can	benefit	

from	tissue	clearing	and/or	expansion	to	 improve	detection	and	spatial	resolution	(Chen	

et	al.,	2015b;	Chen	et	al.,	2016a;	Moffitt	et	al.,	2016a;	Yang	et	al.,	2014).	The	complexity	and	

accuracy	 of	 these	 methods	 continues	 to	 improve	 with	 advances	 in	 sample	 handling,	

chemistry	 and	 imaging.	 Various	 methods	 are	 also	 used,	 for	 example,	 to	 measure	

transcriptomes	in	situ	with	barcoded	arrays	(Stahl	et	al.,	2016).		

	 	

Cell	 lineage	 determination.	 Because	 mammals	 are	 not	 transparent	 and	 have	 many	

billions	 of	 cells,	 it	 is	 not	 currently	 possible	 to	 directly	 observe	 the	 fate	 of	 cells	 by	

microscopy.	Various	alternative	approaches	have	been	developed	(Kretzschmar	and	Watt,	

2012).	In	mice,	cells	can	be	genetically	marked	with	different	colors	(Barker	et	al.,	2007)	or	

DNA	barcodes	(Lu	et	al.,	2011;	Naik	et	al.,	2013;	Perie	and	Duffy,	2016),	and	their	offspring	

traced	during	development.	Recent	work	has	used	iterative	CRISPR-based	genome	editing	

to	generate	random	genetic	scars	in	the	fetal	genome	and	use	them	to	reconstruct	lineages	

in	 the	 adult	 animal	 (McKenna	 et	 al.,	 2016).	 In	 humans,	where	 such	methods	 cannot	 be	
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applied,	 human	 cell	 lineages	 can	 be	 monitored	 experimentally	 in	 vitro,	 or	 by	

transplantation	of	human	cells	to	immunosuppressed	mice	(Morton	and	Houghton,	2007;	

O'Brien	et	al.,	2007;	Richmond	and	Su,	2008),	or	can	be	inferred	from	in	vivo	samples	by	

measuring	 the	DNA	 differences	 between	 individual	 sampled	 cells,	 arising	 from	 random	

mutations	 during	 cell	 division,	 and	 using	 the	 genetic	 distances	 to	 construct	 cellular	

phylogenies,	or	lineages	(Behjati	et	al.,	2014;	Shapiro	et	al.,	2013).		
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Figure	legends	

	

Figure	1:	A	hierarchical	view	of	human	anatomy.	Shown	is	a	graphical	depiction	of	the	

anatomical	hierarchy	 from	organs	(here	gut),	 to	 tissues	(here,	epithelium	in	the	crypt	 in	

the	 small	 intestine),	 to	 their	 constituent	 cells	 (here,	 epithelial,	 immune,	 stromal	 and	

neural).		

	

Figure	2:	Anatomy:	Cell	types	and	tissue	structure.	 	(A-C)	Cell	types.	Each	plot	shows	

single	cells	(dots)	embedded	in	low-dimensional	space	based	on	similarities	between	their	

RNA-	(A,	C)	or	protein	(B)	expression	profiles,	using	different	methods	for	dimensionality	

reduction	and	embedding	(t-stochastic	neighborhood	embedding	(tSNE)	in	A	and	B;	and	

circular	 projection	 in	C).	 Examples	 are	 shown	 for	 (A)	 bi-polar	 neurons	 from	 the	mouse	

retina	 (A)4,	 human	 bone	marrow	 immune	 cells	 (B)5,	 and	 immune	 cells	 from	 the	mouse	

spleen	(C)6.	(D)	Histology.	Projection	of	single-cell	data	onto	tissue	structures.	The	image	

shows	the	mapping	of	individual	cells	onto	locations	in	the	marine	annelid	brain,	based	on	

																																																								
	
4	Reprinted	from	Cell,	166,	Shekhar	K,	Lapan	SW,	Whitney	IE,	Tran	NM,	Macosko	EZ,	Kowalczyk	
M,	Adiconis	X,	Levin	JZ,	Nemesh	J,	Goldman	M,	McCarroll	SA,	Cepko	CL,	Regev	A,	Sanes	JR,	
Comprehensive	Classification	of	Retinal	Bipolar	Neurons	by	Single-Cell	Transcriptomics,	1308-1323,	
2016,	with	permission	from	Elsevier.	
5	Reprinted	from	Cell,	162,	Levine	JH,	Simonds	EF,	Bendall	SC,	Davis	KL,	Amir	el-AD,	Tadmor	MD,	
Litvin	O,	Fienberg	HG,	Jager	A,	Zunder	ER,	Finck	R,	Gedman	AL,	Radtke	I,	Downing	JR,	Pe'er	D,	
Nolan	GP,	Data-Driven	Phenotypic	Dissection	of	AML	Reveals	Progenitor-like	Cells	that	Correlate	
with	Prognosis,	184-197,	2015,	with	permission	from	Elsevier.	
6	From	Science,	343,	Jaitin	DA,	Kenigsberg	E,	Keren-Shaul	H,	Elefant	N,	Paul	F,	Zaretsky	I,	Mildner	
A,	Cohen	N,	Jung	S,	Tanay	A,	Amit	I,	Massively	parallel	single-cell	RNA-seq	for	marker-free	
decomposition	of	tissues	into	cell	types,	776-779,	2014.	Reprinted	with	permission	from	AAAS.	
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the	 correspondence	 (color	 bar)	 between	 their	 single	 cell	 expression	 profiles	 and	

independent	FISH	assays	for	a	set	of	landmark	transcripts7.	

	

Figure	3:	Developmental	trajectories.	Shown	are	single	cells	(dots;	colored	by	trajectory	

assignment,	 sampled	 time	point,	or	developmental	 stage)	embedded	 in	 low-dimensional	

space	 based	 on	 their	 RNA	 (A-C)	 or	 protein	 (D)	 profiles,	 with	 different	 methods	 for	

dimensionality	 reduction	and	embedding	 (Gaussian	Process	Latent	Variable	Model	 	 (A);	

tSNE	(B,	D),	and	diffusion	maps	(C)).	Computational	methods	then	identify	trajectories	of	

pseudo-temporal	 progression	 in	 each	 case.	 Examples	 are	 shown	 for	 myoblast	

differentiation	 in	 vitro	 (A) 8 ;	 neurogenesis	 in	 the	 mouse	 brain	 dentate	 gyrus	 (B) 9 ;	

embryonic	stem	cell	differentiation	in	vitro	(C)10,	and	early	hematopoiesis	(D)11.	

	

Figure	4:	Physiology.	Shown	are	single	cells	(dots)	embedded	in	low-dimensional	space	

based	on	their	RNA	profile,	based	on	either	predefined	gene	signatures	(A)	or	PCA	(B,	C),	

highlighting	distinct	dynamic	processes:	 the	cell	cycle	 in	mouse	hematopoietic	stem	and	

																																																								
	
7	Adapted	by	permission	from	Macmillan	Publishers	Ltd:	Nature	Biotechnology,	33,	Achim	K,	Pettit	
JB,	Saraiva	LR,	Gavriouchkina	D,	Larsson	T,	Arendt	D,	Marioni	JC,High-throughput	spatial	
mapping	of	single-cell	RNA-seq	data	to	tissue	of	origin,	503-509,	2015.	
8	From	Science	Immunology,	2,	Lönnberg	T,	Svensson	V,	James	KR,	Fernandez-Ruiz	D,	Sebina	I,	
Montandon	R,	Soon	MS,	Fogg	LG,	Nair	AS,	Liligeto	U,	Stubbington	MJ,	Ly	LH,	Bagger	FO,	
Zwiessele	M,	Lawrence	ND,	Souza-Fonseca-Guimaraes	F,	Bunn	PT,	Engwerda	CR,	Heath	WR,	
Billker	O,	Stegle	O,	Haque	A,	Teichmann	SA,	Single-cell	RNA-seq	and	computational	analysis	using	
temporal	mixture	modelling	resolves	Th1/Tfh	fate	bifurcation	in	malaria,	DOI:	
10.1126/sciimmunol.aal2192,	2017.	Reprinted	with	permission	from	AAAS.	
9	From	Science,	353,	Habib	N,	Li	Y,	Heidenreich	M,	Swiech	L,	Avraham-Davidi	I,	Trombetta	JJ,	
Hession	C,	Zhang	F,	Regev	A,	Div-Seq:	Single-nucleus	RNA-Seq	reveals	dynamics	of	rare	adult	
newborn	neurons,	925-928,	2016.	Reprinted	with	permission	from	AAAS.	
10	Adapted	by	permission	from	Macmillan	Publishers	Ltd:	Nature	Methods,	13,	Haghverdi	L,	Büttner	
M,	Wolf	FA,	Buettner	F,	Theis	FJ,	Diffusion	pseudotime	robustly	reconstructs	lineage	branching,	
845-848,	2016.	
11	Adapted	by	permission	from	Macmillan	Publishers	Ltd:	Nature	Biotechnology,	34,	Setty	M,	
Tadmor	MD,	Reich-Zeliger	S,	Angel	O,	Salame	TM,	Kathail	P,	Choi	K,	Bendall	S,	Friedman	N,	Pe'er	
D,	Wishbone	identifies	bifurcating	developmental	trajectories	from	single-cell	data,	637-645,	2016.	
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progenitor	 cells	 (A)12;	 response	 to	 lipopolysaccharide	 (LPS)	 in	mouse	 immune	 dendritic	

cells	(B)13;	and	variation	in	the	extent	of	pathogenicity	in	mouse	Th17	cells	(C)14.	

	

	

	

																																																								
	
12	Adapted	under	terms	of	CC	BY	4.0	(https://creativecommons.org/licenses/by/4.0/)	from	
Methods,	85,	Scialdone	A,	Natarajan	KN,	Saraiva	LR,	Proserpio	V,	Teichmann	SA,	Stegle	O,	Marioni	
JC,	Buettner	F,	Computational	assignment	of	cell-cycle	stage	from	single-cell	transcriptome	data,	
54-61,	2015.	
13	Adapted	from	Nature,	510,	Shalek	AK,	Satija	R,	Shuga	J,	Trombetta	JJ,	Gennert	D,	Lu	D,	Chen	P,	
Gertner	RS,	Gaublomme	JT,	Yosef	N,	Schwartz	S,	Fowler	B,	Weaver	S,	Wang	J,	Wang	X,	Ding	R,	
Raychowdhury	R,	Friedman	N,	Hacohen	N,	Park	H,	May	AP,	Regev	A,	Single-cell	RNA-seq	reveals	
dynamic	paracrine	control	of	cellular	variation,	363-369,	2014.	
14	Reprinted	from	Cell,	163,	Gaublomme	JT,	Yosef	N,	Lee	Y,	Gertner	RS,	Yang	LV,	Wu	C,	Pandolfi	PP,	
Mak	T,	Satija	R,	Shalek	AK,	Kuchroo	VK,	Park	H,	Regev	A,	Single-Cell	Genomics	Unveils	Critical	
Regulators	of	Th17	Cell	Pathogenicity,	1400-1412,	2015,	with	permission	from	Elsevier.	
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