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ABSTRACT  

Cancer genomes often harbor hundreds of molecular aberrations. Such genetic variants 

can be drivers or passengers of tumorigenesis and, as a side effect, create new 

vulnerabilities for potential therapeutic exploitation. To systematically identify genotype-

dependent vulnerabilities and synthetic lethal interactions, forward genetic screens in 

different genetic backgrounds have been conducted. We devised MINGLE, a 

computational framework that integrates CRISPR/Cas9 screens originating from many 

different libraries and laboratories to build genetic interaction maps. It builds on 

analytical approaches that were established for genetic network discovery in model 

organisms. We applied this method to integrate and analyze data from 85 

CRISPR/Cas9 screens in human cancer cell lines combining functional data with 

information on genetic variants to explore the relationships of more than 2.1 million 

gene-background relationships. In addition to known dependencies, our analysis 

identified new genotype-specific vulnerabilities of cancer cells. Experimental validation 

of predicted vulnerabilities associated with aberrant Wnt/β-catenin signaling identified 

GANAB and PRKCSH as new positive regulators of Wnt/β-catenin signaling. By 

clustering genes with similar genetic interaction profiles, we drew the largest genetic 

network in cancer cells to date. Our scalable approach highlights how diverse genetic 

screens can be integrated to systematically build informative maps of genetic 

interactions in cancer, which can grow dynamically as more data is included. 
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INTRODUCTION 

Genes rarely function in isolation to affect phenotypes at the cellular or organismal 

level. Many studies have described how genes act in complex networks to maintain 

homeostasis by fine-tuning cellular or organismal reactions to internal or external stimuli 

(Bergman & Siegal 2003). A loss of genetic buffering can result in the emergence of 

diseases such as cancer (Hartman et al. 2001; Hartwell et al. 1997). In turn, mutations 

can create genetic vulnerabilities in cancer cells, for example, by deactivating one of 

two genetically buffered pathways (Luo et al. 2009; Nagel et al. 2016; Torti & Trusolino 

2011). Therapeutic approaches attempt to exploit such events by selectively inducing 

cell death in cancer cells while causing little harm to normal cells (Kaelin 2005; Nijman 

2011). 

 To systematically identify genetic interactions, pairwise gene knockout or 

knockdown experiments can be performed (Mani et al. 2008). In cases where a 

measured fitness defect of the double mutant is stronger than expected based on the 

two single mutant phenotypes, the interaction is called aggravating or synthetic lethal 

(Bridges 1922). In contrast, a buffering (or alleviating) interaction is observed when the 

double mutant’s measured phenotype is weaker than expected. Arrayed screens, 

performed by mating of loss-of-function mutant yeast strains have pioneered 

combinatorial screening (Baryshnikova et al. 2010; Costanzo et al. 2010; Davierwala et 

al. 2005; Tong et al. 2001; Costanzo et al. 2016). Methods of pairwise gene 

perturbation were later extended using combinatorial RNA interference (RNAi) to map 

genetic interactions in cultured metazoan cells (Horn et al. 2011; Laufer et al. 2013; 

Fischer et al. 2015; Byrne et al. 2007; Snijder et al. 2013; Srivas et al. 2016). However, 

screening of all pairwise gene combinations scales poorly with increasing genome size 

and novel approaches are necessary to facilitate the generation of large genetic 

interaction maps of complex organisms while minimizing cost and experimental effort.  

 Genome-scale perturbation screens can now be efficiently performed in many 

cell lines using CRISPR/Cas9 (Barrangou 2014; Doudna & Charpentier 2014; Horlbeck 

et al. 2016; Shalem et al. 2015; Wang et al. 2014) or RNAi (Brummelkamp et al. 2002; 
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Kampmann et al. 2013; Sims et al. 2011) for the targeted perturbation of genes by 

knockout or knockdown. Since each cell line has a different genetic background, this 

enables the investigation of genotype-specific vulnerabilities (Hart et al. 2015; Steinhart 

et al. 2017; Wang et al. 2017; Tzelepis et al. 2016; Garnett et al. 2012; Iorio et al. 2016; 

Martin et al. 2017; Tsherniak et al. 2017; McDonald et al. 2017). To describe a genetic 

interaction previous studies have mostly relied on the definition of ‘statistical epistasis’ 

introduced by R. A. Fisher (Fisher 1930). Here, a genetic interaction is defined as a 

statistical deviation from the additive combination of two loci in how they affect a 

phenotype of interest (Phillips 2008). This definition does not necessarily assume a 

standardized genetic background and thus provides a theoretical framework applicable 

to map genetic interactions in cancer cell lines despite the presence of additional 

confounding mutations. To leverage the community’s collective effort to functionally 

characterize cancer cell lines it is desirable to combine and analyze genetic screens of 

different origin in an integrated manner. This, however, is not easily put into practice as 

various sources of technical variation such as different sgRNA libraries or experimental 

protocols can affect the data and confound comparative analyses.  

 Here we propose a computational framework that integrates CRISPR/Cas9 

screens of diverse origin to map genetic interactions in cancer cells. We apply this 

approach, which we termed MINGLE, to a curated data set consisting of 85 genome-

scale CRISPR/Cas9 screens in 60 different human cancer cell lines generated in 

various different laboratories (Figure 1A). We first show that a two-step normalization 

approach can be applied to enable quantitative comparison of phenotypes derived from 

different screens (Figure S1A). We then demonstrate how concepts that have 

previously been applied to map genetic networks in model organisms can be adapted 

and applied to this dataset to score gene-gene combinations for genetic interactions. 

Combining the intrinsic profile of genetic alterations of each cell line present in the 

dataset with gene-level viability phenotypes we tested 2.1 million pairwise gene 

combinations by comparing wild-type against altered alleles in cell lines (Figure 1B-C). 

Using these predictions, we were able to identify new regulators of the Wnt/β-catenin 

signaling pathway. Our results suggest that the genes PRKCSH and GANAB, which 
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together form the Glucosidase II complex, regulate the secretion of active Wnt ligands. 

Finally, we functionally clustered genes by the similarity of their interaction profiles and 

demonstrate that these profiles are informative predictors of functional gene similarity 

(Figure 1D). We generated a map of genetic interactions in cancer cells by connecting 

genes with similar profiles and identified network modules with similar functional 

characteristics. 
 

RESULTS 

Integrating CRISPR/Cas9 phenotypes from different studies 
In order to systematically predict interactions between genes knocked out by 

CRISPR/Cas9 and genes functionally impaired by mutations in cancer cells, we 

reanalyzed a set of 85 CRISPR/Cas9 viability screens in 60 cell lines (Figure 1A, 

Supplementary Table 3). These screens were performed in different laboratories and 

vary in terms of library and vector design as well as screening protocols. In order to 

integrate these data (Figure S1A), we first calculated gene level CRISPR scores 

(average log2 fold change of sgRNA abundance; Wang et al. 2017) individually for each 

screen. We then quantile-normalized the data to correct for systematic biases between 

screens as for example varying selection times can lead to differences in phenotypic 

strength. Examination of the resulting data set revealed considerable batch effects 

driven primarily by the sgRNA library used for screening (Figure S1B). These batch 

effects appeared to be non-systematic differing from gene to gene. For example, cyclin-

dependent kinase 7 (CDK7) is a gene known to play important roles in both, cell cycle 

progression and transcription (Fisher 2005), and is expected to be a broadly essential 

gene (Hart et al. 2017). Accordingly, knockout of CDK7 consistently led to decreased 

viability in the majority of experiments. The screens in which no viability phenotype was 

observed upon CDK7 knockout were all conducted using the same library (Figure S1C). 

Since the cell lines screened with this library are derived from various different tissues 

and cancer types and a common resistance to CDK7 knockout seems unlikely. A more 

probable explanation for the observed batch effect might be the inability of CDK7 

targeting sgRNAs in this library to generate a knockout in the first place. If not 
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considered and corrected, such batch effects can introduce false predictions (Figure 

S1D), underlining the requirement of an efficient strategy for their adjustment. To this 

end, we hypothesized that a gene knockout should, on average, have the same effect 

across screens, regardless of the library used. We then applied a model-based 

approach to systematically scan for potential batch effects where the phenotypes 

generated by one library differed significantly (FDR < 5%) from the observed median 

phenotype across all libraries. In order to protect real biological effects, we used a 

robust linear model for testing, which is robust towards strong biological effects present 

in the data in the form of outliers. In cases, in which a significant difference between the 

phenotypes generated by one library and the median phenotype across all libraries 

could be detected, we performed an adjustment by subtracting the estimated difference 

between the library affected by the batch effect and the remaining libraries (Figure 

S1B). It is important to point out, that this approach can be inappropriate when there is 

a correlation between an sgRNA library and a biological covariate, for example if most 

cell lines screened with this specific library are derived from similar tissues. This is not 

the case for most libraries included in this analysis. For example, the GeCKOv2 and 

TKOv1 libraries have been used to screen a wide variety of cell lines derived from 

different tissues and cancer types (Aguirre et al. 2016; Hart et al. 2015; Steinhart et al. 

2017). An exception, however, are the screens performed by Wang et al. (Wang et al. 

2017) as well as Tzelepis et al. (Tzelepis et al. 2016). In these studies, screens were 

performed primarily in acute myeloid leukemia (AML) cell lines. In order to preserve 

such tissue-specific phenotypes through batch correction, our model-based approach 

allows to include biological covariates such as a cell line’s tissue or cancer type into the 

batch modelling, which can then distinguish between technical and biological variability.  

In order to validate our data integration approach, we performed a variety of 

quality control analyses. First, we clustered all screens based on the normalized 

CRISPR scores (Figure 2A, Figure S1F). In many cases, screens that were performed 

in different laboratories with different libraries but using the same cell line clustered 

together. Moreover, we observed a tendency for cell lines sharing the same tissue 

origin to group together. For example, we could identify distinct clusters of AML cell 
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lines and adenocarcinoma cell lines. These results suggest appropriate correction of 

technical bias, leaving the biological variability across cell lines as the main driver of the 

clustering. We next assessed whether normalized CRISPR scores can be compared 

quantitatively across screens. Here, we randomly selected nine core-essential 

polymerases and plotted normalized CRISPR scores for these genes across screens 

(Figure 2B). CRISPR scores for essential polymerases were negative and 

approximately on the same level with no noticeable differences between screens 

published in different studies, suggesting that quantitative comparison of scores is 

indeed feasible and that expected negative viability phenotypes of core-essential gene 

knockouts are preserved throughout normalization. We wondered, if the normalization 

procedure could potentially introduce false phenotypes. Generally, this can be ruled out 

with the help of non-targeting controls, which, however, were not available for all 

experiments in our dataset. As a replacement, we therefore selected all screens 

performed in female cell lines and plotted normalized CRISPR scores for nine randomly 

selected genes located on the Y chromosome (Figure 2C). We observed CRISPR 

scores to be approximately 0, implying that no false phenotypes are introduced 

artificially by the normalization. Next, we determined how well core-essential and non-

essential reference genes (Hart et al. 2015; Hart et al. 2017) could be separated based 

on the normalized CRISPR scores by generating precision-recall-curves (Figure 2D), 

based on which we observed good performance across all screens. We further 

examined if the normalized CRISPR scores could capture well-studied examples of 

oncogene addiction. Oncogene addiction describes a phenomenon where cancer cells, 

albeit harboring many molecular aberrations, become strongly dependent on only a 

single one of them. Reversing this abnormality leads to growth inhibition and apoptosis 

(Weinstein & Joe 2006). We selected the well-studied oncogenes KRAS, NRAS, BRAF 

and PIK3CA and compared the CRISPR scores of cell lines harboring a mutation of 

these genes to the rest of the cell lines (Figure 2E-H). As expected, we observed 

considerably stronger phenotypes in the mutated cells as compared to the wild-type 

cells. Last, we determined if genetic dependencies previously identified in screens used 

for our analysis could be reproduced (Figure S1E). In all cases, we could achieve 
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comparable results to those previously published, corroborating the usage of 

normalized CRISPR scores for valid inter-screen-analysis. 

 

Interactions between gene knockouts and cancer alterations reveal genetic 
wiring maps 
In order to determine genetic interactions, we formed all pairwise combinations between 

genes knocked out by CRISPR/Cas9 in pooled viability screens (target genes) and 

genes altered in cancer cells (query genes) (Figure 1C). We only considered genes as 

queries if they contain an alteration in at least three distinct cell lines (Supplementary 

Table 1). A cancer alteration was defined as a somatic mutation, a somatic copy 

number alteration (SCNA) or differential expression of a gene. We pooled alterations for 

each gene based on three assumptions: We assumed that (1) a loss of gene copy 

number behaves similarly to a disruptive somatic mutation (e.g. a frame shift mutation 

or a nonsense mutation), (2) a gain of copy number behaves similarly to a gain of gene 

expression and that (3) somatic mutations of the same gene have, on average, a similar 

functional consequence. Even though these assumptions, especially number 3, do in 

reality not always hold true, we found them to be a useful approximation judging by the 

results we obtained in downstream genetic interaction analyses. In addition, we further 

refined pooled alterations by manual curation excluding cell lines with alterations known 

to be functionally dissimilar to other alterations of the same gene. This, however, was 

only possible for well-characterized genes. In total, we formed 3.8 million gene pairs of 

17,218 target genes and 221 query genes.  

 Assuming that two genes do in most cases not interact with each other, we first 

performed a statistical test for each gene pair, comparing normalized CRISPR scores of 

cells that contain an alteration of the query gene to cells that do not contain the 

alteration. Here, we used a multilevel model including the cell line corresponding to 

each data point as a random effect to account for biases that could potentially be 

introduced when one cell line was screened multiple times. In some cases, we 

observed high correlation between several query genes (Figure S2A). This observation 

can, for example, be explained by a co-deletion of genes that are located close to each 
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other on the genome. For instance, CDKN2A, a tumor suppressor gene (Liggett & 

Sidransky 1998) located on chromosome band 9p21 is often co-deleted with its 

surrounding genes (Muller et al. 2015). In such cases, it is not possible to determine 

with which of the two potential query genes a target gene should be predicted to 

interact. We addressed this by aggregating identical query genes, as determined by the 

correlation of their model coefficients, into ‘meta genes’ that we then used for 

downstream analyses (Figure S2B). To quantify the interaction strength of each gene 

pair, we calculated π-scores (Figure 3A-B) as described previously (Horn et al. 2011; 

Laufer et al. 2013; Fischer et al. 2015). Altogether, our analysis predicted 17,545 gene-

gene-interactions at FDR < 0.2 (0.8% of total combinations tested after meta gene 

aggregation). 

 Examining the proposed interactions, we found that our analysis was able to 

recover many previously characterized dependencies across several pathways that 

have been extensively studied in the past (Figure 3, Figure S2F-H). For example, we 

identified many positive interactions (i.e. cells containing an alteration of the query gene 

are more resistant to perturbation of the target gene) between TP53 and several genes 

involved in stabilization of the p53 protein (Figure 3C). In wild-type cells, p53 is kept at 

low abundance by E3/E4 ubiquitin ligases including for example MDM2 and MDM4 

(Figure S2G), which can mediate its degradation via the proteasome (Lavin & Gueven 

2006; Frum & Grossman 2014). Knockout of these ubiquitin ligases likely leads to an 

accumulation of p53, which might then mediate apoptosis and impede proliferation 

resulting in a negative viability phenotype. In tumor cells, missense mutations of the 

TP53 gene can inhibit p53 degradation (Frum & Grossman 2014; Lavin & Gueven 

2006) where it can accumulate and act as an oncogene (Oren & Rotter 2010), which 

could explain the resistance of TP53 mutated cell lines to E3/E4 ubiquitin ligases. An 

interaction that at first glance might seem surprising is a negative interaction of TP53 

with itself (i.e. cells with a TP53 mutation are more sensitive to TP53 knockout). In the 

context of epistasis, however, this might be explained by the fact that in TP53 wild-type 

cells, where TP53 acts as a tumor suppressor, its knockout leads to a gain of viability 

phenotype, which is not the case for tumor cells which already harbor mutations in 
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TP53 (Figure S2H). Next, we looked at predicted interactions of the BRAF oncogene. 

Unsurprisingly, we found negative interactions with BRAF itself as well as MAP2K1 

(MEK1) and MAPK1 (ERK2), both of which lie downstream of BRAF in the MAPK 

signaling cascade (Seger & Krebs 1995). In contrast, no interactions were found for 

upstream components of the pathway such as KRAS or EGFR (Figure 3D), likely 

because the constitutive activation of BRAF caused by its mutation confers 

independence on upstream pathway components. Following previous studies 

(Brockmann et al. 2017), we reasoned that genes that interact specifically with one or 

few related query genes should be functionally related. We thus selected ten query 

genes including their predicted interaction partners at FDR < 20% and performed gene 

set over-representation analysis (Kamburov et al. 2013) for groups of target genes 

specifically interacting with one of the selected queries (Figure 3F). Looking at 

pathways over-represented within the analyzed set of genes, we found several well-

characterized relationships linking for example mutations of KRAS, NRAS or BRAF to 

MAPK signaling, BCL2 to apoptosis or TP53 to the stabilization thereof, suggesting a 

high number of true predictions. In addition, our analysis proposes genetic interactions 

for many other less well-studied query genes (a full list of predicted interactions can be 

found in Supplementary Table 4). To find traits shared between query genes for which 

high interaction numbers were predicted (Figure S2E), we performed GO (Ashburner et 

al. 2000) molecular function enrichment analysis (Kuleshov et al. 2016). Unsurprisingly, 

we found that GO terms with the highest enrichment scores were related to transcription 

factor activity (Figure 3G). Other high-ranking GO terms were related to chromatin 

remodeling and hormone receptor binding.  

 We hypothesized that it should be possible to combine functionally related query 

genes in order to improve prediction of regulators of signaling pathways. Consequently, 

we combined loss of function mutations of the genes APC and RNF43 (Supplemental 

Table 2) into a ‘Wnt mutation’ query meta-gene. Both, APC and RNF43, are potent and 

frequently mutated negative regulators of the Wnt/β-catenin signaling pathway 

(Tsukiyama et al. 2015; de Lau et al. 2014; Zhan et al. 2017; Polakis 2012) - a pathway 

that is aberrantly regulated in various cancers (Zhan et al. 2017; Polakis 2012; 
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Giannakis et al. 2014). In the absence of Wnt ligands, APC regulates β-catenin activity 

via the formation of a destruction complex with GSK3β and Axin1, which mediates β-

catenin phosphorylation. Phosphorylated β-catenin is targeted for degradation by the 

proteasome. Binding of canonical Wnts to Frizzled receptors and LRP5/6 co-receptors 

on the cell surface inhibits the formation of the destruction complex, which results in β-

catenin stabilization and its translocation to the nucleus. Within the nucleus, β-catenin 

interacts with TCF/LEF transcription factors and activates transcription of Wnt target 

genes, which mediate cell growth and survival (MacDonald et al. 2009). RNF43 is an E3 

ubiquitin ligase that can induce ubiquitination and subsequent degradation of the Wnt-

Frizzled complex (MacDonald et al. 2009; Clevers & Nusse 2012), thus inhibiting β-

catenin signaling. Consequently, disruptive mutations in APC or RNF43 can promote 

activation of the pathway. Examining genes predicted to interact with loss-of-function 

mutations of either APC or RNF43, we observed many known regulators of Wnt/β-

catenin signaling (Figure 3E). Among these we identified for example regulators of Wnt 

ligand secretion, TCF7L2 and CTNNB1 which together form the TCF/β-catenin 

transcription factor complex, and other genes, which have previously been linked to the 

Wnt/β-catenin pathway (Chen et al. 2014; Ormanns et al. 2014). 

 

Dependency analysis of Wnt pathway alterations reveals novel regulators of Wnt/ 

β-catenin signaling 

We hypothesized that among known modulators of Wnt/β-catenin signaling, our 

analysis should also identify so far uncharacterized pathway regulators. Inactivating 

mutations of the RNF43 gene, for example, have previously been shown to confer 

dependency on Wnt/β-catenin signaling (Jiang et al. 2013; Steinhart et al. 2017) so we 

reasoned that negative interactions of RNF43 could point to positive pathway 

regulators. Besides known Wnt pathway regulators our analysis revealed negative 

interactions between RNF43 and several interesting target genes (Supplementary Table 

4). We aimed to experimentally validate these predictions and proceeded by selecting 

three high-scoring candidate genes reported to be involved in protein glycosylation 

(D’Alessio & Dahms 2015) for follow-up (Figure 4A). Two of these genes, PRKCSH and 
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GANAB, together form the heterodimeric Glucosidase II. The third candidate, UGP2, is 

involved in carbohydrate synthesis (Wang et al. 2016). We knocked down each of the 

candidate genes using at least three different siRNAs (Figure 4B, Figure S3B, Materials 

& Methods) or a pool consisting of the same reagents in HEK293T cells (Figure 4B). 

HEK293T cells were chosen as a non-tumorigenic, well-established model for canonical 

Wnt signaling activation, which harbor no known mutations in the Wnt pathway. 

Furthermore, HEK293T feature an inactive state of canonical Wnt signaling, which is 

why the pathway can be activated by overexpression of some of its key components 

(Wnt3, Dvl3 and β-catenin). Overexpression of Wnt3 mimics auto-paracrine activation 

of canonical Wnt signaling at the level of the Wnt secreting cell, while overexpression of 

Dvl3 induces the pathway downstream of the receptor complex in the receiving cells. 

Overexpression of β-catenin leads to its overload and thus stabilization in the receiving 

cells and activation of the pathway downstream of APC (Figure 4B, Figure S3A). We 

observed, that knockdown of each of the tested candidate genes followed by pathway 

activation induced by Wnt3 expression resulted in strongly reduced activation of a 

TCF4/Wnt reporter, which mimics transcription activation of genes regulated by β-

catenin (Figure 4B). Interestingly, knockdown of GANAB, PRKCSH or UGP2 did not 

show a strong effect on reporter activity or even enhanced induction upon transfection 

with Dvl3 or β-catenin expression plasmids (Figure 4B). These results allow to conclude 

an interference of the candidates investigated at the level of Wnt secretion or at the 

receptor level, since the negative effect on Wnt activity is abolished upon further 

downstream pathway activation by Dvl3 or β-catenin. To further investigate the role of 

the Glucosidase II complex and by this protein glycosylation, secretion and quality 

control of glycoprotein folding in the ER in the context of Wnt signaling, we performed a 

Wnt secretion assay upon knockdown of PRKCSH and GANAB (Figure 4D; D’Alessio & 

Dahms 2015). For this we coupled Wnt3 to a NanoLuciferase (Hall et al. 2012) 

sequence within a Wnt3 expression plasmid. The NanoLuciferase sequence was 

integrated either after the signal peptide (NLucWnt3) or at the C-terminus of Wnt3 

(Wnt3NLuc) to exclude an effect of NanoLuciferase coupling on Wnt3 secretion. A 

NanoLuciferase readout subsequently allowed to detect secreted Wnt3 proteins in the 
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cell culture supernatant and to normalize it to the amount of Wnt3 in the cell lysate. 

Upon knockdown of either GANAB or PRKCSH, Wnt3 secretion was reduced about 40-

50% using either the NLucWnt3 or Wnt3NLuc constructs (Figure 4C, Figure S3C). 

These data substantiate an already published necessity of Wnt ligand glycosylation for 

successful secretion of Wnt proteins (Figure 4D; Komekado et al. 2007).  

 

Similarity of interaction profiles predicts functional relationship of genes 
Several studies have previously shown that functionally similar genes can be identified 

by comparing their interaction profiles. Here, the vectors of interaction scores across 

query genes are compared for all possible pairs of target genes using a measure of 

similarity - most commonly their correlation. Two target genes with highly correlating 

interaction profiles are then predicted to share biological function through guilt by 

association (Figure 1D). Encouraged by the observation of pathway enrichment among 

target genes predicted to interact with the same query we reasoned that an analysis of 

interaction profile similarity should also be possible based on our results despite a 

relatively low number of query genes (167 after aggregation of highly similar query 

genes). Consequently, we correlated Pearson correlation coefficients of π-score 

interaction profiles for all pairwise combination of target genes. We reasoned that data 

about known protein complex co-membership should be able to serve as a reference to 

estimate the predictive power of our approach. Hence, we downloaded all human 

protein complex data from the CORUM (Ruepp et al. 2010) database and compared our 

predicted associations to the known protein complex data by receiver operator 

characteristic (ROC) analysis. Initially, this analysis revealed our predictions of protein 

complex co-membership to be unsatisfactory. After careful inspection of the predicted 

relationships we noticed that the correlation coefficient was in most cases considerable 

influenced by very small π-scores.  Such data points do not hold a lot of biological 

information as they merely indicate that there might be no connection between a target 

and a query gene based on a viability phenotype. Hence, we hypothesized that 

excluding interactions with very low π-scores should shift more weight onto more 

informative data points and should therefore lead to more meaningful predictions of co-
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functionality. We consequently excluded all interactions with π-score < 0.2 and repeated 

the above analysis. As excluding interactions with a low π-score violates the Pearson 

correlations’ assumption of normality we used the non-parametric Spearman correlation 

instead. We calculated this correlation for all pairs of target genes where at least 5 

pairwise complete data points were available. Repeating the ROC analysis as 

described above revealed a considerable improvement of the resulting predictions 

leading to results clearly better than random assignment (Figure 5A). In order to identify 

the most suitable parameter thresholds we systematically repeated this analysis using 

different combinations of the πmin (minimum π-score to be considered) and nmin (minimal 

number of pairwise complete data points) parameters. We noticed that more 

conservative parameter thresholds lead to higher performance at predicting protein 

complexes. However, the more conservative these thresholds become the more genes 

have to be excluded from the analysis due to insufficient data. Therefore, we decided to 

select πmin=0.2 and nmin=15 as parameters for downstream analyses, assuming these 

cutoffs to present a good compromise between the predictive power of the analysis and 

the number of genes that can be considered. Based on these parameters we found that 

our analysis holds power to correctly associate many closely interacting genes, such as 

for example CTNNB1 and TCF7L2 which together form the TCF/β-catenin transcription 

factor complex (Morin et al. 1997) or the WNT10A FZD5 ligand receptor complex 

(Voloshanenko et al. 2017; Figure 5B). Similar interaction profiles could also be found 

for several members of the Mediator complex, a multi-subunit complex important for the 

transcriptional regulation of RNA polymerase II (Figure 5C).  

We selected all target gene pairs for which the Bonferroni-corrected asymptotic 

p-value of the profile similarity (Spearman correlation) was smaller than 0.5 and 

connected them to a network, applying a force-directed spring-embedded layout that 

can position highly similar genes proximal to each other (Figure 5D). We next used 

Spatial Analysis of Functional Enrichment (SAFE; Baryshnikova 2016b; Baryshnikova 

2016a) to identify regions in the network enriched for specific biological processes as 

annotated by Gene Ontology (GO; Ashburner et al. 2000; Figure 5E; Supplementary 
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File 1). SAFE analysis revealed clustering of 19 sub-networks, which were associated 

with x different GO terms and comprised in total y genes.  

In order to ensure that the observed modules do in fact resemble biologically 

meaningful functional clusters and are not just random artefacts of the analysis, we 

performed a random permutation analysis (Figure S4A-C). As expected, we observed 

that upon random reshuffling of links while keeping the genes and edge number the 

same the network loses its modular structure, resulting in one big cluster of genes in the 

center of the network. SAFE analysis reveals that this cluster enriches for metabolism 

genes, indicating that there is a general overrepresentation of metabolism genes among 

genes found to behave differentially in cancer cells.  

Functionally enriched clusters not only cover biological processes commonly 

found to be implicated in cancer (e.g. “cell devision”, “Wnt & EGFR signaling” or “cell 

differentiation”) but also processes of general importance in cellular development 

and behavior (e.g. “cilium morphogenesis”, “intra cellular transport” and “macro 

autophagy”). This implicates that the approach presented here is indeed capable of 

identifying novel regulators of known pathway assemblies and previously 

uncharacterized members of know functional biological processes. This way we 

created an unprecedented resource of functional gene clusters to be exploited by 

future studies for deeper understanding of novel mechanisms influencing known 

bioprocesses, not only important in cancer but covering a wide range of biology. This 

resource can also be used to validate prior assumption of gene functions in any 

functional study. We anticipate that as data in more cell lines and phenotypes 

become available this functional map of a cell will continue to grow and improve.  

 

DISCUSSION 

To identify novel functions of known genes or to assign cellular function to unknown 

genes, forward genetic screens have been conducted in many model systems ranging 

from bacteria to human cells (Boutros & Ahringer 2008). Combining high-throughput 

screening methods with the ability to reliably knock out every gene in the human 

genome by programmable nucleases now opens up the possibility of studying the 
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consequences of complete or partial loss-of-function mutations with unprecedented 

accuracy in various mutational backgrounds. Genome-wide screens, predominantly for 

gene essentiality, have been performed and have identified a large number of known, 

new and context-specific essential genes (Evers et al. 2016; Hart et al. 2015; Morgens 

et al. 2016; Rauscher et al. 2017; Wang et al. 2014; Wang et al. 2015; Zhan & Boutros 

2016). We developed a computational approach to integrate dozens of high-throughput 

CRISPR/Cas9 viability screens independent of screen size, library, Cas9 type and 

screening protocol. Because, compared to other techniques, CRISPR/Cas9 screens 

have shown to be a more sensitive method by which perturbation-induced phenotypes 

can be discovered in human cells (Hart et al. 2015; Wang et al. 2015), such an 

approach shows great promise for the systematic discovery of cancer vulnerabilities. 

We developed MINGLE, a computational framework that integrates CRISPR/Cas9 

screens of diverse origin to map genetic interactions in cancer cells. We applied this 

approach to integrate data from 85 screens in human cancer cell lines and analyzed the 

viability effects of CRISPR/Cas9 perturbations in the context of the cell lines’ genetic 

backgrounds. By systematically evaluating 2.1 million combinations of genes, we 

uncovered genetic wiring maps including many known and novel dependencies 

between genes implicated in tumorigenesis and resistance to therapy. We further show 

that these maps can identify new regulators of pathways that play important roles in 

specific cancer types, e.g. β-catenin-dependent Wnt signaling.  

Here we demonstrate that members of the Glucosidase II complex that our 

analysis identified as RNF43 interacting genes control signaling activity by regulation of 

Wnt3 ligand secretion, probably mediated by protein N-glycosylation. N-linked 

glycosylation is an ER-based process essential for protein secretion and folding (Xu & 

Ng 2015; Figure 4D). Whereas N-linked glycosylation of Wnt-3a has already been 

described in the past (Smolich et al. 1993), the importance of Wnt ligand glycosylation 

for secretion and pathway activation is controversially discussed. While some authors 

state a clear correlation between Wnt ligand glycosylation and secretion in a human cell 

line (Komekado et al. 2007), others could not observe loss of protein secretion upon 

suppressing protein N-glycosylation in Drosophila (Tang et al. 2012; Herr & Basler 
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2012). Our results support a role of three genes involved in protein glycosylation on Wnt 

pathway activation, which could be further supported by a reduction of Wnt ligand 

secretion upon knockdown of GANAB and PRKCSH. 

 Traditionally, genetic interactions have been examined by simultaneous 

perturbation of two genes. Our analysis is based on the idea that one of these 

perturbations can be mimicked by genetic alterations that naturally occur in cancer 

cells. Even though we find that this concept can indeed be applied to efficiently identify 

true interactions it poses a number of challenges. First of all, genetic alterations of each 

gene have to be pooled demanding certain assumptions about the similarity of their 

functional consequences. In nature, however, these assumptions do not always hold 

true which can confound the analysis. In this study we have attempted to address this 

issue by dividing alterations into logical groups, for example by pooling nonsense 

mutations and frameshift mutations as loss-of-function variants. We have further refined 

these annotations by manual curation excluding cell lines with variants known to be 

functionally distinct from others. Although this is currently only possible for well-

characterized genes and we are confident that future advances regarding the functional 

characterization of cancer variants will greatly benefit our approach. Another challenge 

is posed by the fact that some genetic alterations are correlated because they co-occur 

in the same cell lines or cancer types. An example is the deletion of the chromosome 

9p21 locus where the tumor suppressor CDKN2A is located. CDKN2A is often co-

deleted with its neighboring genes (Muller et al. 2015) and it is thus not easily possible 

to understand which of them is the true driver behind a proposed interaction. This can 

further introduce a bias into the genetic similarity network. In our study we address this 

by aggregating fully correlated query genes into ‘meta genes‘ that we then proceed to 

use to calculate interactions and generate the genetic similarity network. To avoid bias 

we further calculate correlations of genetic interaction profiles based on only a subset of 

query genes such that no two query genes are more than 70% similar in terms of their 

cell line composition. 

 It has previously been demonstrated that profiles of synthetic genetic interactions 

can group functionally related genes through “guilt by association”. Studies in human 
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cells have formerly relied on RNA interference. However, it has been shown that this 

method has limitations, such as off-targeting and dosage compensation effects, that 

can be overcome by CRISPR/Cas9. Our approaches allowed us to analyze interaction 

profiles using data from many high throughput CRISPR/Cas9 experiments. These 

profiles hold power to predict functional relationships of genes as we show by 

benchmarking against the CORUM protein complex database. As physical protein 

interactions as they occur in protein complexes represent only a subset of possible 

functional relationships we believe that this benchmarking can be interpreted as a lower 

bound for the predictive power of the analysis. We created a network that groups genes 

into clusters with enriched functional profiles. Findings from this analysis may be 

important for two reasons: first, hypotheses about the function of weakly characterized 

genes that are frequently deleted in cancer cells can be generated by looking at the 

common interaction partners members within functional network modules; and second, 

such a network may serve as a powerful tool to infer the function of entirely 

uncharacterized genes based on the function of connected genes. For example, over 

10% of the genes in our network are not annotated with GO biological processes.  

In its current state, a limiting factor of this type of analysis is the amount of 

available data. At present, there are approximately 200 genes that have been found to 

be frequently altered in the cell lines included in our data and for which synthetic genetic 

interactions can be tested. Therefore, only genes that interact with these genes can 

currently be examined. Nevertheless, this number will improve rapidly as new data are 

published, which will then allow for the creation of increasingly complex interaction 

networks. Pooling functionally related alterations of different genes as we demonstrate 

at the example of RNF43 and APC can further expand the set of possible query genes. 

Our approach is scalable and can easily be expanded as new data becomes available. 

All in all, we believe that the presented approach can be a powerful way to 

systematically discover synthetic genetic interactions that may be of clinical interest. 

Furthermore, we believe that it can serve as an important asset to the quest towards 

more complete understanding of how human genes function. The presented workflow 

scales well as increasing amounts of data are becoming available.  
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 We expect many more CRISPR/Cas9 screens in various cell lines to be carried 

out in future. We will expand our analysis once these data become available to improve 

and diversify our findings. Finally, we aim to extend our analysis to also include data 

from other experiment types such as physical interactions derived from protein-protein 

interaction studies. Most synthetic genetic interactions, for example, do not link genes 

that are members of the same pathways but instead they connect members of two 

interacting pathways (Kelley & Ideker 2005). Therefore, integrating synthetic 

interactions and physical interactions derived from protein-protein-interaction 

experiments might provide important new insights into how biological pathways interact 

with each other. 

 We further aim to make the predicted interactions available for browsing and 

download through the GenomCRISPR database, as we believe that they can be a 

useful resource to inform candidate gene selection for experiments that cannot be 

carried out at a genome-wide scale. These include, for example, in vivo screens in 

genetically engineered mouse models that are often limited by the number of cells that 

can be transfected or pairwise perturbation experiments as they are now conducted in 

human cells using CRISPR/Cas9 (Shen et al. 2017; Du et al. 2017), which are limited, 

by the number of possible gene combinations. 

 
  

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 9, 2017. ; https://doi.org/10.1101/120964doi: bioRxiv preprint 

https://doi.org/10.1101/120964


 20 

METHODS 

Genetic profiles of cancer cell lines 
To generate profiles of genetic alterations in GenomeCRISPR (Rauscher et al. 2017) 

cancer cell lines we relied on data publicly available in the COSMIC Cell Lines Project 

(Forbes et al. 2017), the Cancer Cell Line Encyclopedia (CCLE; Barretina et al. 2012) 

and additional data published previously by Bürckstümmer et al. for the KBM7 cell line 

(Bürckstümmer et al. 2013) and Klijn et al. (Klijn et al. 2014) (Figure 1B). Taken 

together, these data can characterize all except for 2 (a patient derived Glioblastoma 

cell lline and the RPE1 cell line) cell lines currently included in GenomeCRISPR. In 

total, 60 different cell lines were included in the analysis. For each of these cell lines a 

list of altered genes was generated, taking into consideration the following types of 

alterations: 1) gain of copy number events, 2) loss of copy number events, 3) somatic 

mutations, excluding silent mutations and in-frame insertions or deletions, and 4) mRNA 

overexpression.  
 

Selection of copy number alterations 

First, copy number data was downloaded from the COSMIC Cell Lines Project v81, the 

CCLE (file dated 27-May-2017) and the Klijn et al. publication (Klijn et al. 2014). Gain 

and loss of copy number status was determined for each gene as follows: COSMIC 

provides a label for each copy number event that indicates whether the event can be 

classified as a gain or loss of copy number event. We adopted this classification for our 

analysis. In the paper by Klijn and colleagues, amplification and deletion of a gene was 

defined as > 1 or < -0.75 of the ploidy corrected copy number (Mermel et al. 2011; Klijn 

et al. 2014). Consequently, the same thresholds were used in our approach. Finally, 

CCLE provides log2-transformed copy number fold changes between healthy samples 

and cancer cell lines at the gene level. The absolute copy number of each gene per cell 

line was estimated from the fold change data as 

   		C = 2x ×2⎢⎣ ⎥⎦
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Where C is the absolute copy number and x is the log2 fold change between cell line 

and healthy sample. In order to assess whether this provides a realistic estimate of the 

total copy number we analyzed the derived copy number for all Y-chromosome genes in 

female cell lines where copy numbers of 0 were robustly estimated.  Finally, we 

downloaded pre-processed gene-level copy number data from COSMIC. All genes 

where a copy number of 0 was estimated in a cell line were marked as loss-of-function 

genes. Copy number alteration events that were observed robustly across at least 2 

different data sources were kept for downstream analysis after excluding alterations on 

the X and Y chromosomes.  

 

Selection of somatic mutations 

Somatic mutation data were downloaded from COSMIC Cell Lines Project (version 

81), the CCLE (Oncomap3 mutations dated 10-Apr-2012 and Hybrid Capture 

mutations dated 05-May-2015) and the Klijn et al. and Bürckstümmer publications. 

Missense mutations and frame-shift mutations were selected and mutations reported 

in disagreement between individual data sources were excluded. Next, missense 

mutations were classified into driver and passenger and driver as proposed by 

Anoosha et al. (Anoosha et al. 2016). Putative passenger mutations were excluded 

and the remaining mutations were kept for downstream analysis. After pooling copy 

number alterations and somatic mutations, we kept all genes as query genes where 

an alteration was observed in at least 3 different GenomeCRISPR cell lines. 
  

Selection of overexpressed genes 

In order to define genes that are overexpressed in cell lines included in 

GenomeCRISPR, RMA (Irizarry et al. 2003) normalized microarray mRNA expression 

data were downloaded from CCLE (CCLE_Expression_2012-09-29.res dated 17-Oct-

2012) and the COSMIC Cell Lines Project (v81). ComBat (Leek et al. 2012) was used to 

remove batch effects between the two different data sources and expression levels for 

cell lines featured in both sources were aggregated by computing the mean. Next, gene 

expression Z-scores were computed for each gene in each cell line. Genes on the 
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COSMIC list of cancer census genes for which a Z-score > 2 was observed in at least 5 

different GenomeCRISPR cell lines were kept for downstream analysis. 

 

Analysis of CRISPR-Cas9 screens 
To compare viability phenotypes of high-throughput CRISPR-Cas9 screens, aggregated 

gene level CRISPR scores were calculated for each experiments. First, all negative 

selection screens for cell viability were downloaded from the GenomeCRISPR database 

(Rauscher et al. 2017). First, all genes targeted by less than 3 sgRNAs and all sgRNA 

where < 30 counts were observed in the time point 0 (T0) sample, were removed from 

each screen individually. In addition, we excluded all sgRNAs in the GeCKOv2 library 

(Sanjana et al. 2014) that were flagged as ‘isUsed = FALSE’ in the 

‘Achilles_v3.3.8.reagent.table.txt’ 

(https://portals.broadinstitute.org/achilles/datasets/7/download) on the Project Achilles 

(Aguirre et al. 2016) website.  After filtering, raw read counts were corrected for 

differences in sequencing depth by dividing the each read count by the median of all 

read counts of samples at both T0 and the final time point. Based on these values, fold 

changes were calculated for technical replicates, after adding 1 to each count to avoid 

logs of 0, as 

  

where rcsample is the normalized read-count measured in the sample cell population and 

rcT0 is the normalized read count measured at time point 0. In some cases, the read-

count abundance in the plasmid DNA pool was given instead of time point 0 sequencing 

data of cells. In these cases, the plasmid DNA read-counts were used to calculate the 

fold changes for all sample replicates of those screens. Furthermore, in 2 cases 

(Doench et al. 2016; Munoz et al. 2016) no read count data was available. Here we 

used the original fold change values provided by the authors of the experiments. 

In order to assess the quality of each screen, Bayesian Analysis of Gene Essentiality 

(BAGEL; Hart & Moffat 2016) was used to predict gene essentiality. Using precision-

recall-curves the ability to separate core-essential and non-essential genes based on 

		
fcsgRNA = log2(

rcsample
rcT0

)
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the fold change data was examined. All screens where an area under the precision-

recall-curve of less than 0.85 was observed were excluded from further analysis.  After 

selecting screens for downstream analysis (Supplementary Table 2), gene level 

CRISPR scores were calculated as the average fold change of all sgRNAs targeting a 

gene. We then used quantile normalization to normalize CRISPR scores across 

experiments.  

 
Gene level correction of library batch effect 

In order to estimate batch effects introduced by the use of different libraries, a robust 

linear model of the form  with and 

 was fitted for each gene individually where  is the number 

of libraries including the gene,  is the index of a data point and  are quantile-

normalized CRISPR scores. The coefficients  are then the estimated difference 

between the CRISPR scores screened in a library to the median CRISPR scores across 

all libraries. A robust F-test as implemented in the R package ‘sfsmisc’ (Maechler 2008) 

was used to test the null hypothesis that the median CRISPR score observed for a gene 

is the same across all libraries. The Benjamini-Hochberg method (Benjamini & 

Hochberg 1995) was used to estimate the false discovery rate (FDR) for each test. In 

case the null hypothesis could be rejected at 5% FDR a library specific batch effect was 

assumed and CRISPR scores observed using that library were centered by subtracting 

its distance to the median of CRISPR scores across all libraries. A library was flagged 

from batch correction in cases where a similar (same sign of the model coefficients) 

batch effect was predicted for the libraries used in the screens of Wang et al. (Wang et 

al. 2017) and Tzelepis et al. (Tzelepis et al. 2016). Both of these libraries were used to 

screen primarily acute myeloid leukemia (AML) cell lines and thus the null hypothesis 

described above might not hold true in the case of AML specific genes. Therefore, in 

such cases, no batch adjustment was performed. 

 

		 yi = β0 +β1xi1 +…+βnxin + ε i 	β0 =0

		yi = yCRISPR ,i −Median( yCRISPR ) 	n

	i 	yCRISPR

		 β1…βn
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Quality control of normalized CRISPR scores 

To assess the appropriateness of the normalization steps described above quality 

control was performed examining several different properties of the normalized data. 

First of all, samples were clustered to evaluate if biologically related samples clustered 

more closely than more biologically distant samples. Here, the set of genes shared 

across all libraries was determined and Ward clustering (as implemented in R’s 

‘ward.D2’ method for hierarchical clustering) was performed. The ‘pheatmap’ R package 

was used to visualize the heat map shown in Figure 2A. Next, differences in normalized 

CRISPR scores across samples were observed at the examples of 9 core-essential 

polymerases, and 9 genes situated on the Y chromosome, all of which were sampled 

randomly from the set of core-essential polymerase genes (Hart et al. 2017) and the set 

of Y chromosome genes, respectively. Only screens in female cell lines were plotted in 

Figure 2C. To examine if normalized CRISPR scores could distinguish core-essential 

genes (Hart et al. 2017) from non-essential genes (Hart et al. 2015) precision-recall-

curves were generated for each screen using the ROCR R/Bioconductor package (Sing 

et al. 2005; Gentleman et al. 2004). Further, a number of control oncogenes (KRAS, 

NRAS, BRAF and PIK3CA) were selected to see if an expected difference in response 

to gene knockout depending on the mutation status of the gene could be observed. P-

values shown in Figures 1E-H were calculated using a two-sided Student’s t-test as 

implemented in R. Finally we checked that potential unwanted effects introduced by the 

batch correction did not distort findings published in the papers where data was 

included in our pipeline. For these comparisons normalized CRISPR scores were used 

for the cell lines featured in the original publications. 

 
Combinatorial testing of gene-gene interactions 

To test for differences in fitness response based on loss-of-function genotypes, fitness 

scores for all CRISPR-Cas9 screens in cell lines were genotype information was 

available were selected. We selected all genes that were marked as altered by somatic 

mutations or copy number changes in at least 3 or marked as overexpressed in at least 

5 distinct cell lines as query genes. In total, 221 genes were selected. Consequently, we 
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identified all combinations between these query genes and genes perturbed in screens 

(target genes). Target genes were selected such that, fitness scores were available for 

at least 3 distinct cell lines with and without a query loss-of-function. Overall, we 

identified ~3.8 million such combinations. As input data for the test, we used normalized 

CRISPR scores as described above. We fitted a linear mixed-effects model for each 

combination, modeling the loss-of-function genotype as fixed effect and the cell line as 

random effect to account for cell-line-specific biases. For modeling, the R package 

‘lme4’ (Bates et al. 2014) was used. The R package ‘lmerTest’ (Kuznetsova et al. 2016) 

was used to calculate an estimation of significance (p-value) for each model. After 

testing similar queries were identified by calculating the Pearson correlation of the 

estimated model coefficients for each pair of query genes. Pairs of query genes with a 

100% correlation were merged together into a ‘meta’ query gene. To control the 

expected fraction of false discoveries made during multiple testing independent 

hypothesis testing (IHW; Ignatiadis et al. 2016) was used using the variance of the 

normalized CRIPSR scores of the altered (mutated or overexpressed) group as a 

covariate for hypothesis weighting (Figure S2C, Figure S2D).  

 

Quantification of genetic interactions 

Interactions between genes were quantified using the π-score statistic (Horn et al. 

2011; Laufer et al. 2013; Fischer et al. 2015). π-scores were calculated using the ‘

HD2013SGImaineffects’  function implemented in the R/Bioconductor package ‘

HD2013SGI ’  (Laufer et al. 2013). To generate the input for the ‘

HD2013SGImaineffects’  function, normalized CRISPR scores were entered by 

subtracting column means and scaled by dividing columns by their standard deviation. 

 

Gene set enrichment network 
To generate the gene set enrichment network shown in Figure 3F we selected 10 

query genes and all target genes interacting with these queries at FDR < 20%. The 

resulting list of edges was visualized in Cytoscape (Shannon et al. 2003) using a 
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force-directed spring-embedded network algorithm. Query gene nodes were 

arranged manually. ConsensusPathDB (Kamburov et al. 2013) was used to perform 

gene set over-representation analysis and for each query gene a pathway term was 

selected from the list of results. The q-values displayed in Figure 3F are as provided 

by ConsensusPathDB. We would like to mention that Figure 3F was inspired by a 

previous study by M. Brockmann and colleagues (Brockmann et al. 2017). 

 
TCF4/Wnt-luciferase reporter assay  

HEK293T cells were cultured in Dulbecco's MEM (GIBCO) supplemented with 10 % 

fetal bovine serum (Biochrom GmbH, Berlin, Germany) without antibiotics. Experiments 

were performed in a 384-well format using white, flat-bottom polystyrene plates 

(Greiner, Mannheim, Germany). HEK293T cells were reverse transfected with 20 nM 

indicated siRNAs with the help of 1% of Lipofectamine RNAiMAX Transfection Reagent 

(#13778150; Thermo Fisher Scientific Waltham, MA, USA). 24 hrs later cells were 

transfected with 0.2% of TransIT-LT1 transfection reagent (731-0029; Mirus/VWR, 

Madison, USA) and 20 ng of TCF4/Wnt firefly luciferase reporter, 10 ng of actin-Renilla 

luciferase reporter, and the canonical Wnt signalling was induced by addition of the 

Wnt3(20 ng)-, β-catenin(20 ng)- or Dvl3(5 ng)- expressing plasmids or left without 

induction by addition of the Ctrl plasmid pcDNA3. Luminescence was measured with 

the Mithras LB940 plate reader (Berthold Technologies, Bad Wildbad, Germany). 

TCF4/Wnt-luciferase signal was normalized to the actin-Renilla luciferase reporter 

signal.  
 
siRNAs 
Target gene 
symbol 

siRNA ID 
Ambion(s)/Dharmacon(MU) 

Sequence - sense strand 

Ctrl/control Silencer® Select Negative Control #1 and 2 
CTNNB1 s438 CUGUUGGAUUGAUUCGAAAtt 
UBC s14559 GUGAAGACCCUGACUGGUAtt 
UGP2 MU-007739-03-0002 TAATATATCTTCCGTGTTG 

GAGCTAGAATTATCTGTGA 
TCATGGAAGTCACAAATAA 
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TCATTAAAGGGAACGGTTA 
 

PRKCSH MU-010618-00-0002 TGAAGAAGATCCTTATTGA 
GGTCAACGATGGTGTTTGT 
GGAGTTTGCTTACCTGTAC 
TCACCAATCATCACTTCTA 
 

GANAB  MU-009499-01-0002  
 

GAAGATCTCTATTCCTATG 
CATATCGCCTCTACAATTT 
GATAGAAGCAACTTTAAGA 
GGGCTAACATGTTCAGCTA 
 

 
 
Constructs 
Short name Name Source 
TCF4/Wnt 
luciferase 
reporter 

6xKD; pGL4.26 6xTcf-Firefly 
luciferase 

K. Demir (Boutros lab - Demir) 
(Demir et al. 2013) 

Renilla reporter pAct-RL (Renilla luciferase) D. Nickles (Boutros lab - 
Nickles) 

(Nickles et al. 2012) 
Wnt3 pcDNA3 Wnt3 Addgene #35909 - Najdi 

(Najdi et al. 2012) 
β-catenin pcDNA3 β-catenin Boutros lab 
 
NanoLuciferase Wnt3 secretion assay 
 
Similar to the TCF4/Wnt-luciferase reporter assay, HEK293T cells were reverse 

transfected with indicated siRNAs and seeded into 384-well format white, flat-bottom 

polystyrene plates (Greiner, Mannheim, Germany). 24 hrs later cells were transfected 

with 20 ng of NLucWnt3 or Wnt3NLuc expression constructs (NanoLuciferase 

sequence; Hall et al. 2012) was cloned into pcDNA Wnt3 plasmid either after the signal 

peptide or at the C-terminus) together with 5 ng of CMV Firefly luciferase reporter 

plasmid. 48 hrs later the plates were centrifuged and 20 μl of culture medium was 

transferred to a new plate. NanoLuciferase signal in the lysate and medium was 
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detected with the help of a Nano-Glo Luciferase Assay (#N1110) from Promega (USA) 

according to the manufactures instructions. Luminescence was measured with the 

Mithras LB940 plate reader (Berthold Technologies, Bad Wildbad, Germany). In the 

case of the lysate, first the signal for Firefly luciferase and then for NanoLuciferase was 

measured. The NanoLuciferase signal in the culture medium was normalized to the 

NanoLuciferase signal in lysate normalized to the Firefly luciferase signal.  

 

Constructs 
Short name Name Source 
TCF4/Wnt 
luciferase 
reporter 

6xKD; pGL4.26 6xTcf-Firefly 
luciferase 

K. Demir (Boutros lab - Demir) 
(Demir et al. 2013) 

Renilla reporter pAct-RL (Renilla luciferase) D. Nickles (Boutros lab - 
Nickles) 

(Nickles et al. 2012) 
Wnt3 pcDNA3 Wnt3 Addgene #35909 - Najdi (Najdi et 

al. 2012) 
β-catenin pcDNA3 β-catenin Boutros lab 
NLucWnt3 pcDNA_NLucWnt3 Boutros lab 
Wnt3NLuc pcDNA_Wnt3NLuc Boutros lab 
CMV firefly 
luciferase 

pLenti CMV Firefly luciferase Campeau et al. 2009 

 

Gene similarity network benchmarking and modeling 

In order to assess whether interaction similarity networks can predict protein complex 

co membership, protein complex annotations were downloaded from the CORUM 

databases (Ruepp et al. 2010) and target genes included in the CORUM data were 

selected. We removed all pairwise interactions  with  where  is the 

interaction score between target gene  and query gene  and is a chosen 

threshold. Subsequently, the Spearman correlation was calculated as implemented in 

the ‘Hmisc’ R package for each possible pair of target genes using pairwise complete 

observations. Target gene pairs where less than  data points were used to calculate 

	
π tq 		π tq <πmin 	

π tq

	t 	q 	πmin

		nmin
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the correlation were excluded. This analysis was performed for 6 different combinations 

of the parameters  and  and ROC curves were drawn to visualize how well the 

resulting correlations could predict protein complex co-membership as annotated in 

CORUM. Based on these results  and 		nmin =15  were selected as thresholds to 

calculate Spearman correlations between all possible target gene pairs as described 

above. For each correlation the asymptotic p-value was computed using the ‘Hmisc’ R 

package. Bonferroni correction was applied to the resulting p-values and gene pairs 

with an adjusted p-value < 0.5 were used as edges for the gene similarity network in 

Figure 5C. The network was visualized using Cytoscape (Shannon et al. 2003). A force-

directed spring-embedded layout was used to position the nodes of the network without 

edge weighting. The visual representation of the network was inspired by previous 

studies in yeast (Costanzo et al. 2016; Costanzo et al. 2010). The Spatial Analysis of 

Functional Enrichment (SAFE; Baryshnikova 2016b; Baryshnikova 2016a) Cytoscape-

plugin was used to identify functional modules in the network. For SAFE analysis, the 

map-based distance-metric was chosen with a maximum distance threshold of 0.6 

(percentile). To build the composite map, a minimal landscape size of 7 was chosen 

and the Jaccard distance was used as a similarity metric for group attributes with a 

similarity threshold of 0.75. As background for the enrichment, all nodes in the 

annotation standard were chosen. In SAFE the annotation standard is a binary matrix of 

genes (rows) and annotation terms (columns). A value of 1 indicates that a gene is 

annotated with a specific annotation term. For our analysis, we generated such an 

annotation standard containing Gene Ontology (GO; Ashburner et al. 2000) Biological 

Process annotations for all target genes tested. GO annotations were downloaded from 

the example data section of the SAFE algorithm’s GitHub page 

(https://github.com/baryshnikova-lab/safe-

data/blob/master/attributes/go_Hs_P_160509.txt.gz; accessed 13/09/2017) and filtered 

to contain only genes tested in our interaction analysis. 
 
 

	πmin 		nmin

	πmin =0.2
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Figure 1 | An integrated analysis approach to identify genetic interactions in cancer cells. (A) Data from 
CRISPR-Cas9 screens in 60 cancer cell lines were re-analyzed and integrated. The results were 
integrated into a global perturbation response profile. (B) Mutation, copy number and mRNA expression 
data from the COSMIC and CCLE databases were combined to create a map of genetic alterations 
across these cell lines. (C) To identify genetic dependencies between gene combinations that could shed 
light on the genetic wiring of cancer cells, perturbation response of more than 2.1 million gene-gene-
combinations was examined to infer genetic interactions. (D) Interaction profiles were calculated for gene 
combinations based on the correlation of their interactions as determined by interaction scores (π scores). 
Spatial enrichment analysis was performed to identify functional modules in the network.  
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Figure 2 | Results and quality control of data integration and normalization. (A) A heat map shows a 
clustering of normalized CRISPR scores (average log2 fold change of sgRNAs targeting a gene) for 
genes present in each sgRNA library used in screens included in the analysis. Rectangular windows 
highlight experiments where screens performed in the same cell line but in different laboratories cluster 
together. White annotation bars indicate shared biological properties of the cell lines in each cluster. Grey 
bars indicate the annotated cell line does not fit to the annotation of other cell line in the same cluster. (B) 
Normalized CRISPR scores across experiments are displayed for a randomly selected set of 9 core-
essential polymerases. Each dot corresponds to one screen and different colors highlight the publications 
that the data were derived from. More negative CRISPR scores indicate a more negative viability 
response upon gene knockout. (C) Normalized CRISPR scores across experiments in female cell lines 
are displayed for a randomly selected set of 9 genes located on the Y chromosome serving as non-
targeting controls. Colors depict different publications. (D) Precision-recall-curves showing the 
performance of normalized CRISPR scores at distinguishing core-essential from non-essential genes. 
Each line corresponds to one experiment. High recall while maintaining high precision indicates good 
performance. (E-H) Comparison of normalized CRISPR scores in a different genetic background for four 
different control dependencies. 
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Figure 3 | Results of predicted genetic interactions. (A) Distribution of π-scores calculated for each 
pairwise interaction. Negative values indicate negative (aggravating interactions) and positive values 
indicate positive (buffering) interactions. Values greater than 0.2 and less than -0.2 are colored yellow 
and blue, respectively. (B) The number of positive and negative interactions per gene. Interactions with a 
π-score greater than 0.2 are considered positive and interactions with a π-score of less than -0.2 are 
considered negative. (C-E) Volcano plots showing genes interacting with TP53 loss-of-function mutations 
(C), BRAF V600E mutations (D) and APC or RNF43 loss-of-function mutations (E). Each dot corresponds 
to one gene. Interactions that are significant at FDR < 0.2 are colored in blue in case the interaction is 
negative or yellow if it is positive. Selected genes are highlighted and labeled. (F) A network graph 
showing gene set enrichment results for sets of interaction partners. Each of the colored diamonds 
corresponds to one of 10 selected query alterations. The color of each diamond indicates the type of 
alteration as described in the legend at the bottom. Each grey dot connected to one or more query gene 
nodes represents a target gene that interacts (FDR < 0.2) with the query. Gene set enrichment analysis 
was performed for genes that fall in the same compartment as indicated by the dashed line. Genes in 
compartments towards the edge interact with one specific query. Genes positioned in the center of the 
circle have a more promiscuous interaction profile. Selected enriched pathway terms are used to label the 
query gene nodes. (G) GO terms enriched among 40 query genes with the most interactions (|π| > 0.2, 
FDR < 0.2). 
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Figure 4 | Candidate genes GANAB and PRKCSH regulate Wnt secretion. (A) Three candidate genes 
(dark gray circles) interact with the RNF43 query gene (rectangle), similar to well characterized pathway 
components (light grey circles). (B) HEK293T cells were reverse transfected with siRNA pools targeting 
genes labeled on the x-axis. 24 hours after transfection Wnt signaling was activated by overexpression of 
Wnt3, Dvl3 or β-catenin plasmids. The TCF4/Wnt Firefly luciferase signal was normalized to the actin-
Renilla signal. Results are shown as averages of 3-4 independent experiments ± s.e.m. (C) HEK293T 
cells were reverse transfected with pooled siRNAs targeting GANAB or PRKCSH. After 24 hours the 
indicated Wnt3 NanoLuciferase constructs were transfected together with a CMV Firefly luciferase 
reporter. 48 hours later Luciferase signals were measured in the medium and lysate. % reporter activity 
denotes the Wnt3 NanoLuciferase signal in the medium normalized to NanoLuciferase and Firefly 
luciferase signals in the lysate.  Results are shown as averages of 3 independent experiments  ± s.e.m. 
(D) Schematic depiction of a hypothetical mechanism where Wnt3 secretion is controlled by Glucosidase 
II. 
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Figure 5 | Highly correlating interaction profiles can predict functional similarity. (A) ROC curve displaying 
the performance of interaction profile similarity at predicting protein complex co-membership. Curves are 
shown for different filtering parameter combinations. The curve corresponding to the parameter 
combination used for downstream analysis (πmin = 0.2; nmin = 15) is highlighted in red. A grey dashed line 
indicates the performance expected by random assignment. (B-C) Examples of protein complexes where 
complex members display highly correlated interaction profiles (SCC = Spearman correlation coefficient). 
(D) Network of genes with highly correlated interaction profiles. 2,497 nodes (genes) are connected by 
19,044 links (Bonferroni corrected p-value of the Spearman correlation of interaction profiles < 0.5). An 
edge-weighted spring embedded layout was used to position the nodes. (B) Spatial enrichment analysis 
with the SAFE algorithm highlights network modules consisting of genes with similar functional 
annotations based on Gene Ontology biological processes. The labels in the figure summarize the GO 
terms associated with each module.  

 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted November 9, 2017. ; https://doi.org/10.1101/120964doi: bioRxiv preprint 

https://doi.org/10.1101/120964

