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Abstract

High-throughput measurements of molecular phenotypes provide an unprecedented
opportunity to model cellular processes and their impact on disease. Such highly-
structured data is strongly confounded, and principal components and their variants
reliably estimate latent confounders. Conditioning on PCs in downstream analy-
ses is known to improve power and reduce multiple-testing miscalibration and is an
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indispensable element of thousands of published functional genomic analyses. Fur-
ther clarifying this approach is of fundamental interest to the genomics and statistics
communities. We uncover a novel bias induced by PC conditioning and provide an
analytic, deterministic and intuitive approximation. The bias exists because PCs are,
roughly, unshielded colliders on a causal path: because PCs partially incorporate a
causal genotype effect on one phenotype, the genotype becomes correlated with every
phenotype conditional on PCs. We empirically quantify this bias in realistic simula-
tions. For small genetic effects, a nearly negligible bias is observed for all tested PC
variants. For large genetic effects, or other differential covariates, dramatic false posi-
tives can arise. Though one PC variant (supervised SVA) largely avoids this bias, it is
computationally prohibitive genome-wide; further, its immunity to this bias is novel.
Our analysis informs best practices for confounder correction in genomic studies.

Keywords: Confounding; Eigenvector perturbation; Quantitative trait loci; Molecular phe-
notype
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1 Introduction

Association studies of molecular phenotypes have helped uncover genetic regulatory pro-

grams underlying a variety of processes including transcription, methylation, chromatin

accessibility, translation, ribosomal occupancy, and response to cellular stress. These func-

tional quantitative trait loci (*QTL: eQTL [30, 32], mQTL [33, 29, 7], caQTL [13, 22],

pQTL [2], rQTL [8], and reQTL [24, 14]) studies test the associations between genetic

variants and molecular phenotypes in a cohort of individuals. For parsimony, we refer only

to gene expression phenotypes going forward; however, we emphasize our theoretical argu-

ments and much of our simulations apply to all molecular phenotypes, as well as to other

domains with high-dimensional and highly structured data.

These genetic association tests are both performed in local genomic windows (called

cis) and genome-wide (called trans). In cis, genetic signals are stronger and simpler, often

involving disruption to the physical process of transcription. In trans, by contrast, genetic

associations are presumably mediated by some complex cellular regulatory process, and so

trans associations are both biologically central and leave only a subtle and weak signal.

Molecular phenotypes are highly sensitive to structured environmental noise, and this

confounding both reduces power and skews the joint distribution of p-values across genes

[17, 26]. To partially address these shortcomings, known confounders–such as batch effects–

are typically included as covariates in *QTL analyses. But unmeasured confounders–such

as subtle experimental variations or cell cycle state–or entirely unexpected sources of con-

founding often have substantial effect. Fortunately, these confounders intuitively introduce

large but low-dimensional variation in the high-dimensional molecular phenotype mea-

surements, and PCs and their variants (which we collectively call CCs, for confounding

components) often accurately estimate these unknown factors in practice [26, 36, 31]. As
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CCs estimate unknown confounders, it is natural to include them as covariates alongside

known confounders, and this approach has been shown to decrease power and attenuate

joint p-value miscalibration in a wide variety of settings. Domain-specific CCs, like sur-

rogate variables (SVs) [26] or PEER factors [36], have been shown to outperform PCs in

eQTL studies, and these methods have become an essential element of thousands of *QTL

analysis pipelines [25, 37, 11, 1, 38, 12].

Acknowledging the substantial benefits of CCs, we seek to explore their adverse impact

on the false positive rate. The key observation is that CCs are constructed from gene

expression measurements that are themselves partially determined by genetic variants and

so, inevitably, some causal genetic signal will be captured by CCs. Thus conditioning

on CCs is analogous to conditioning on an unshielded collider in a directed graphical

model (Figure 1), which generally induces spurious correlations [16, 34]. This unshielded

collider bias has become increasingly relevant in modern genetic studies [39, 18, 5, 4]. We

show that the bias created by conditioning on PCs results in tests that are misspecified

even marginally, are asymptotically inconsistent, and replicate out-of-sample; in contrast,

previous discussion of p-value miscalibration focused only on the joint distribution of null

p-values, which are not independent in the presence of confounders [26].

The PC conditioning bias can be formalized for small genetic effects using standard

eigenvector perturbation theory. The approximation to the (suitably defined) bias for

testing the p-th gene conditional on the first phenotypic PC takes an extremely simple

form:

Bias ≈ −aVp1Vq1

where a is the causal effect size, q is the gene that is truly causally affected, and V are the

right singular vectors of the molecular phenotype matrix. Tighter approximations are given

4

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 26, 2017. ; https://doi.org/10.1101/120899doi: bioRxiv preprint 

https://doi.org/10.1101/120899
http://creativecommons.org/licenses/by/4.0/


g

y1 y2 · · · yp

u′1

a

V11
V21

Vp1

Figure 1: Graphical illustration of the novel bias problem induced by conditioning on CCs.

g is the genotype affecting one gene expression measurement (y1). u
′
1 is the first expression

PC, which is determined by all y and, indirectly, g. Conditioning on u′1 will induce spurious

correlation between g and all expression measures yj for j 6= 1.

below, but the form of this approximation suggests taking the graphical representation in

Figure 1 somewhat seriously, as the approximate bias coincides with the bias derived from

the graph. A similar, but far smaller, bias can be shown to arise when conditioning on

genetic PCs in GWAS, and we suspect similar results may be applicable in other fields.

We then study the practical relevance of this bias using a range of simulations and CC

approaches. First, we find that no tested method can correct for this bias even in the

extremely simplistic scenario where expression measurements are i.i.d. Gaussian with a

small added cis-eQTL; this includes PCA, SVA, PEER and linear mixed model approaches

[21]. In particular, we show that supervising the CC decompositions with the genotype g

does not eliminate the bias. We theoretically support this claim for a naive approach that

incorporates g into PCA by performing PCA on regression residuals. In more complex data

with strong confounding, this bias may be drowned out by joint p-value miscalibration and

can easily be missed.

In a different regime, where a trans-eQTL strongly affects many genes, the bias problem
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can be massive, even relative to the value added by CC methods. We show this using

simulated genotypes and real gene expression data from the GEUVADIS consortium [23] to

simultaneously obtain realistic phenotype properties and known false/true positive patterns

of genetic association. We show that supervised variants of CC methods, primarily used to

improve power, largely solve this bias problem. Identical results hold when the trans-eQTL

is instead any other known covariate of primary interest; in these differential expression

studies, large, transcriptome-wide effects are common. One particularly important feature

we identify is that the false positive rate is concave in the number of conditioning CCs, which

severely undermines the near-ubiquitous practice of choosing this number to maximize the

total number of positive tests.

2 The bias due to PC conditioning

This section uses a stylized model of a causal genetic effect added to a background matrix of

gene expression values. We imagine a causal genotype vector g ∈ RN×1 has been measured

on N individuals and we have measured some baseline gene expression matrix Y ∈ RN×P

at P genes and the same N individuals. Our observed gene expression matrix Y ′ ∈ RN×P

is created by adding a small linear effect of g on Y :

Y ′ = Y + gα (1)

Y is considered deterministic but, in this section, fully general, while g and the causal effect

size α ∈ R1×P are random. We assume g is spherical Gaussian and, for simplicity, that it

causally affects only gene q. We write this as α = aeq, where a is the causal effect on gene

q and eq is the vector of all zeros except a one in the q-th coordinate.

Let u′j (respectively, uj) be the j-th eigenvector of Y ′ (respectively, Y ), and let α̂′p be

the regression coefficient on g in the regression of Y ′,p on g and u′1, where Y ′,p denotes the
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p-th column of Y ′ (and define α̂p analagously). We aim to assess the impact of conditioning

on u′1 in a regression on g. If u1 were used instead, estimates of α will be unbiased as g is

independent of Y .

More specifically, our goal is to quantify the bias induced from g’s influence on u′1:

Bias := α̂′p − α̂p

For all p 6= q, Y ′,p = Y,p, and so the discrepancy between these regressions arises only due

to g’s effect on u′1.

We assume that α is small so that we can use a standard approximation to the perturbed

eigenvector (e.g. Section II of [3]): for a generic small perturbation E, the first eigenvector

of E + Y TY is approximately

u′1 ≈ u1 +
N∑
j=2

uT1Euj
d21 − d2j

uj (2)

where dj is the j-th singular value of 1√
P
Y . In our case, E = ayqg

T + agyTq + a2ggT , using

yq := Y,q as shorthand for the q-th column of Y . Plugging this in to the perturbation

approximation gives

u′1 ≈ u1 +
∑
j>1

1

d21 − d2j
(a(yTq u1)(g

Tuj) + a(yTq uj)(g
Tu1) + a2(gTu1)(g

Tuj))uj

≈ u1 + a
∑
j>1

cj(z1qxj + zjqx1)uj

The second line drops O(a2) terms and uses the following simplifying definitions based on

the SVD 1√
P
Y = UDV T :

Z := UTY

x := UTg

cj :=
1

d21 − d2j
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Note that x is still a spherical Gaussian random variable.

As an aside, the perturbation approximation is first order in E which, itself, depends

on a2. However, a proper second order expansion in a would also require incorporating

O(a2) terms from a second-order expansion in E, hence we drop O(a2) terms from our

approximations.

Before turning to the regression estimates, we evaluate a few helpful terms:

gTu′1 ≈ x1 + a
∑
j>1

cjxj(z1qxj + zjqx1)

yTp u
′
1 ≈ z1p + a

∑
j>1

cjzjp(z1qxj + zjqx1)

gTu′1y
T
p u
′
1 ≈ x1z1p + a

∑
j>1

cj(x
2
1zjpzjq + x2jz1pz1q + x1xj(zjpz1q + z1pzjq))

These terms are useful in expanding the bias, which we do using standard two-stage least

squares expressions for the regression coefficients:

α̂′p =
yTp g − yTp u′1gTu′1
N − (gTu′1)

2

=
(yTp g − yTp u1gTu1) + (yTp u1g

Tu1 − yTp u′1gTu′1)
N − (gTu′1)

2

≈ N − (gTu1)
2

N − (gTu′1)
2

(
α̂p −

a
∑

j>1 cj(x
2
1zjpzjq + x2jz1pz1q + x1xj(zjpz1q + z1pzjq))

N − (gTu1)2

)

≈ α̂p(1 + γ)− a(1 + γ)

N − (gTu1)2

(
x21
∑
j>1

cjzjqzjp + x1
∑
j>1

cjxj(zjqz1p + z1qzjp) + z1qz1p
∑
j>1

cjx
2
j

)
(3)

where the approximations are correct to first order in a. The last line introduced γ, which

is defined as

γ :=
(gTu′1)

2 − (gTu1)
2

N − (gTu′1)
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This quantity is written in simple terms and shown to be negligible in the Appendix and

ignored going forward.

The bias then becomes

α̂′p − α̂p ≈ −
a

N − (gTu1)2

(
x21
∑
j>1

cjzjqzjp + x1
∑
j>1

cjxj(zjqz1p + z1qzjp) + z1qz1p
∑
j>1

cjx
2
j

)

We now drop middle term inside the parentheses that sums terms proportional to x1xj.

These summands are each products of normal random variables with mean zero and only

have standard deviation cj(zjqz1p + z1qzjp). In contrast, the summands in the third term in

the parentheses have mean cjz1pz1q and variance 2c2jz
2
1pz

2
q1. By the central limit theorem,

for large N the comparison simplifies to comparing a N
(

0,
∑

j>1 c
2
j
(zjqz1p+z1qzjp)

2

z21qz
2
1p

)
to a

N
(∑

j>1 cj,
∑

j>1 c
2
j

)
. We say the former is negligible because its standard deviation is

smaller than the mean of the latter:√√√√∑
j>1

c2j
(zjqz1p + z1qzjp)2

z21qz
2
1p

≈ ‖c−1‖2 ≤ ‖c−1‖1

The above approximation assumes
zjqz1p+z1qzjp

z1qz1p
=

dj
d1

VjqV1p+V1qVjp
V1qV1p

≤ 1, which is reasonable so

long as V is not too sparse. The inequality is fully general and in our case holds loosely:

in the GEUVADIS data (described below) and Marchenko-Pastur spectra with the same

aspect ratio, ‖c−1‖1
‖c−1‖2 is 19.3 and 9.1, respectively.

Dropping the middle summand simplifies the expression considerably, giving

α̂′p − α̂p ≈ −
a

N − (gTu1)2

(
x21
∑
j>1

cjzjqzjp + z1qz1p
∑
j>1

cjx
2
j

)

≈ −2ac̄
N∑
j=1

zjpzjqw
x
j (4)
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The last line defines the weights w on each PC and the overall magnitude term c̄ by

wx1 :=

∑
k>1 ckx

2
k

2(N − 1)c̄
; wxj :=

cjx
2
1

2(N − 1)c̄

c̄ :=
1

N − 1

∑
j>1

cj ≈
1

N − (gTu1)2

∑
j>1

cj

The approximation for c̄ uses

1

N − (gTu1)2
≈ 1

N − 1

(
1 +

(gTu1)
2 − 1

N − 1

)
≈ 1

N − 1

which is correct to first order in the random variable (gTu1)2−1
N−1 , which has mean zero and

variance 2
N−1 .

The wx partition the perturbation effect among PCs. They are random and depend on

the correlation between the random genotype g and each PC (i.e. x). They are nonnegative

and, while they do not sum to one, they do sum to one in expectation. c̄, on the other

hand, is deterministic and depends only on the spectrum of the baseline expression matrix

Y . c̄ is a condition number and measures the susceptibility of the first eigenvector to

perturbations, which is a natural scale factor for the bias induced by perturbing the top

PC.

Because of these properties of wx, the bias in (4) is a weighted correlation between the

projections of p and q–the tested and the causal genes–onto the eigen-axes, i.e.

α̂′p − α̂p ≈ −2ac̄ρw
x

(zp, zq) (5)

where ρπ is the correlation between vectors weighting enries by π. In particular, ρ1N

gives the ordinary correlation between genes p and q (with or without rotating to eigen-

axes). In contrast, ρw
x

randomly weights the eigen-axes, but with far greatest weight

on component 1 and successively less weight to subsequent axes. The very large weight
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on component 1 is natural given the regression we consider conditions only on the first

component. The successively lower weight on subsequent components is also expected,

as perturbation theory argues that eigenvectors with distant eigenvalues are unlikely to

interact upon subtle system modifications.

ρw
x

is the only remaining randomness in the system because nothing else depends on

g. This means that, to first order in a, choice of g affects the bias for testing gene p only

by defining the relevant notion of similarity between gene p and the causally affected gene

q. In expectation over g,

E
(
α̂′p − α̂p

)
= −2ac̄ρw(zp, zq)

wi := E (wxi ) =⇒ w1 =
1

2
; wj =

cj
2(N − 1)c̄

In general, wx1 should be very well approximated by its expectation because it is an average

over N − 1 variables. The other entries of wx, however, scale with only one (common)

random variable, x21; fortunately, this excess variance is counteracted by the fact that the

wx−1 are small (they are collectively as large as wx1). In the GEUVADIS gene expression data

(described below), w1 = 1
2
, while w2 = 0.003. In Marchenko-Pastur data with (asymptotic)

aspect ratio equal to the GEUVADIS aspect ratio, however, w1 = 1
2

and w2 = 0.022,

confirming that this approximation is better for increasing data confounding.

A final approximation can be made by dropping wj terms because w1 � wj (ignoring

the fact that, together, the wj are as large as w1):

α̂′p − α̂p ≈ −2w1ac̄z1pz1q

= −ac̄d21Vp1Vq1

≈ −aVp1Vq1 (6)

The final line uses the relatively loose approximation that c̄ ≈ 1
d21

, which is derived in

equation (7) in the Appendix.
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While α̂ is biased conditional on α, it is worth noting that this conditional bias itself

has mean zero after averaging over α. Equivalently, when α = aeq, the bias is zero after

averaging over q because V,1 is mean zero For the same reason, the bias is zero on average

over p. There is no transcriptome-wide average bias or expected bias without knowing the

causal gene. Nonetheless, we feel our definition of bias that is conditional on p and q prop-

erly conveys the fact that p and q are not meaningless indices but biologically determined

and replicable out-of-sample.

We have not attempted to generalize the bias calculation to conditioning on more than

one PC. However, we suspect an analogous result will hold after modifying w, presumably

retaining the properties that entries decrease and that the first K entries are qualitatively

larger than the rest. If this is correct, the weighted correlation will increasingly look like

the ordinary correlation as K grows. This suggests that the (ordinary) correlation between

causal and tested traits is a good intuitive proxy for the extent (and direction) of the

regression bias.

2.1 Accuracy of the approximations

To empirically assess the quality of the above approximations, we used a prominent and

high-quality RNA-sequencing dataset from the GEUVADIS consortium [23]. We first ob-

tained the raw transcript reads from the European individuals in the GEUVADIS consor-

tium. These were then mapped to gene transcripts by aligning the raw reads to the ref-

erence hg19 transcriptome using RSEM [28]. We then removed perfectly correlated genes

and quantile-normalized genes to standard normal. The resulting matrix has N = 375

samples (rows) and P = 13, 120 genes (columns). This matrix of gene expression values

was used as the baseline expression matrix Y both for the simulations in this section and

the trans simulations described in section 4.
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Given the baseline Y matrix, we simulated 1,000 independent datasets from the model

in (1) with g
iid∼ N (0, 1) and α = aeq, where the causal gene q was chosen uniformly at

random from {1, . . . , P} and the effect size a was varied. For each dataset, the bias α̂p− α̂′p
is then computed for each gene p 6= q, along with our theoretical approximations to this

bias. Finally, the observed biases are regressed on the theoretical biases for each dataset,

and we store the regression coefficient and R2 values.

For both the “full” approximation given in (3) and the simplest approximation given

in (6), the median R2 is greater than .9999 for all a. The empirical distribution of these

regression coefficients is shown in Figure 2. The median coefficients are always negligibly

far from 1, though the empirical 95% confidence intervals are nontrivial. These observa-

tions suggest our bias approximation is off by a scale factor near one, possibly because

higher-order terms also predominantly scale in Vp1Vq1. We have not pursued more accurate

approximations as the goal is only to demonstrate the existence and qualitative behavior

of the bias; moreover, where the perturbation is truly small, we show in simulations below

that the resulting bias is essentially negligible.

Overall, the final approximation given in (6) appears to be a very good estimator,

despite depending only on a, q and V,1 (when d1 is large).

2.2 Inconsistency and spurious replication

As the approximations developed above depend on the data only through the top right

singular vector when d1 � d2, datasets with similar V,1 will have similar regression bias.

This is because a and q are determined by nature.

One implication is that as N grows large, the bias stays constant but the regression stan-

dard error shrinks, resulting asymptotically in rejecting the null hypothesis transciptome-

wide for any g causally affecting even one gene. This argument implicitly assumes the
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Figure 2: Results from regressing the observed bias in α̂ on two novel approximations

to the bias. The “final” approximation simplifies several negligible terms in the “full”

approximation. The distribution of the regression coefficient is shown, which is identically

1 for perfect approximations.

large-N limit for V,1 (or at least its distribution) is defined and non-sparse (respectively,

a.s. non-sparse). Though we avoid formalizing this large-N limit, it seems reasonable that

if one large confounder is present and that N grows large, then V1, will converge to the

confounder and d−1 will only shrink.

A related implication is that the regression bias will replicate in a new dataset with the

same top right singular vectors. There is no requirement on the two sets of left singular

vectors to obtain this spurious replication. Again avoiding formality, the top right singular

vectors will be similar in datasets with similar confounding structure, and such shared

structure is common in molecular phenotypic assays. Further, only sign consistency is

assessed in genomic replication analyses, which reduces the burden to prove false positive
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replication: the datasets need not have equal Vp1Vq1 terms, only sign-consistency in these

terms.

Finally, we note that if the causal signal due to g is sufficiently strong, it will dominate

leading right singular vectors, which intuitively satisfies the necessary condition for bias

replication without any other assumptions on shared confounding across-datasets.

2.3 PCA on residuals

An apparent solution to this problem of PC conditioning is to project out g before com-

puting PCs. We call this approach supervised PCA (though it is unrelated to [6] and

other published definitions). This approach has been studied before through simulations

that show supervised SVA provides superior joint p-value recalibration in the presence of

confounders [26].

To prove theoretically the flaw in this approach, even for marginal tests when g has

no causal effect, we first make an assumption: that in realistic data the supervised PCs

approximate an approach that projects out g from the ordinary PCs, which we call residual

PCA. In the GEUVADIS data, described below, we find that the top residual and super-

vised PC pairs each have squared correlation greater than .99 for independently simulated

i.i.d. Gaussian genotypes, suggesting our assumption is reasonable. However, we have not

investigated this issue theoretically.

It is easy to prove that conditioning on the residualized PCs spuriously inflates the t-

statistic for g. First, by construction, g and the residualized PCs are orthogonal, hence the

regression coefficient for g is unmodified by conditioning on residualized PCs. The same is

true for g’s regression coefficient’s standard error, except that the overall regression error

σ̂2 may change. In particular, as PCs (or residual PCs) explain significant variation in yp,

σ̂2 will decrease after conditioning, thus inflating the t statistic for g’s effect.
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The change in g’s regression statistics can be directly computed. Let U be the first

k left singular vectors of Y and assume columns of Y are mean zero and variance 1. We

consider the regression equation

yp = Uβ + ε

Conditional on only the first k PCs, entries of ε have mean 0 and variance σ2 := 1− 1
N
‖Uβ‖2;

we also assume entries of ε are uncorrelated for illustrative purposes. Now let σ̂2 be the

ordinary regression estimate of σ2 conditional on g and U . If g is normalized to length 1,

then

E
(
σ̂2
)

=
1

N − (k + 1)
E
(
‖(I −

(
ggT + UUT

)
)yp‖2

)
=

1

N − (k + 1)
tr
((
σ2I + UββTUT

) (
I − ggT − UUT

))
= σ2 − 1

N − (k + 1)
(gTUβ)2

We ignore the second term, which is O(N−2). As g is assumed independent of Y , the

expected value for σ̂2 when regressing solely on g is just V (yp) = 1. Therefore, conditioning

on residual PCs simply inflates g’s t statistic by roughly a factor of 1/σ.

More broadly, this suggests that confounder estimates must strike a delicate balance.

Previous sections show how excess correlation with g can cause bias, and previous work has

shown similar excess correlation leads to loss in power [36]. However, it is now also clear that

excess uncorrelation–here, in the form of residualizing g from PCs–can lead to different bias

problems. We refer to this balance in later sections when discussing the relative performance

of different methods, each of which learns different forms of relationships between g and

estimated confounders.

16

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 26, 2017. ; https://doi.org/10.1101/120899doi: bioRxiv preprint 

https://doi.org/10.1101/120899
http://creativecommons.org/licenses/by/4.0/


3 cis-eQTL simulations with white noise

Having shown that conditioning on expression PCs induces a replicating bias for genetic as-

sociation tests, we turn now to the practical significance of the problem. We begin with one

of the simplest possible simulations based on equation (1): gene expression measurements

in Y are i.i.d. standard normal; g is (indepedently) i.i.d. standard normal; and α = aeq,

dictating that g is a cis-eQTL affecting only gene q; finally, q is drawn, independently of

g and Y , uniformly from {1, . . . , P}, and the effect size a is varied. The dimensions of

Y , N = 375 and P = 13, 120, were chosen to match the dimensions of the GEUVADIS

data. More realistic simulations are presented in the next section; the focus here is on

demonstrating the existence of conditioning bias, which is made dramatically easier by

eliminating other sources of null miscalibration.

For each simulated dataset, we perform a 1-sided Kolmogorov-Smirnov (KS) test for

deflation in the null regression p-values (for regressing g on genes in Y ′ other than q). We

also include the (2-sided) KS test for these KS p-values in the plots; this is the “nested”

or “double” KS test previously used to detect null p-value miscalibration [26, 27], except

we use one 1-sided KS test as the bias we define is expected to decrease null p-values.

After simulating Y ′ and g, we test the association between the genotype and each

column of Y ′–other than the causal gene q–with ordinary linear regression conditioned on

various CCs. The first set are the PCs of Y ′; the second set are PEER factors [36]; and

the third set are surrogate variables [26]. In this simulation setting, however, SVA declares

0 components significant (through internal permutation tests) and stops–this is arguably

ideal behavior. (Also, when no covariate was included, we were unable to implement the

“irw” algorithm, which is the suggested default and was used for all of the supervised

analyses, discussed below.) We also regress g on genes in Y ′ using linear mixed models
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that include a random effect with covariance Y ′Y ′T , as implemented in ICE [21].

We also consider CCs that are computed with knowledge of the tested genotype g.

Both SVA and PEER have such supervised options to include a covariate alongside the

decomposition. We also compare the supervised PCA approach, discussed in section 2.3,

that projects g out of Y ′ before PCs are computed. The primary motivation for supervising

these decompositions is to avoid factors that are too correlated with g, absorbing the signal

and attenuating power [26, 36]. A secondary, and countervailing, goal in supervising these

decompositions is to avoid factors that are too uncorrelated with g; this balance is described

in [26] and in more detail in section 2.3.

Figure 3 presents the quantile-quantile plots for the resulting KS p-values. Unsur-

prisingly, “None”–including no CCs of any kind–delivers well-calibrated p-values. Also

unsurprisngly, the PC approach (for K = 1 and K = 20) causes noticeable bias for the

high-heritability simulation in blue, where the genotype explains 90% of the gene’s vari-

ation (equivalently, a = 9). However, no statistically significant problem is detected for

smaller a, suggesting the induced bias from PC conditioning can often be negligible. PEER

results are also essentially unperturbed for small a, but give highly conservative p-values

for large a. The linear mixed model (LMM) approach–using either REML or ML (not

shown)–yields highly conservative p-values.

A different type of bias also appears qualitatively shared among the three supervised

methods. The bias grows with K (even beyond 20, not shown) and appears independent of

the causal effect a, persisting even for the global null where a = 0. In the case of supervised

PCA, this is provably due to supervised PCs being too uncorrelated with the genotype, as

noted above. For supervised PEER and SVA, qualitatively similar but attenuated biases

are present, suggesting these factors strike a better balance between explaining too much

and too little of the signal in g. SVA seemed less susceptible to this bias. Some variants
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Figure 3: p-value miscalibration for a variety of confounder corrections applied to simulated

datasets with a weak genetic effect added to Gaussian white noise. QQ plots for KS tests

applied to nominally null p-values are presented, aggregated over 5,000 simulated datasets.

KS tests of these KS p-values are presented in the legends. Colors index the strength of

the cis-eQTL: black corresponds to 0% variation explained by the genotype in the causal

gene (the global null); red to 30%; green to 60%; and blue to 90%. The bottom set uses

K = 1 CC on the top row, K = 20 CCs on bottom; the top set uses methods with no K.
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of PEER will likely perform better, perhaps including the joint modelling approach in

iVBQTL [36] or random effect approach in PANAMA [15]; however, we did not investigate

these approaches, which for computational reasons have not been applied to genome-wide

scale human data.

Finally, we observed that as K grows larger, unsupervised PC adjustment becomes

slightly, but significantly, conservative. This effect is only detectable when a > 0, i.e. when

g is truly causal. Surprisingly, the conservativeness it is non-monotonic in a: for K = 20,

60% PVE (green) gives conservative p-values while 90% (blue) PVE gives anticonservative

p-values. This is consistent with some conservative force that emerges for K > 1 and

scales at a faster rate in a than the countervailing anticonservative force we identified

theoretically and empirically for K = 1. Unsupervised PEER has a related problem,

though its conservativeness simply increases in a.

Overall, Figure 3 shows that no tested CC method can correct p-value miscalibration

in even an extremely simple setting. However, it also shows this problem is very small,

especially for small causal effect sizes.

4 trans-eQTL simulations with real phenotypes

We now present simulations that extend the above cis-eQTL simulations in two ways.

First, we modified g to be a trans-eQTL, as g now causally explains 30% of the variation

in each of 5% of all genes. This means g explains 1.5% of variation transcriptome-wide.

Null simulations where g affects nothing are also included for comparison.

Second, we make the simulation considerably more realistic. We replace the i.i.d. stan-

dard normal Y matrix by the real GEUVADIS gene expression matrix, described above.

Also, as effect sizes are now larger and matching the theoretical bias result is no longer a
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direct goal, we adopt the standard practice of normalizing columns of Y ′ to mean zero and

variance one. Finally, we simulated g to be a binomial SNP genotype with minor allele

frequency 20% and then normalized it to mean zero and variance one.

Having established p-value miscalibration in the cis-eQTL simulation, we now plot

empirical false positive rates in Figure 4. Unlike the KS tests, which assess correlation

among gene p-values within-dataset, the FPR assesses a type of mean among the gene

p-values. This means the KS miscalibration identified in [26] will only manifest as high

variance in the FPR between-datasets. We also show − log10(p)-values averaged over the

causally affected genes within each simulated dataset to assess power.

The clearest implication from 4 is that the unsupervised approaches deliver highly

inflated false positive rates (top, middle panel) and attenuated power (top, right panel).

While the LMM approaches we studied are well-calibrated, they offer even lower power than

simply regressing on g; however, other LMM approaches may deliver higher power [20]. The

obvious conclusion is that one should supervise CCs with all large-effect covariates, roughly

yielding well-calibrated FPRs for SVA and slightly inflated FPRs for PEER. However, as

is expected from our above theory and is discernible from previous empirical results [26],

supervised PCA gives dramatically inflated FPR.

The obvious caveat is that the large-effect covariates must be known in advance. This

does not hold when searching for a causal effect among a large set of potential covari-

ates, often outnumbering the sample size, as is standard in genetic studies. While one

could refit confounder estimates for each tested g in turn, this is typically computationally

infeasible; however, pre-screening loci, perhaps by using unsupervised CCs, may dramati-

cally reduce the computational burden. Moreover, practitioners often fail to include known

large effect covariates when creating CCs. Finally, to our knowledge, the observation that

this supervision eliminates false positives–rather than merely recalibrating the across-gene
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Unsupervised FPR, Genotype PVE = 0%
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Unsupervised FPR, Genotype PVE = 1.5%
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Supervised FPR, Genotype PVE = 1.5%
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Unsupervised Mean Causal p−values, Genotype PVE = 1.5%
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Figure 4: False positive rates and power for a simulated, strong, trans-effect added to real

gene expression data from GEUVADIS. Results are presented for non-causally affected loci

when no (left column) or a large (center column) genetic effect is present; also shown are

average − log10(p)-values for the causally affected genes (right column). Methods that are

unsupervised (top) or supervised with respect to the causal genotype (bottom) are both

tested. As SVA always deems less than 40 components significant, the corresponding results

are absent.

independence of p-values [26] or increasing power [26, 36]–is novel.
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4.1 False positive replication

We slightly modified the trans simulation to assess the out-of-sample replication rate for

false positives. For each simulated dataset, generated exactly as in the above trans-

simulation, we split the data (g and Y ′) into halves and repeat the above analyses on

each half. We compute the replication rate as the fraction of false positive discoveries

from the first half that are deemed positive in the second half, using a significance level of

α = .001 for both splits; we then compute the replication rate after transposing the roles

of the two splits. Finally, we average over false replication rates for 5,000 independently

simulated datasets and two choices of initial split per dataset (10,000 scenarios in total),

discarding scenarios where there are no false discoveries in the initial split.

Results are shown in Table 1 after converting to the replication rate inflation, defined

as the ratio of the replication rate to its null expectation (i.e. .001). First, no significant

inflation is obtained if confounder corrections are entirely omitted, where significance is

defined by the mean inflation being more than 1.65 standard errors greater greater than 1.

But both PC and PEER correction substantially inflate the false positive replication rate.

For both methods, the using larger K exacerbates problem, though supervision improves

PEER’s performance and hurts PCA. Unsupervised SVA has inflation problems similar to

unsupervised PCA and PEER, but after supervision no statistically significant inflation is

detected.

5 Discussion

We have shown a novel source of bias induced by conditioning on estimated confounders in

association tests. We derived an analytical approximation in the simple case of conditioning

on one PC and a small causal effect. We assessed the magnitude of the bias empirically
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No CCs 1 PC 10 PCs 1 PEER 10 PEER 1 SV 10 SVs

Unsupervised 0.84 2.59∗ 151.6∗ 2.70∗ 148.38∗ 2.67∗ 181.15∗

Supervised N/A 32.47∗ 168.69∗ 2.02∗ 8.22∗ 0.68 1.09

Table 1: False positive replication rate inflation after confounder correction. Shown are

the false positive replication rates at a significance level of α = .001 divided by their

expectation. Inflations significantly greater than 1 are indicated with an asterisk.

through simulations, with a small effect simulation showing the existence of bias and a

large effect simulation demonstrating the impact on the FPR in a realistic setting. This

bias will replicate in datasets with similar confounding structures, which is often obtained

for high-throughput molecular phenotypes.

This bias problem is related to, but distinct from, known biases caused by confounding.

Previous theoretical results have focused on confounding’s impact on the joint null distri-

bution of p-values, showing that an idealized form of correction–i.e. where confounders are

perfectly estimated–yields independent p-values for the tests of association between one

genotype and each gene [27]. Our results undermine the basic assumptions of this theory,

though, by showing that causal effects naturally bias confounder estimates. This novel

bias that we show arises from confounder correcting, unlike known biases from uncorrected

confounders, results in tests that are misspecified even marginally and that will replicate

in similar datasets.

Overall, we find that the supervised versions of SVA and, to a lesser extent, PEER

give well-calibrated FPRs and the greatest power among approaches considered. Though

no confounder correction method delivers truly independent tests, this effect is generally

small and, in the presence of strong confounders, the biases induced by supervised methods

are typically negligible compared to the eliminated biases. Further, to avoid computing
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supervised factors for each SNP genome-wide, *QTL analyses using unsupervised factors

can be corrected post-hoc by repeating the analysis at significant (or suggestive) genotypes

with the appropriately supervised decompositions.

Nonetheless, many high-profile studies fail to supervise their SVA or PEER analyses

with respect to strong covariates. This is partially due to a common misconception amongst

practitioners that SVA and PEER corrections solely improve power and, thus, that subop-

timal implementations are at worst conservative.

There are also more complex scenarios where the appropriate model for covariates is

unclear. For example, in gene coexpression studies, covariance or partial covariance can be

used to learn complex and subtle graphical models [19, 35]: failing to correct for confounding

will yield biologically meaningless confounder networks, while a correction approach with

subtle biases may induce a different biologically meaningless network. Latent variable

graphical models present a possible solution to this problem [9]. More generally, low-rank-

plus-sparse decompositions may be able to simultaneously learn latent confounders and

eQTLs transcriptome-wide [10].

We note that qualitatively similar replicating false positive associations can arise when

conditioning on unshielded colliders in multiphenotype association tests [4]. This can be

expressed in our motivating graphical model in Figure 1 as an environmental node e causally

affected by several of the phenotype nodes, yp. As yp’s contribution to a generic e is

arbitrary–unlike its contribution to a PC, which is O(P−1/2)–the replicating false positive

problem can be substantially larger than in our context. However, that confounding is

entirely dataset-dependent, while our bias is in a sense universal–existing, for example,

even when all noise in the yp is i.i.d. Gaussian. Nonetheless, our false positives will only

regularly replicate when the yp are correlated.

A theoretical question we leave open is whether it is possible to deliver tests that are
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truly independent across genes in the presence of confounding. The difficulty is clear, as

any errors in the estimated confounders will, upon conditioning, induce a fresh source of

confounding (albeit one that is potentially better behaved and smaller). Another difficult

question is whether the decomposition methods studied can be supervised with respect to

a large set of tested covariates, most of which will be entirely null, in a computationally

feasible manner. If possible, efficiently updating SVA decompositions for each new added

covariate would largely achieve this.

Appendix: γ

Defining and simplifying γ gives

γ :=
N − x21

N − (gTu′1)
2
− 1

=
1

1− 2ax1
∑

j>1 cjxj(z1qxj + zjqx1)(N − x21)−1 +O(a2)
− 1

= 2ax1
∑
j>1

cjxj(z1qxj + zjqx1)(N − x21)−1 +O(a2)

=
2a

N − x21

(
x21
∑
j>1

cjzjqxj + x1z1q
∑
j>1

cjx
2
j

)
+O(a2)

≈ 2ax1z1q c̄

The last line uses the approximations that N−1
N−x21

≈ 1 and replaces the sums over j by their

expectations, which is reasonable as∑
j>1

cjx
2
j ∼ N

(
(N − 1)c̄, 2

∑
j>1

c2j

)
(by CLT)

∑
j>1

cjzjqxj ∼ N

(
0,
∑
j>1

c2jz
2
jq

)
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Figure 5: Singular-value spectrum of our process gene expression matrix from GEUVADIS.

M-P refers to the Marchenko-Pastur distribution with asymptotic aspect ratio equal match-

ing the GEUVADIS data.

The CLT approximation should be good unless a very small number of eigenvalues (other

than the first) are far larger than the rest.

Unfortunately, K eigenvalues will be large compared to all other if there are K strong

confounders, so this approximation will be worse for more realistic data. In Figure 5, for

example, the top singular value is roughly 1.5 times larger than the second. Presumably a

regression conditioning on K PCs would require the last N −K to be small, which would

be more reasonable.
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We now derive a loose approximation to c̄ that is also used in the main text:

c̄ :=
1

N − 1

∑
j>1

1

d21 − d2j
≈ 1

(N − 1) d21

∑
j>1

(
1 +

d2j
d21

)

=
1

(N − 1) d21

N − 1 +

(∑N
j=1 d

2
j

)
− d21

d21


=

1

d21

(
1 +

1

d21
+

1− d−21

(N − 1) d21

)
≈ 1

d21
(7)

This used the fact that
∑N

j=1 d
2
j = N , which holds because columns of Y have been centered

and scaled:
N∑
j=1

d2j = tr

(
1

P
Y TY

)
=

1

P

∑
i,p

Y 2
ip =

1

P

∑
p

‖Y,p‖22 = N

Using (7) to simplify c̄, γ can then be approximated by

γ ≈ 2ax1Vq1
1 + d−21

d1
(8)

In practice, this term is negligible: a is assumed small, Vq1 is on the order of P−1/2, and d1

tends to be large in real data, e.g. 8 in GEUVADIS.
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Yan Meng, Cameron D Palmer, Tõnu Esko, Wendy Winckler, Joel N Hirschhorn,

Manolis Kellis, Daniel G MacArthur, Gad Getz, Andrey A Shabalin, Gen Li, Yi-Hui

Zhou, Andrew B Nobel, Ivan Rusyn, Fred A Wright, Tuuli Lappalainen, Pedro G

Ferreira, Halit Ongen, Manuel A Rivas, Alexis Battle, Sara Mostafavi, Jean Mon-

long, Michael Sammeth, Marta Mele, Ferran Reverter, Jakob M Goldmann, Daphne
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Antonarakis, Robert Häsler, Ann-Christine Syvänen, Gert-Jan van Ommen, Alvis

Brazma, Thomas Meitinger, Philip Rosenstiel, Roderic Guigó, Ivo G Gut, Xavier Es-
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