Parallel evolution of sperm hyper-activation Ca²⁺ channels Jacob C. Cooper^{1*} and Nitin Phadnis¹ ¹Department of Biology, University of Utah, Salt Lake City, UT 84112, USA. *Corresponding Author: email: jacob.cooper@utah.edu ## **Abstract** Sperm hyper-activation is a dramatic change in sperm behavior where mature sperm burst into a final sprint in the race to the egg. The mechanism of sperm hyper-activation in many metazoans, including humans, consists of a jolt of Ca²⁺ into the sperm flagellum via CatSper ion channels. Surprisingly, CatSper genes have been independently lost in several animal lineages. In Drosophila, sperm hyperactivation is performed through the co-option of the polycystic kidney disease 2 (Dpkd2) Ca²⁺ channel. The parallels between CatSpers in primates and Dpkd2 in Drosophila provide a unique opportunity to examine the molecular evolution of the sperm hyper-activation machinery in two independent, nonhomologous calcium channels separated by more than 500 million years of divergence. Here, we use a comprehensive phylogenomic approach to investigate the selective pressures on these sperm hyperactivation channels. First, we find that the entire CatSper complex evolves rapidly under recurrent positive selection in primates. Second, we find that pkd2 has parallel patterns of adaptive evolution in Drosophila. Third, we show that this adaptive evolution of pkd2 is driven by its role in sperm hyperactivation. These patterns of selection suggest that the evolution of the sperm hyper-activation machinery is driven by sexual conflict with antagonistic ligands that modulate channel activity. Together, our results add sperm hyper-activation channels to the class of fast evolving reproductive proteins and provide insights into the mechanisms used by the sexes to manipulate sperm behavior. ### Introduction Sexual conflict shapes sperm development and sperm dynamics (Swanson and Vacquier 2002; Clark et al. 2006; Turner et al. 2008; Wilburn and Swanson 2016). Both male-female interactions and inter-male competition drive rapid changes in male reproductive proteins, whose constant innovation has been likened to a molecular arms race. These rapid changes in reproductive proteins have the potential to establish barriers to fertilization between populations and lead to the evolution of new species (Parker and Partridge 1998; Gavrilets 2000; Howard et al. 2009; Moyle et al. 2014). The best-known examples of this phenomenon include the rapid evolution reproductive proteins in abalone, mammals, and Drosophila (Lee et al. 1995; Swanson and Vacquier 1997; Kresge et al. 2001; Swanson et al. 2003; Clark et al. 2007; Hamm et al. 2007; Findlay et al. 2014; Vicens et al. 2015). Molecular evolutionary studies on how sexual conflicts shape reproductive proteins have focused on several aspects of sperm biology such as direct sperm-egg interactions, seminal fluid proteins and sperm behavior (Swanson and Vacquier 2002; Panhuis et al. 2006; Fisher et al. 2016). Here, we uncover the patterns of molecular evolution of the sperm hyper-activation machinery in animals, which remains a fundamental but largely unexplored aspect of sperm biology. When spermatogenesis is complete, the resulting mature sperm are motile but quiescent. After copulation, however, sperm cease normal swimming and burst into a sprint. This dramatic post-mating acceleration of sperm is known as sperm hyperactivation (Suarez et al. 1991), Sperm hyper-activation was first observed in mammals through studies on the golden hamster (Yanagimachi 1969; Yanagimachi 1970), and has since been since described in many other taxa (Suarez and Ho 2003; Cosson et al. 2008). When sperm hyper-activate, they go through a cellular change that alters the motion of the sperm flagellum from a slow, low amplitude, symmetric beat to a whiplike, high amplitude, asymmetric beat (Ooi et al. 2014). This transition is not subtle; hyper-activated sperm swimming at top speed are propelled with a force several times that of normal swimming (Ishijima 2011). This hyper-activated acceleration of sperm is necessary for successful fertilization, and is an integral part of sperm capacitation. The proximate molecular mechanism of sperm hyper-activation consists of a jolt of Ca²⁺ ions to the sperm flagellum, which triggers a complex intracellular chain of events to drive accelerated swimming (Ho et al. 2002; Carlson et al. 2009). The use of Ca²⁺ influx as a sperm hyper-activation trigger is an ancient and widely conserved mechanism across metazoans (Cai et al. 2014). In most metazoans, the Ca²⁺ influx arrives via the <u>cat</u>ion channels of <u>sperm</u> (CatSper) complex, which forms ion channels on the sperm flagellum (Cai et al. 2014). The CatSper complex consists of four core proteins that form the Ca²⁺ pore and five auxiliary proteins (Chung et al. 2017). Sperm that do not hyper-activate fail to fertilize eggs, and males with mutations that disable sperm hyper-activation are often sterile despite producing morphologically normal sperm (Ren et al. 2001). All CatSper proteins-core and auxiliary-are necessary for sperm hyper-activation and male fertility (Loux et al. 2013). Despite the conserved role of the CatSper complex in sperm hyper-activation across metazoan taxa, the sequences of CatSper proteins provide hints of being evolutionarily labile. Previous analyses of CatSper evolution have been focused on the first exon of CATSPER1, which shows signs of adaptive evolution in the form of an accelerated accumulation of indels and non-synonymous changes in mammals (Podlaha and Zhang 2003; Podlaha et al. 2005; Cai and Clapham 2008; Vicens et al. 2014). More surprisingly, the entire suite of CatSper genes has been lost in several animal taxa, including those leading to arthropods, nematodes, mollusks, jawless fishes, bony fishes, birds, frogs, etc. (Cai and Clapham 2008). Some taxa that have lost the CatSper complex, such as frogs, no longer hyper-activate their sperm during fertilization (Dziminski et al. 2009). In contrast. many other taxa, such as flies and birds, are known to hyper-activate sperm despite lacking a functional CatSper complex (Köttgen et al. 2011; O'Brien et al. 2011; Yang and Lu 2011; Nguyen et al. 2014; Zhou et al. 2015). These patterns suggest that some taxa that are missing the CatSper complex may have compensated for the loss through the co-option of other mechanisms to perform sperm hyper-activation. The evolutionary forces that drive the repeated turnover of the sperm hyper-activation machinery remain unaddressed. The mechanism of CatSper-independent sperm hyper-activation remains unknown in many but is best understood in Drosophila melanogaster. None of the CatSper genes are present in the *D. melanogaster* genome. Yet, *Drosophila* males hyper-activate their sperm post-copulation as a necessary step for successful fertilization. CatSperindependent sperm hyper-activation in Drosophila is performed by the protein polycystic kidney disease 2 (Dpkd2). Similar to the CatSper proteins in mammals, Dpkd2 is a Ca²⁺ ion channel protein on the fly sperm flagellum. Dpkd2 null sperm are morphologically normal, but do not hyper-activate after transfer to the female reproductive tract. As a result, *Dpkd2*-deficient sperm fail to reach the storage organs and are not retained in the female (Gao et al. 2003; Watnick et al. 2003). Drosophila, therefore, appear to have compensated for the loss of CatSper ion channels by using the Dpkd2 channel to trigger sperm hyperactivation. Sperm hyper-activation is a powerful and tightly controlled behavioral switch for the final sprint in the race to the egg (Montoto et al. 2011). The sperm hyper-activation machinery may, therefore, be vulnerable to the pressures of both female choice and inter-male competition. An evolutionary arms race over the modulation of sperm hyper-activation can manifest as the rapid evolution of sperm hyper-activation channels. The parallels between CatSpers in primates and *Dpkd2* in *Drosophila* provide a unique opportunity to examine the how selection has shaped sperm hyper-activation machinery in two independent, nonhomologous calcium channels. Here, we use a comprehensive phylogenomic approach with CatSper in primates and pkd2 in Drosophila to investigate the selective pressures on the Ca2+ channels required for sperm hyper-activation. First, we find that all core and auxiliary proteins of the CatSper complex evolve rapidly under recurrent positive selection in primates. Second, we find that pkd2 has similar patterns of positive selection in Drosophila, including increased amino-acid substitution and an accumulation of indels. Third, we show that the selective pressures of Drosophila pkd2 and primate PKD2 are radically different; primate PKD2 is highly conserved and is not involved in sexual conflict. This provides a unique otherwise example where an slow-evolving 'housekeeping' gene is dragged into an evolutionary conflict and experiences adaptive evolution. Together, our study provides the first comprehensive analysis of the molecular evolutionary patterns of the sperm hyper-activation Ca²⁺ channels in primates and flies. ### Results The entire CatSper complex evolves adaptively in primates Despite the critical role of the CatSper complex in sperm hyper-activation across a wide variety of metazoa, little is known about its molecular evolution. At the core of the CatSper complex lies a pore composed of a hetero-tetramer of CATSPER1-4. Each core CatSper protein contains a six-pass transmembrane domain with polycystic kidnev disease (PKD) domains (Quill et al. 2001: Ren et al. 2001; Lobley et al. 2003; Jin et al. 2005; Qi et al. 2007: 20) (Figure 1B). In contrast, four of the five CATSPERB. auxiliarv proteins. CATSPER∆. CATSPERε, CATSPERY, and have extracellular region with one or two transmembrane domains (Liu et al. 2007; Wang et al. 2009; Chung et al. 2011; Chung et al. 2017). The fifth auxiliary protein,
CATSPERZ, is a small intracellular scaffold that helps assemble the complex (Chung et al. 2017). The CatSper channel is, in theory, well positioned to be acted upon by sexual selection. It is found only on the sperm flagellum, with a substantial portion exposed to the external environment of the sperm, and its only known function is in fertilization. We were, therefore, **FIG 1.** The entire *CatSper* complex evolves adaptively in primates. A) The *CatSper* complex evolves under positive selection in almost every lineage in the primate phylogeny. For each *CatSper* gene, branches where *dN/dS* >1 are highlighted with a color corresponding to each gene. In cases where multiple genes have a *dN/dS* >1 for a single branch, the colors are stacked. B) We detect specific sites under selection in almost every *CatSper* gene. Extracellular domains are marked as dark segments and intracellular domains as light segments. Orange arrows indicate the sites under selection by the Bayes-Empirical-Bayes test in PAML, with a posterior-probability greater than 0.90 (Yang et al. 2005). Selected sites grouped close together are labeled with a bar specifying the number of sites under selection. The number of extracellular and intracellular sites under selection for each gene are tabulated. interested in a comprehensive understanding of the molecular evolutionary patterns of the *CatSper* complex and in uncovering the evolutionary forces that drive the changes in these genes. Table 1 | A) | Primates | Group | B) Drosophila | subgroup | | |----|------------------------|-------------------|-----------------|--------------------------|--| | | Pan troglodyte | Hominid | D. melanogaster | melanogaster | | | | Pan paniscus | Hominid | D. simulans | melanogaster | | | | Homo sapiens | Hominid | D. sechellia | melanogaster | | | | Gorilla gorilla | Hominid | D. mauritiana | melanogaster | | | | Pongo abeli | Hominid | D. yakuba | melanogaster | | | | Nomascus leucogenys | Hominid | D. tessieri | melanogaster | | | | Colobus angolensis | Old World Monkeys | D. santomea | melanogaster | | | | Chorocebus sabaeus | Old World Monkeys | D. erecta | melanogaster | | | | Cerocebus atys | Old World Monkeys | D. orena | melanogaster | | | | Mandrillis leucophaeus | Old World Monkeys | D. eugracillis | eugracillis | | | | Macaca fascicularis | Old World Monkeys | D. biarmipes | suzukii | | | | Macaca mulatta | Old World Monkeys | D. takahashii | takahashii
ficusphila | | | | Macaca nemestrina | Old World Monkeys | D. ficusphila | | | | | Saimiri boliviensis | New World Monkeys | D. rhopaloa | montium | | | | Aotus nancymae | New World Monkeys | D. elegans | elegans | | | | Callithirx jacchus | New World Monkeys | D. ananassae | ananassae | | | | | | D. bipectinata | ananassae | | To examine the evolutionary forces that shape the CatSper complex in primates, we gathered and aligned homologous sequences for each CatSper gene from 16 primate species (Table 1). This sampling of primate species represents ~40 million years of divergence. To test if any of any of the CatSper proteins show signatures of positive selection, we used Phylogenetic Analysis by Maximum Likelihood (PAML) to calculate the synonymous to nonsynonymous substitution rate ratios (dN/dS) (Yang 2007). For each of the nine genes that constitute the CatSper complex, we asked if any branch in the primate phylogeny had a dN/dS greater than 1. We first analyzed the four core proteins CATSPER1-4 that form the Ca2+ pore. We detected elevated rates of dN/dS in each of these four core proteins (Figure 1A; Supplementary Figure 1). In addition to the core proteins, all five auxiliary transmembrane proteins CATSPER β , CATSPER Δ , CATSPER γ , CATSPER ϵ and CATSPERZ also show strong signatures of adaptive evolution. We found that every branch in the primate lineage, with the exception of gorillas, shows a signature of positive selection for at least one of the CatSper genes. These results show that all nine proteins that form the CatSper complex have evolved under pervasive and strong positive selection across 40 million years of primate evolution. # Patterns of positively selected sites in CatSper channel proteins The positions of the adaptively evolving amino acid sites within a protein can provide insights into the functional properties that are under selection. To identify the adaptively evolving amino acid sites in each of the CatSper genes, we used the NSsites models of PAML. For each CatSper gene, we tested whether its evolution over the primate phylogeny is consistent with neutral evolution (model M7 and M8a) or with recurrent positive selection (model M8). PAML also uses a Bayesian framework to identify the specific sites in a gene that evolve adaptively under recurrent positive selection. We found that all nine CatSper genes show significant evidence of recurrent positive selection with both of these tests (Supplementary Table 1). In CATSPER1, the site models of PAML did not detect any specific sites under selection, indicating that the selective signature may be broadly dispersed across the gene. CATSPER2, CATSPER3, and CATSPER4 each have several sites that evolve under positive selection, but these are not clustered in any particular functional domain (Figure Supplementary Table 2). The patterns of selection in the auxiliary genes, however, are remarkably different. CATSPER_Δ, CATSPER_V, and CATSPER_ε all have several sites under selection, and CATSPERB has a dramatic excess of sites under selection compared to any other CatSper gene (Supplementary Table 2). The extracellular domain CATSPERB is full of adaptively changing amino acid sites. Because CATSPERB is such a clear outlier with the greatest number of sites under positive selection, we were concerned about spurious false positives generated from alignment errors. A manual inspection of the CATSPERB alignment makes it clear that these are not false positives – we find practically no mis-alignment between the 16 homologous protein sequences (Supplementary Figure 2). Little is known about the precise molecular properties of CATSPERβ, other than that it requires CATSPER1 for stable localization to the tail of sperm (Liu et al. 2007). These results show that among all components of the CatSper complex, CATSPERB is the most frequent target of adaptive evolution. If the evolution of the sperm hyper-activation machinery is driven by factors in the external environment of sperm, this would manifest as an enrichment of adaptively evolving sites in the extracellular regions of the CatSper proteins. We observed different patterns of extra- and intra-cellular changes between the core and auxiliary proteins. Consistent Fixed non-synonymous positions: ▼ Polymorphic non-synonymous positions: D. melanogaster D. simulans | B) | Region | Length (nt) | MK Table | | FE <i>p</i> -value | α-value | | |----|---------------|-------------|----------|--------|--------------------|------------------|--| | | Full sequence | 2685 | Nf=47 | Np=22 | p < 0.0001 | $\alpha = 0.807$ | | | | | | Sf=52 | Sp=126 | , | | | | | N-terminus | 678 | Nf=13 | Np=11 | p = 0.059 | a = 0.669 | | | | N-terrillius | | Sf=9 | Sp=23 | p = 0.059 | u – 0.009 | | | | Extracellular | 873 | Nf=25 | Np=3 | n < 0.0001 | ~- 0.025 | | | | loop | 0/3 | Sf=26 | Sp=48 | <i>p</i> < 0.0001 | $\alpha = 0.935$ | | | | DICD also and | hannel 711 | Nf=3 | Np=3 | . 0.444 | 0.707 | | | | PKD channel | | Sf=10 | Sp=38 | p = 0.141 | $\alpha = 0.737$ | | | | | 054 | Nf=6 | Np=5 | p = 0.108 | <i>α</i> = 0.778 | | | | C-terminus | 354 | Sf=4 | Sp=15 | | | | | C) | Species | MK | Гable | FE <i>p</i> -value | α-value | D) | Test | 2∆InL | <i>p</i> -value | |----|-----------------|----------------|---------------|--------------------|------------------|--------|--------|---------|-----------------| | | D. melanogaster | Nf=15 | Np=1 | p = 0.002 | <i>α</i> = 0.957 | M7/M8 | 15.02 | 0.00027 | | | | | Sf=15 | Sp=23 | | | M8a/M8 | 14.37 | 0.00038 | | | | D. simulans | Nf=15
Sf=11 | Np=3
Sp=25 | p = 0.0075 | <i>α</i> = 0.868 | | BUSTED | - | 0.0020 | **FIG 2.** pkd2 evolves adaptively in *Drosophila*. A) Fixed non-synonymous fixed differences between *D. melanogaster* and *D. simulans* are marked with purple arrows above the domain structure. Clusters of fixed non-synonymous changes are labeled with a bar specifying the number of sites. Polymorphic non-synonymous changes within each species are marked below the domain structure. The gene span of *Dpkd2* is annotated as a grey bar with blue rectangles marking the transmembrane domains and a green box marking the coiled-coil domain. Extracellular and intracellular domains are in different shades of grey. B) McDonald-Kreitman tests show that *Dpkd2* evolves under positive selection between *D. melanogaster and D. simulans*, and this signal is generated by changes in the extracellular domain. The MK table details non-synonymous fixed (Nf), synonymous fixed (Sf), non-synonymous polymorphic (Np), and synonymous polymorphic (Sp) sites. We report the Fisher's exact (FE) p-value, and the *alpha*-value for each segment of the gene. C) A polarized McDonald-Kreitman test for the extracellular domain of *Dpkd2* demonstrates that this region evolves under positive selection along both lineages. Fixed changes were polarized to the *D. melanogaster* or *D. simulans* lineages using *D. yakuba* as an outgroup species. D) NSsites model tests using PAML show that *Dpkd2* evolves adaptively across many species of *Drosophila*. with the patterns observed with CATSPER β , all of the sites under selection in the auxiliary proteins CATSPER Δ , CATSPER γ , and CATSPER ϵ are in extracellular domains. In contrast, only one third of the sites under selection in the core proteins are extracellular (Supplementary Table 2). These results suggest that in the auxiliary CatSper proteins, adaptive evolution is driven by extracellular
interactions. The CatSper complex, therefore, appears locked in an evolutionary conflict that drives its rapid evolution, with $CATSPER\beta$ being most directly placed at the interface of this conflict. # The sperm hyper-activation channel Dpkd2 evolves adaptively in Drosophila Although all CatSper genes are missing in sperm hyper-activation remains an Drosophila, essential step in successful fertilization (Köttgen et al. 2011). For successful fertilization, Drosophila sperm have to swim from the uterus to the sperm storage organs in the female (Neubaum and Wolfner 1999). Several lines of evidence have shown strong selection on different aspects of Drosophila reproductive biology, including the length of sperm and ducts (Lüpold et al. 2016), and the peptides that control sperm storage and release (Findlay et al. 2014). In D. melanogaster, the gene pkd2 (Dpkd2) is required to hyper-activate sperm so that they can navigate the ducts that lead to the sperm storage organs (Gao et al. 2003; Watnick et al. 2003; Köttgen et al. 2011). Like CatSper, Dpkd2 is a Ca²⁺ channel with a PKD domain. If the *CatSper*-independent sperm hyper-activation machinery in *Drosophila* is also involved in sexual conflict, we predict to find similar signatures of positive selection in *Dpkd2*. First, we investigated whether *Dpkd2* evolves under positive selection between D. melanogaster and its sister species D. simulans. Indeed, Dpkd2 is notable for having the most significant p-value of all genes in the Drosophila genome in previous McDonald-Kreitman comparisons between melanogaster and D. simulans (Begun et al. 2007). To conduct more detailed analyses, we performed direct Sanger sequencing of Dpkd2 from eight strains of each species (Supplementary Table 3). While Dpkd2 is highly polymorphic within populations, there is also a significant excess of fixed non-synonymous differences between species (McDonald and Kreitman 1991)(Figures 2A and 2B). The fixed non-synonymous changes form discrete clusters. Both the polymorphic and fixed non-synonymous differences are located mostly outside of the PKD domain, indicating the channel pore function may be well conserved while channel activity modulating sites in Dpkd2 change FIG 3. A predicted structural model of *Drosophila pkd2* shows that non-synonymous changes between *D. melanogaster* and *D. simulans* reside on the extracellular faces. A) The homo-tetramer of our predicted *Drosophila* pkd2 structure. The 2-D gene diagram is shaded for the region that could be successfully modeled. The monomers are alternated in shades of grey for contrast. The extracellular loop of one monomer is colored blue. The diagram to the right describes the orientation of the channel. B) Sites that diverge between *D. melanogaster* and *D. simulans* are on the extracellular region of the channel. The base of the monomer is grey, and the extracellular region is blue. The non-synonymous changes between the two species shown in yellow. rapidly. Many of the fixed differences in Dpkd2 are clustered in the first extra-cellular loop. A recently solved cryo-electron microscopy (cryo-EM) structure of human PKD2 found that this extracellular loop is critical for gating the homo-tetrameric PKD2 channel (Shen et al. 2016). The orientation of the channel exposes this loop to the external environment of the sperm. To see if Dpkd2 has evolved adaptively in the extracellular loop, we separately analyzed Dpkd2 in four regions. Analyses of these separate regions show that it is this extracellular loop that drives the signature of positive selection in *Dpkd2*. To further identify the lineages that experienced adaptive evolution, we polarized our MK test using D. yakuba as an outgroup species. Our results show that Dpkd2 underwent adaptive evolution along each of the lineages that lead to D. melanogaster and D. simulans (Figure 2C). To better understand the special positioning of the fixed non-synonymous sites, we modeled a three-dimensional molecular structure of *Drosophila pkd2* with the i-Tasser software (Roy et al. 2010) (Figure 3A). We used the cryo-EM structure of human PKD2 (Shen et al. 2016) as a template, which includes the region from the first transmembrane domain to the end of the Ca²⁺ channel domain. A plot of the non-synonymous changes between *D. melanogaster* and *D. simulans* on this predicted structure shows that these sites are not buried in the pore, but are instead directly accessible to the environment of the sperm (Figure 3B). Because our results provide strong evidence that *Dpkd2* evolves under positive selection between D. melanogaster and D. simulans, investigated whether a similar signature of recurrent positive selection is seen across a broader range of Drosophila species. We curated sequences for Dpkd2 from 17 species of *Drosophila* by identifying homologs from reference genomes and by directly Sanger sequencing Dpkd2 from additional species. We used the branch and NSsites models of PAML, and BUSTED to test for signatures of selection in *Dpkd2* (Figure 2D, Supplementary Figure 3) (Murrell et al. 2015). Our results from NSsites and BUSTED analyses provide evidence for episodic positive selection on Dpkd2 across Drosophila species. Indel variation is known to drive the rapid diversification of the first exon of CATSPER1 (Podlaha and Zhang 2003). Because there are several fixed indels between D. melanogaster and D. simulans, we wanted to know if the variation in the length of the extracellular region is greater than that in the other domains of Dpkd2. We compared the variance in length of each segment of Dpkd2 to the variance in length of the whole gene. We find that most of the change in the length of Dpkd2 comes from the extracellular domain (Supplementary Figure 4). Together, these results show that, similar to CatSper genes, both amino acid substitutions and indel differences in regions exposed to the extracellular environment have played an important role in the rapid evolution of *Dpkd2* under recurrent positive selection. The sperm function of pkd2 drives its positive selection In primates, *PKD2* is primarily known for its role in autosomal dominant polycystic kidney disease (Cai et al. 1999). Loss of function in primate *PKD2* causes male sterility, but this sterility is due to abnormal formation of cysts within the testes rather than a sperm hyper-activation defect as in *Drosophila* (Nie and Arend 2014). Because *PKD2* is required for both somatic and gamete development, it is unclear if its evolution would also be driven by sexual selection. Therefore, we analyzed primate PKD2 to see if we could find patterns of selection similar to *Drosophila pkd2* and *CatSpers*. We first confirmed that primate PKD2 and Drosophila pkd2 are true orthologs by constructing a maximum-likelihood phylogeny using sequences from the primate PKD2 family, primate PKD1 family, CatSpers, and Drosophila pkd2 (Supplementary Figure 5A). Next, we examined the molecular evolution of primate PKD2 by collecting sequences from 11 primate species and using the same PAML based approach as with the CatSper complex and Drosophila pkd2. Consistent with our predictions, neither the branch analysis nor the NSsites models suggest any pattern of positive selection (Supplementary Table 5. Supplementary Figures 5B and 5C). Like CatSper proteins, primate PKD2 is part of a complex that contains several other PKD proteins (Tsiokas et al. 1997). We collected sequences and analyzed PKD1, PKD1L1, PKD1L3, PKD2, PKD2L1, and PKD2L2 by the same tests (we did not obtain enough homologous sequences for PKD1L2 to complete our analysis). We found no evidence for positive selection in primate genes, with the exception of PKD1L3 (Supplementary Table 5). Interestingly, while the rest of the PKD genes are expressed primarily in the heart and kidney, transcript profiling indicates that PKD1L3 is most strongly expressed in the placenta, suggesting that it may be subject to a different set of selective pressures than the other PKD genes (Li et al. 2003). Nevertheless, our data show that PKD2 is well conserved in primates, and the adaptive evolution of pkd2 in Drosophila is likely driven by its role in sperm hyper-activation. ## **Discussion** Hyper-activation of sperm, triggered by the opening of flagellar Ca²⁺ channels, is a critical behavioral switch in the race to fertilization. Our analyses show that these Ca²⁺ channels are not conserved, but rather are shaped by recurrent bouts of positive selection. These findings have several implications for understanding the evolutionary and mechanistic aspects of sperm behavior. First, while much attention has focused on the evolution of the first exon of CatSper1, this region reflects only a small part of a much larger pattern. Our analyses show that the entire CatSper complex, including all core and auxiliary proteins, show robust signatures of positive selection in primate lineages. By viewing the molecular evolutionary patterns of the CatSper complex as a whole, we find that CATSPER\$ is the most prevalent target of selection. Little is know about the molecular function of CATSPERB, and our results suggest that it plays a key role in the regulation of channel activity. Because we find the majority of positively selected sites in the extracellular region of CATSPERB and the other auxiliary proteins, it is likely that interactions with proteins in the seminal fluid or the female reproductive tract modulate CatSper activity. Second, we find that the non-orthologous sperm hyper-activation Ca²⁺ channels in primates and flies, taxa that are separated by more than 500 million years, experience remarkably similar selective pressures. We find that the positively selected sites in *Drosophila pkd2* are not buried within the pore, but instead interface with the external environment. Similar to the *CatSper* complex, our results predict that the forces that drive changes in the *Dpkd2* complex involve interacting
proteins that modulate the activity of the sperm hyper-activation machinery. These parallel patterns suggest that the sperm hyper-activation machinery may be engaged in the same evolutionary conflicts in a broad diversity of taxa. Both sperm competition and female choice have the potential to engage the sperm hyperactivation machinery in sexual conflict. Males may deploy seminal fluid peptides to inactivate the sperm hyper-activation channels of competing sperm, thus providing a massive advantage for their own sperm (Figure 4A) (Neubaum and Wolfner 1999; Qazi and Wolfner 2003). Alternatively, females may secrete peptides to inhibit sperm hyper-activation, thus providing a mechanism to modulate fertilization rates and avoid polyspermy (Figure 4B) (Aagaard et al. 2013). Under either scenario, the evolutionary arms race between secreted reproductive proteins and sperm hyper-activation channels drives the patterns of recurrent positive selection that we observe in CatSpers and Dpkd2. Third, the molecular mechanisms of sperm competition remain unclear despite ample evidence for genetic variation in sperm competitive abilities both within and between species (Price et al. 1999; Matute and Coyne 2010; Sweigart 2010; Castillo and Moyle 2014). The patterns of recurrent positive selection on *CatSper* and *Dpkd2* complexes make them strong candidates for a role in sperm competition. While testing the role of *CatSpers* in sperm competition in primates has obvious experimental limitations, testing #### A) Sperm competition **FIG 4.** Both inter-male sperm competition and female choice can drive the rapid evolution of the sperm hyper-activation channels. A) Males that secrete seminal peptides that block the hyper-activation channels of sperm from competing males gain a selective advantage. B) Females may secrete peptides that inhibit sperm hyper-activation channels to control fertilization rates. Males that can prevent the inhibition of sperm hyper-activation gain a selective advantage. the role of *Dpkd2* in sperm competition in *Drosophila* is imminently feasible. Our results set the stage for experiments involving transgenic allelic swaps between *D. melanogaster Dpkd2* and divergent *Dpkd2* alleles from other species in an otherwise *D. melanogaster* genetic background. If the sperm of individuals bearing these inter-species allele swaps compete poorly with other sperm, this may reveal an important role for *Dpkd2* in the molecular mechanisms of sperm competition. Together, our study introduces the sperm hyper-activation genes as a new class of male reproductive proteins that evolve rapidly. We find parallel patterns of adaptive evolution in non-orthologous proteins that serve as the sperm hyper-activation calcium channels in primates and flies. Identifying the factors that modulate the sperm hyper-activation machinery promises to provide insights into the molecular mechanisms used by the sexes to manipulate sperm behavior to their own advantage. ### **Materials and Methods** Collection of primate and Drosophila gene sequences We acquired sequences from up to 17 species of primates and flies each for our phylogenetic analyses. methods for finding homologs phylogenetic analyses have relied on direct sequencing or manual curating of annotated genomes. Because a reliance on gene annotation models is prone to errors due to mis-annotation, and also limits the number of species that may be analyzed (Markova-Raina and Petrov 2011), we used a different approach to scan sequenced genomes and identify high quality sequences. This method is similar to the one used recently to study positive selection in the synaptonemal complex in Drosophila (Hemmer and Blumenstiel 2016), and utilizes the broad range of available sequenced genomes to maximize the power of our analyses. First, we gathered the annotated H. sapiens CDS sequence for each CatSper gene to use as bait for the searches. For each CatSper gene, we gathered homologous sequences from up to 17 primate species that provide a well distributed phylogenetic sampling (Table 1A). Next, we identified the genomic region containing each gene using tBlastn (NCBI) (Madden 2003). Using Exonerate (Slater and Birney 2005) on the narrowed genomic region, we identified the homologous coding regions for each gene, and predicted intron-exon splice sites. We used this two-step method because while exonerate is highly accurate at identifying homologs, it is slow at searching through full genomes. Focusing on smaller contigs that contained our gene of interest accelerated our analyses. For analyses with *Drosophila* species, we restricted our survey of *Dpkd2* sequences to the melanogaster group of species because including more divergent sequences saturated dS and raised the rate of false positives. For species with annotated genomes, we acquired homologous sequences from Flybase, whereas for species with un-annotated genomes, we used our two-step method homology search (Table 1B). We also PCR amplified, sub-cloned and directly Sanger sequenced *Dpkd2* from *D. tessieri*, *D. santomea*, *D. mauritiana*, and *D. orena*. #### Tests of recurrent positive selection We developed a pipeline to obtain high quality sequences from available genomic resources, and to modify our analysis to ignore low quality sequences (Supplementary Figure 6). Codon based methods of phylogenetic analysis require the accurate alignment of homologous gene sequences. We, therefore, only included sequences from a species when the homolog accounted for at least 90% of the total length of the reference coding region. This method ensured that we did not lose power in our tests because of incomplete gene sequences. To detect patterns of recurrent positive selection in these genes, we prepared and analyzed sequences with the following pipeline. First, we translated all coding sequences to amino acid sequences and aligned the amino acid sequences using CLUSTAL Omega (Sievers et al. 2011). Next, we back-translated the amino acid sequences to their corresponding CDS using Pal2Nal (Suyama et al. 2006), using settings to remove all gaps and stop codons. We then manually reviewed each alignment to confirm that there were no gaps or stop codons. We constructed the phylogenies for our alignment based on modEncode data (Perelman et al. 2011; Chen et al. 2014). We used the same alignments for two separate analyses: Phylogenetic **Analysis** by Maximum Likelihood (PAML) (Yang 2007) and Baysean Unrestricted Test For Episodic Diversification (BUSTED) (Murrell et al. 2015). To test for recurrent selection using PAML, we compared NSsites models M7 and M8, using the branch model 0 and the standard clock. We calculated a p-value using a logratio test between the log-likelihood scores for each model (Yang 2007). PAML is highly sensitive to misalignments; even slight mis-alignments can easily create false positive signals (Markova-Raina and Petrov 2011). When we observed a p-value < 0.05, we repeated our analyses by starting at the beginning of the pipeline, but this time using the T-coffee (Notredame et al. 2000) and Muscle (Edgar 2004) aligners, ensuring that our result was not an artifact of alignment error. We only considered true rejections of the null where a p-value < 0.05 was observed with all three aligners, and reported the least significant pvalue. We ran M8a using the same alignment that generated the least significant p-value. Like PAML, compares models of selection for BUSTED homologous sequences over phylogenetic а distribution. Unlike PAML, BUSTED takes a Bayesian approach to build these models. This framework makes BUSTED an independent test from PAML to analyze the molecular evolution of a gene. We ran the BUSTED using Data Monkey (http://www.datamonkey.org/). When the program did not correctly compute the base tree, we re-oriented nodes to correctly reconstruct the phylogeny. To compare dN/dS between the CatSper genes (Figure 1A), we removed the percent alignment threshold for each species so that we could analyze dN/dS over a common phylogeny of 16 species. To calculate dN/dS along branch lengths, we used the branch model 1 with model 0 (Yang 2007). We also used the McDonald-Kreitman (MK) test for positive selection on the narrower timescale of *D. melanogaster* and *D. simulans* divergence. For this test, we sub-cloned and re-sequenced *Dpkd2* from eight lines of *D. melanogaster* and *D. simulans* using the method described above. We ran MK tests for *Dpkd2* using DnaSP (Librado and Rozas 2009). To identify protein domains, we submitted amino acid sequences to the SMART server (Letunic et al. 2015) using all available databases. Insertion/Deletion Polymorphism Analysis To quantitatively assess the extent of indel differences between *Dpkd2* in the *D. melanogaster* group, we developed a null prediction for indel variation per amino-acid site. To do this, we first measured the differences in length for *Dpkd2* for the full gene, and determined the length variance per base pair. We measured the difference in length of each region of the gene, using the N-terminus, first trans-membrane domain, PKD channel, and C-terminus as alignment anchors. We then calculated the standard deviation of each of these regions, and divided by the length of the region to calculate a deviation per amino-acid value. For each region, we present the ratio of one deviation per amino-acid of the gene region divided by the full length of the gene. # Computational modeling of the *Dpkd2* three dimensional structure To model the structure of *Dpkd2* we accessed i-Tasser via the web server at http://zhanglab. ccmb.med.umich.edu/I-TASSER/ (Roy et al. 2010). We provided the program with the amino acid sequence of Dpkd2 from positions 233-810 to correspond with the published high resolution cryo-EM structure for human PKD2 (Shen et al. 2016). We provided the human PKD2 structure as a scaffold for i-Tasser, and used the option to align the two sequences before
structural prediction. Due to the limits of i-Tasser, we modeled a single monomer of Dpkd2. To arrange these monomers in a tetrameric complex, we aligned the Dpkd2 monomer to the four positions of the human PKD2 monomers in the solved structure using PyMOL. We highlighted all nonsynonymous positions between D. melanogaster and D. simulans in the predicted structure. ## **Acknowledgements** This work was supported by the National Institutes of Health (Developmental Biology Training Grant 5T32 HD0741 [to JCC]; R01 GM115914 [to NP], a Mario Capecchi endowed assistant professorship (NP), and the Pew Biomedical Scholars Program. We thank Nora Brown, Chris Leonard, and Mia Levine for helpful comments with this manuscript. ### References - Aagaard JE, Springer SA, Soelberg SD, Swanson WJ. 2013. Duplicate Abalone Egg Coat Proteins Bind Sperm Lysin Similarly, but Evolve Oppositely, Consistent with Molecular Mimicry at Fertilization. PLOS Genet. 9:e1003287. - Begun DJ, Holloway AK, Stevens K, Hillier LW, Poh Y-P, Hahn MW, Nista PM, Jones CD, Kern AD, Dewey CN, et al. 2007. Population Genomics: Whole-Genome Analysis of Polymorphism and - Divergence in Drosophila simulans. PLoS Biol 5:e310. - Cai X, Clapham DE. 2008. Evolutionary Genomics Reveals Lineage-Specific Gene Loss and Rapid Evolution of a Sperm-Specific Ion Channel Complex: CatSpers and CatSperβ. PLoS ONE 3:e3569. - Cai X, Wang X, Clapham DE. 2014. Early Evolution of the Eukaryotic Ca2+ Signaling Machinery: Conservation of the CatSper Channel Complex. Mol. Biol. Evol.:msu218. - Cai Y, Maeda Y, Cedzich A, Torres VE, Wu G, Hayashi T, Mochizuki T, Park JH, Witzgall R, Somlo S. 1999. Identification and Characterization of Polycystin-2, the PKD2 Gene Product. J. Biol. Chem. 274:28557–28565. - Carlson AE, Burnett LA, Camino D del, Quill TA, Hille B, Chong JA, Moran MM, Babcock DF. 2009. Pharmacological Targeting of Native CatSper Channels Reveals a Required Role in Maintenance of Sperm Hyperactivation. PLOS ONE 4:e6844. - Castillo DM, Moyle LC. 2014. Intraspecific sperm competition genes enforce post-mating species barriers in Drosophila. Proc R Soc B 281:20142050. - Chen Z-X, Sturgill D, Qu J, Jiang H, Park S, Boley N, Suzuki AM, Fletcher AR, Plachetzki DC, FitzGerald PC, et al. 2014. Comparative validation of the D. melanogaster modENCODE transcriptome annotation. Genome Res. 24:1209–1223. - Chung J-J, Miki K, Kim D, Shim S-H, Shi HF, Hwang JY, Cai X, Iseri Y, Zhuang X, Clapham DE. 2017. CatSperζ regulates the structural continuity of sperm Ca2+ signaling domains and is required for normal fertility. eLife 6:e23082. - Chung J-J, Navarro B, Krapivinsky G, Krapivinsky L, Clapham DE. 2011. A novel gene required for male fertility and functional CATSPER channel formation in spermatozoa. Nat. Commun. 2:153. - Clark N, Findlay G, Yi X, Michael M, Swanson W. 2007. Duplication and Selection on Abalone Sperm Lysin in an Allopatric Population. 24. Available from: http://dx.doi.org/10.1093/molbev/msm137 - Clark NL, Aagaard JE, Swanson WJ. 2006. Evolution of reproductive proteins from animals and plants. Reproduction 131:11–22. - Cosson J, Groison A-L, Suquet M, Fauvel C, Dreanno C, Billard R. 2008. Marine fish spermatozoa: racing ephemeral swimmers. Reproduction 136:277–294. - Dziminski MA, Roberts JD, Beveridge M, Simmons LW. 2009. Sperm competitiveness in frogs: slow and steady wins the race. Proc. R. Soc. Lond. B Biol. Sci. 276:3955–3961. - Edgar RC. 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113. - Findlay GD, Sitnik JL, Wang W, Aquadro CF, Clark NL, Wolfner MF. 2014. Evolutionary Rate Covariation Identifies New Members of a Protein Network Required for Drosophila melanogaster Female Post-Mating Responses. PLoS Genet 10:e1004108. - Fisher HS, Jacobs-Palmer E, Lassance J-M, Hoekstra HE. 2016. The genetic basis and fitness consequences of sperm midpiece size in deer mice. bioRxiv:77826. - Gao Z, Ruden DM, Lu X. 2003. PKD2 Cation Channel Is Required for Directional Sperm Movement and Male Fertility. Curr. Biol. 13:2175–2178. - Gavrilets S. 2000. Rapid evolution of reproductive barriers driven by sexual conflict. Nature 403:886–889. - Hamm D, Mautz BS, Wolfner MF, Aquadro CF, Swanson WJ. 2007. Evidence of Amino Acid Diversity–Enhancing Selection within Humans and among Primates at the Candidate Sperm-Receptor Gene PKDREJ. Am. J. Hum. Genet. 81:44–52. - Hemmer LW, Blumenstiel JP. 2016. Holding it together: rapid evolution and positive selection in the synaptonemal complex of Drosophila. BMC Evol. Biol. 16:91. - Ho H-C, Granish KA, Suarez SS. 2002. Hyperactivated Motility of Bull Sperm Is Triggered at the Axoneme by Ca2+ and Not cAMP. Dev. Biol. 250:208–217. - Howard DJ, Palumbi SR, Birge LM, Manier MK. 2009. 9 - Sperm and speciation. In: Birkhead TR, Hosken DJ, Pitnick S, editors. Sperm Biology. London: Academic Press. p. 367–403. - Available from: //www.sciencedirect.com/science/article/pii/B9 780123725684000094 - Ishijima S. 2011. Dynamics of flagellar force generated by a hyperactivated spermatozoon. Reproduction 142:409–415. - Jin J-L, O'Doherty AM, Wang S, Zheng H, Sanders KM, Yan W. 2005. Catsper3 and Catsper4 Encode Two Cation Channel-Like Proteins Exclusively Expressed in the Testis. Biol. Reprod. 73:1235–1242. - Köttgen M, Hofherr A, Li W, Chu K, Cook S, Montell C, Watnick T. 2011. Drosophila Sperm Swim Backwards in the Female Reproductive Tract and Are Activated via TRPP2 Ion Channels. PLOS ONE 6:e20031. - Kresge N, Vacquier VD, Stout CD. 2001. Abalone lysin: the dissolving and evolving sperm protein. BioEssays 23:95–103. - Lee Y-H, Ota T, Vacquier VD. 1995. Positive selection is a general phenomenon in the evolution of abalone sperm lysin. Mol. Biol. Evol. 12:231–238 - Letunic I, Doerks T, Bork P. 2015. SMART: recent updates, new developments and status in 2015. Nucleic Acids Res. 43:D257–D260. - Li A, Tian X, Sung S-W, Somlo S. 2003. Identification of two novel polycystic kidney disease-1-like genes in human and mouse genomes. Genomics 81:596–608. - Librado P, Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. - Liu J, Xia J, Cho K-H, Clapham DE, Ren D. 2007. CatSperβ, a Novel Transmembrane Protein in the CatSper Channel Complex. J. Biol. Chem. 282:18945–18952. - Lobley A, Pierron V, Reynolds L, Allen L, Michalovich D. 2003. Identification of human and mouse CatSper3 and CatSper4 genes: Characterisation of a common interaction domain and evidence for expression in testis. Reprod. Biol. Endocrinol. 1:53. - Loux SC, Crawford KR, Ing NH, González-Fernández L, Macías-García B, Love CC, Varner DD, Velez IC, Choi YH, Hinrichs K. 2013. CatSper and the Relationship of Hyperactivated Motility - to Intracellular Calcium and pH Kinetics in Equine Sperm. Biol. Reprod. 89:123. - Lüpold S, Manier MK, Puniamoorthy N, Schoff C, Starmer WT, Luepold SHB, Belote JM, Pitnick S. 2016. How sexual selection can drive the evolution of costly sperm ornamentation. Nature 533:535–538. - Madden T. 2003. The BLAST Sequence Analysis Tool. National Center for Biotechnology Information (US) Available from: https://www.ncbi.nlm.nih.gov/books/NBK2109 7/ - Markova-Raina P, Petrov D. 2011. High sensitivity to aligner and high rate of false positives in the estimates of positive selection in the 12 Drosophila genomes. Genome Res. 21:863–874. - Matute DR, Coyne JA. 2010. Intrinsic reproductive isolation between two sister species of Drosophila. Evol. Int. J. Org. Evol. 64:903–920. - McDonald JH, Kreitman M. 1991. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654. - Montoto LG, Magaña C, Tourmente M, Martín-Coello J, Crespo C, Luque-Larena JJ, Gomendio M, Roldan ERS. 2011. Sperm Competition, Sperm Numbers and Sperm Quality in Muroid Rodents. PLOS ONE 6:e18173. - Moyle LC, Jewell CP, Kostyun JL. 2014. Fertile approaches to dissecting mechanisms of premating and postmating prezygotic reproductive isolation. Curr. Opin. Plant Biol. 18:16–23. - Murrell B, Weaver S, Smith MD, Wertheim JO, Murrell S, Aylward A, Eren K, Pollner T, Martin DP, Smith DM, et al. 2015. Gene-Wide Identification of Episodic Selection. Mol. Biol. Evol. 32:1365–1371. - Neubaum DM, Wolfner MF. 1999. Wise, winsome, or weird? Mechanisms of sperm storage in female animals. Curr. Top. Dev. Biol. 41:67–97. - Neubaum DM, Wolfner MF. 1999. Mated Drosophila melanogaster Females Require a Seminal Fluid Protein, Acp36DE, to Store Sperm Efficiently. Genetics 153:845–857. - Nguyen TMD, Alves S, Grasseau I, Métayer-Coustard S, Praud C, Froment P, Blesbois E. 2014. Central Role of 5'-AMP-Activated Protein Kinase in Chicken Sperm Functions. Biol. Reprod. 91:121. - Nie X, Arend LJ. 2014. Novel roles of Pkd2 in male reproductive system development. Differentiation 87:161–171. - Notredame C, Higgins DG, Heringa J. 2000. T-coffee: a novel method for fast and accurate multiple sequence alignment1. J. Mol. Biol. 302:205–217. - O'Brien ED, Krapf D, Cabada MO, Visconti PE, Arranz SE. 2011. Transmembrane adenylyl cyclase regulates amphibian sperm motility through protein kinase A activation. Dev. Biol. 350:80–88. - Ooi EH, Smith DJ, Gadêlha H, Gaffney EA, Kirkman-Brown J. 2014. The mechanics of hyperactivation in adhered human sperm. R. Soc. Open Sci. [Internet] 1. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC 4448887/ - Panhuis TM, Clark NL, Swanson WJ. 2006. Rapid evolution of reproductive proteins in abalone and Drosophila. Philos. Trans. R. Soc. B Biol. Sci. 361:261–268. - Parker GA, Partridge L. 1998. Sexual conflict and speciation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 353:261–274. - Perelman P, Johnson WE, Roos C, Seuánez HN, Horvath JE, Moreira MAM, Kessing B, Pontius J, Roelke M, Rumpler Y, et al. 2011. A Molecular Phylogeny of Living Primates. PLOS Genet 7:e1001342. - Podlaha O, Webb DM, Tucker PK, Zhang J. 2005. Positive selection for indel substitutions in the rodent
sperm protein Catsper1. Mol. Biol. Evol. 22:1845–1852. - Podlaha O, Zhang J. 2003. Positive selection on protein-length in the evolution of a primate sperm ion channel. Proc. Natl. Acad. Sci. U. S. A. 100:12241–12246. - Price CSC, Dyer KA, Coyne JA. 1999. Sperm competition between Drosophila males involves both displacement and incapacitation. Nature 400:449–452. - Qazi MCB, Wolfner MF. 2003. An early role for the Drosophila melanogaster male seminal protein Acp36DE in female sperm storage. J. Exp. Biol. 206:3521–3528. - Qi H, Moran MM, Navarro B, Chong JA, Krapivinsky G, Krapivinsky L, Kirichok Y, Ramsey IS, Quill TA, Clapham DE. 2007. All four CatSper ion channel proteins are required for male fertility and sperm cell hyperactivated motility. Proc. Natl. Acad. Sci. 104:1219–1223. - Quill TA, Ren D, Clapham DE, Garbers DL. 2001. A voltage-gated ion channel expressed specifically in spermatozoa. Proc. Natl. Acad. Sci. 98:12527–12531. - Ren D, Navarro B, Perez G, Jackson AC, Hsu S, Shi Q, Tilly JL, Clapham DE. 2001. A sperm ion channel required for sperm motility and male fertility. Nature 413:603–609. - Roy A, Kucukural A, Zhang Y. 2010. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5:725–738. - Shen PS, Yang X, DeCaen PG, Liu X, Bulkley D, Clapham DE, Cao E. 2016. The Structure of the Polycystic Kidney Disease Channel PKD2 in Lipid Nanodiscs. Cell 167:763–773.e11. - Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, et al. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7:539. - Slater GSC, Birney E. 2005. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics 6:31. - Suarez S, Ho H-C. 2003. Hyperactivated Motility in Sperm. Reprod. Domest. Anim. 38:119–124. - Suarez SS, Katz DF, Owen DH, Andrew JB, Powell RL. 1991. Evidence for the function of hyperactivated motility in sperm. Biol. Reprod. 44:375–381. - Suyama M, Torrents D, Bork P. 2006. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34:W609–W612. - Swanson WJ, Nielsen R, Yang Q. 2003. Pervasive Adaptive Evolution in Mammalian Fertilization Proteins. Mol. Biol. Evol. 20:18–20. - Swanson WJ, Vacquier VD. 1997. The abalone egg vitelline envelope receptor for sperm lysin is a giant multivalent molecule. Proc. Natl. Acad. Sci. U. S. A. 94:6724–6729. - Swanson WJ, Vacquier VD. 2002. The rapid evolution of reproductive proteins. Nat. Rev. Genet. 3:137–144. - Sweigart AL. 2010. The Genetics of Postmating, Prezygotic Reproductive Isolation Between Drosophila virilis and D. americana. Genetics 184:401–410. - Tsiokas L, Kim E, Arnould T, Sukhatme VP, Walz G. 1997. Homo- and heterodimeric interactions between the gene products of PKD1 and PKD2. Proc. Natl. Acad. Sci. U. S. A. 94:6965–6970. - Turner LM, Chuong EB, Hoekstra HE. 2008. Comparative Analysis of Testis Protein Evolution in Rodents. Genetics 179:2075– 2089. - Vicens A, Montoto LG, Couso-Ferrer F, Sutton KA, Roldan ERS. 2015. Sexual selection and the adaptive evolution of PKDREJ protein in primates and rodents. Mol. Hum. Reprod. 21:146–156. - Wang H, Liu J, Cho K-H, Ren D. 2009. A Novel, Single, Transmembrane Protein CATSPERG Is Associated with CATSPER1 Channel Protein. Biol. Reprod. 81:539–544. - Watnick TJ, Jin Y, Matunis E, Kernan MJ, Montell C. 2003. A Flagellar Polycystin-2 Homolog Required for Male Fertility in Drosophila. Curr. Biol. 13:2179–2184. - Wilburn DB, Swanson WJ. 2016. From molecules to mating: Rapid evolution and biochemical studies of reproductive proteins. J. Proteomics 135:12–25. - Yanagimachi R. 1969. In Vitro Capacitation of Hamster Spermatozoa by Follicular Fluid. J. Reprod. Fertil. 18:275–286. - Yanagimachi R. 1970. In vitro Capacitation of Golden Hamster Spermatozoa by Homologous and Heterologous Blood Sera. Biol. Reprod. 3:147–153. - Yang Y, Lu X. 2011. Drosophila sperm motility in the reproductive tract. 84. Available from: http://dx.doi.org/10.1095/biolreprod.110.08877 - Yang Z. 2007. PAML 4: Phylogenetic Analysis by Maximum Likelihood. Mol. Biol. Evol. 24:1586–1591. - Yang Z, Wong WSW, Nielsen R. 2005. Bayes Empirical Bayes Inference of Amino Acid Sites Under Positive Selection. Mol. Biol. Evol. 22:1107–1118. - Zhou J, Chen L, Li J, Li H, Hong Z, Xie M, Chen S, Yao B. 2015. The Semen pH Affects Sperm Motility and Capacitation. PLOS ONE 10:e0132974.