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Abstract. RNA-Seq measures expression levels of several transcripts simulta-
neously. The identified reads can be gene, exon, or other region of interest. Vari-
ous computational tools have been developed for studying pathogen or virus from 
RNA-Seq data by classifying them according to the attributes in several pre-
defined classes, but still computational tools and approaches to analyze complex 
datasets are still lacking. The development of classification models is highly rec-
ommended for disease diagnosis and classification, disease monitoring at molecu-
lar level as well as researching for potential disease biomarkers. In this chapter, 
we are going to discuss various machine learning approaches for RNA-Seq data 
classification and their implementation. Advancements in bioinformatics, along 
with developments in machine learning based classification, would provide po-
werful toolboxes for classifying transcriptome information available through 
RNA-Seq data. 
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1. Introduction 
In day to day life, we are verge to encounter various infectious agents like 
virus, prion, fungi, bacterium, etc. To a great extent our body provides 
primary defence mechanism to the infections caused by them but not nec-
essarily all. The emergence of superbugs (antibiotic resistance bacteria) 
such as Staphylococcus aureus (MRSA), Klebsiella pneumonia (CRKP), 
etc and recurrence of influenza, zika, ebola, etc, are of great concern in to-
day’s world and even in future. Studying these infections and diseases may 
find a great importance in upcoming years. With the advent of digitization 
and availability of high-throughput modern devices at cheaper rates, the 
task of sequencing has been boosted up resulting in massive generation of 
heterogeneous data (Big Data) at lower experimental and computing cost. 
Recent advances in the field of sequencing, i.e., Next Generation Sequenc-
ing (NGS) via RNA-Sequencing (RNA-Seq) method enabled the biologists 
and biotechnologists to measure the expression levels of several transcripts 
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simultaneously. By applying such information one is able to develop vari-
ous classification algorithms based on expression levels. It is now consid-
ered an emerging method for disease classification and diagnosis and iden-
tification of potential biomarkers of disease [2]. They are also being used 
to identify exogenous RNA contents (Viruses) from RNA-Seq data. The 
information from RNA-Seq data utilized for this were earlier overlooked 
but by employing machine learning methods through classification algo-
rithms, these features can be easily identified in RNA-Seq data. It is note-
worthy that, out of several only few information from RNA-Seq data is 
useful for identification hence prediction which are considered as Target 
rich data that are needed to be inferred. For this reason machine learning 
techniques find a great usage in bioinformatics to perform the real time 
predictive and analytical study in order to give rise to intelligent informed 
decision [1]. 

It is observed that two similar disease state samples which differ cate-
gorically may not able to be differentiated accurately in presence of back-
ground noises that matches. Thus it is necessary to select the key differ-
ences via machine learning techniques [3]. “Classification” has been a 
great topic for research in fields of machine learning in recent years as it 
has found a great applicability which searching for disease biomarker and 
drug targets [4]. Various computational tools have been developed for 
studying pathogen or virus from RNA-Seq data by classifying them ac-
cording to the attributes in several pre-defined classes, but still these tools 
and approaches to analyze complex datasets are still lacking. Moreover 
there is no ‘one fit to all’ technique for classification and analysis of RNA-
Seq data which makes disease classification even more challenging. In ad-
dition, the high dimensionality incurred in NGS data, including RNA-Seq, 
has thrown various challenges including curse of dimensionality problem, 
and hence several existing classifiers cannot be directly applied. 

In this context, there is an immediate need of upgrading current classi-
fication approaches to meet the analysis of high-dimensional data such as 
RNA-Seq data. In this chapter, various machine learning approaches for 
RNA-Seq data classification are discussed with their pros and cons. The 
development of various classification models is an emerging area of re-
search for disease diagnosis and classification, examining it at molecular 
level as well as discovering its potential markers which could be targeted 
in disease identification and drug discovery. These developments would 
further allow transcriptomic analysis in rare cell types and cell states, and 
also would enable reconstruction of biological networks at cellular level. 
These bioinformatics advances, along with developments in machine 
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Seq and its analysis pipeline 
Seq is found to be a powerful transcriptome profiling technique of 

NGS which can provide a detailed view of RNA transcripts in test sample. 
Seq measures expression levels of several transcripts simultaneously

. The general methodology for RNA-Seq analysis concerning a disease 
involves expression analysis from raw sequence data of disease after 
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Fig. 1 Steps involved in RNA-Seq data analysis pipeline. A. The NGS data (RNA-
Seq dataset) is preprocessed and transcripts get quantified which are subject for 
differential expression analysis, co-expression analysis, gene-gene interaction 
study or disease patient classification. B. The result undergoes classification 
procedure to classify elements according to their attributes by machine learning 
algorithms [6]. 
The key hub genes associated to the disease pathways obtained from 
differential expression analysis undergoes for further classification. The 
reads identified through this process can be an exon or other region of 
interest. [1]. Machine learning is an art of learning that doesn’t involve any 
sort of explicit programming. It can occur in either of the two forms: 
conventional “Shallow” learning or “Deep” learning [7]. The typical 
machine learning workflow for classifying of data from computational 
point of view can be seen in Fig. 2 [63]. Similar approach can be 
implemented when dealing with RNA-Seq data. 
 

  
Fig. 2 The classical machine learning workflow consists of four steps: data pre-
processing, feature extraction, model learning and model evaluation [63]. 
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3. Feature selection via data pre-processing 

3.1. Features involved in RNA-Seq Classification   

Feature identification is the most important step in construction of a 
machine learning classifier. Feature sources such as size of RNA transcript 
or GC content is not enough to build an efficient discriminating identifier 
for RNA transcripts. Other features such as graph features from sequence, 
conservation score features, component composition features, ALU repeats 
and tandem repeats, and ORF features for transcript sequences can also be 
a good feature sources for training and testing a model [8].  

Table 1. Features for microRNA detection and analysis [13]. 
S. No. Feature Description 

1. Read count Number of reads mapped to pre miRNA 
2. Length Length of longest hairpin structure 
3. MFE Mean free energy of hairpin 
4. GC GC content of small hairpin 
5. Loop GC GC content of the loop 
6. Asymetric bulges Number of Asymetric bulges and mis-

matches regarding the stem 
7. Symetric bulges Number of Symetric bulges and mismatches 

regarding the stem 
8. Bulges Number of bulges in stem 
9. Longest bulge Number of non-pairing nucleotides of the 

longest bulge 
10. Mismatches pre-

miRNA 
Number of single mismatch in the hairpin 

11. Mismatch miR-
NA 

Number of single mismatch in the mature 
miRNA region of hairpin 

12. Stability Frequency of original hairpin structure 
found in the elongated structure. 

13. Alternating stabil-
ity 

Reports that structure disappears when ex-
tending the sequence, but reappears again. 

14. Triplet SVM 
features 

All features that were proposed by Fan & 
Zhang, 2015 [14]. 
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3.2. Steps for classification model building

The machine learning methods for RNA
pre-processing of datasets in order to raise chances of getting effective 
results. The necessary steps for a typical classificati
in Fig. 3. It comprise of basically three steps as Feature selection followed 
by classification model building and then validation of the constructed 
model.  

Fig. 3 Steps involved in a typical Classification process. 
In feature selection step, it

which reduces the noise and biases hence alleviate accuracy of classific
tion process. It also reduces the effort and cost for computational aspect. 
The optimal data subset, thus consist of a more interpretable f
classification model building step deals with constructing classification 
models by implementing various machine learning algorithms. With help 
of the selected features, machine learning algorithms learn the classifiers 
with definite parameters
can predict the assignment of objects (
class. A typical feature selection involving Random forest classifier is 
shown in Fig. 4 [42].
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Fig. 4 The flowchart of the current RF-FS implementation [42]  
The commonly used classifiers in model building process includes Sup-

port Vector Machines (SVM), Bagging SVM (bagSVM), Random Forest 
(RF), CART, Linear discriminate analysis (LDA), Artificial neural net-
works (ANNs) and k-nearest neighbours. Model validation step is critical 
step to cross check the efficiency of the model. Various model validation 
approaches like Holdout validation, k-fold cross-validation and bootstrap-
ping have been emerged till date [2]. 
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3.3. Methods for Feature selection process 
Feature selection process is used to extract the relevant features to be 
implemented in classification model and remove the unimportant, 
redundant features in order to reduce the curse of dimensionality. This 
would make the learning process for classification time efficient and will 
increase the performance of model [15]. For a Big Data feature selection 
process such as in case of RNA-Seq data, both supervised learning and 
unsupervised learning can be implemented to make decision. Furthermore, 
ranking of the features according to their relevance to the classification 
problem and then selecting the best ones out of them can improve the 
performance of prediction model [16]. 
Expression level: The basis of disease diagnosis via classifying data into 
different classes is simply measuring the changes in expression level 
across the classes. Several studies adopting this approach have been 
emerged to determine important biomarkers (features) in order to predict 
survival outcomes, disease subtypes, drug sensitivity and even behavioural 
characteristics [17, 18, 19, 20]. 
 
Differential Expression (DE) based classifiers: The difference in expres-
sion level (Differential Expression (DE)) of genes is found useful in classi-
fication in order to identify disease biomarker [20]. For RNA-seq data, 
classification is done by edgeR package [21] where the genes are ranked 
on basis of their likelihood ratio in test statistic result obtained from nega-
tive binomial linear models. After transformation of RNA-Seq count data 
in order to eliminate overdispersion, the sample dataset is subjected to the 
Poisson linear discriminant analysis (PLDA) machine learning approach to 
efficiently find the correct decision boundary and do predictions at high 
accuracy [22]. It was observed that expression variability (DV) classifier 
which was based on adaptive index models [23] outperformed a differen-
tial methylation classifier in context of early-stage cancer prediction. This 
suggests that traditional differential expression (DE) classifiers ignore im-
portant differences which are present in real data sets [20]. 
Expression Variability (DV) based classifiers: When deregulation in proc-
ess signalling occurs, it leads to change in expression variability (DV) of 
target genes. DV exploits the characteristics of deregulated networks to 
identify and assess important biomarker for an improved disease prediction 
and treatment. But, it also ignores some useful information from changes 
in locations between classes [20]. For RNA-seq data, logarithmic trans-
formation was done by implementing DESeq2 just to avoid mean-variance 
based traditional transformation approach, hence also avoided the expres-
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sion variability caused merely by differential expression [24]. Features 
then ranked then selection is applied. Prior to the training and prediction 
step, the value for each feature based on difference in each measurement 
with median of all samples in a training dataset. Then Fisher’s linear dis-
criminant analysis (FLDA) method can be employed over them for classi-
fication [20, 25]. 
Differential Distribution (DD) based classifiers: Biologically, a change in 
distribution (unimodality to multimodality) suggests the expression range 
of genes for a normal cellular functioning. A novel kernel density-based 
DD measure with a prognostic algorithm and showed that it performs well 
in terms of classification and stability on both simulated and three sets of 
real high-dimensional transcriptome data. DD classifiers are advanced 
classifiers which simultaneously identify Differentially Expressed Genes 
(DEGs) and also Differentially Variable Genes (DVGs) or both. DD aims 
to avoid the need for ad-hoc DE and DV classifier aggregation algorithms 
[20]. 

For the RNA-seq data set, firstly the counts should be log transformed 
to prevent biasing of feature selection towards differentially expressed 
genes due to overdispersion of count data. Naive Bayes classifier selected 
each feature to the sample dataset. The DD classification using kernel den-
sity estimate voting showed a better performance than LDA [26]. This 
helps to conclude that DD metrics can be better discriminative measure for 
genes identification. Moreover this DD metric can be efficiently used in a 
novel classification scheme of RNA-Seq datasets. 

Assessment of genes via classification through DV is desirable when 
sample with experimentally unknown genes are required to be classified. 
But due to lack of availability of variability-associated disease genes in 
public database, only DV and DD [27] are taken into account for classifi-
cation. A graphical summary of DE, DV and DD features selection method 
with classifiers are shown in Fig. 5 [20]. 
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Fig. 5 Summary of the feature types and classifiers. For each of differential ex-
pression, differential variability and differential distribution, a representative gene 
profile is given and an illustration of the classification process given. In the left 
column, the dashed vertical lines represent the means of the class distributions. In 
the right column, the variables x and y denote two different genes in a data set. 
The bottom right panel illustrates that each gene from the selected gene set votes 
independently in differential distribution classification [20].  
It is observed in [20] that the performance of all three classification 
schemes based on their prognostic error rate and biological relevance, the 
DV classification has inefficient feature selection but good error rate under 
simulation. Differential distribution selection identifies different sets of 
disease related. Differential distribution is the most stable method of rank-
ing and selecting features.DE classification can only detect changes in 
means of datasets and can possibly neglect signatures associated with tran-
scriptional deregulation.DD classification is, therefore the better approach 
for gene expression assessment with good classification accuracy  features 
than DE or DV selection for biologists to start an experiment [20]. 
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Machine learning approaches for classification of Seq data 
Machine learning is the field of computer science that involves efforts in 
development of various computational methods that learn from training 

divided into two approaches Shallow learning and Deep learning. 
Shallow learning consists of neural networks with single hidden layer or 

simply supervised and unsupervised learning methods 
[28]. The supervised learning methods rely on classifiers whereas 
unsupervised learning implements clustering algorithm. In a supervised 

learns from a set of predefined objects with class labe
(training set). The knowledge inferred from it used to classify the unknown 
objects (test objects) accordingly. Whereas, unsupervised learning 
depend on the availability of prior knowledge (training data sets) with 

Deep learning consists of neural network with several 
hierarchical layers. It is a good alternative for big data analytics with high 

The traditional machine learning methods are found inadequate 
in handling voluminous data using the current computational resources
Therefore Deep learning evolved but still further development is needed. 
The categorization of machine learning can be seen in Fig. 6. 
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At the very first, a study on boosting model [31] concluded that certain 
combinations of weak classifiers (base classifiers) have same performance 
as strong classifiers, thus concluding that identification of a strong classifi-
er is not needed.  Reasons for ensemble learning approach to be more 
promising than traditional single classifier based learning can be summa-
rized as follows[29, 32]: 
 Due to limited number of the training sets used in single classifier 

learning, a learning algorithm is unable to precisely learn to target. But 
this is not so in case of ensemble learning and thus, here the offsetting 
error between assumptions and extracting the classification by inte-
grated classifiers proven to be advantageous statistically  The machine learning analysis implementing artificial neural networks 
and decision trees proven to work better for learning hypothesis for a 
non-deterministic polynomial dataset, as it can easily be incorporated 
in other classifiers. This gives an idea that when several of such  as-
sumptions are combined together will give a synergistic upraise to 
classification result to actual target function value and thus, ensemble 
will proven to be better computationally too [4].  Stability of feature selection process is necessary while resampling 
procedure in order to ensure that selection was not merely a coinci-
dence. Ensemble feature selection method ensures the feature stability 
[33]. 

Ensemble approach though is an effective and accurate classification ap-
proach but still is computationally costly as it requires the training of many 
similar models. Moreover, bagging up the features from different single 
classifier models depends on user-specified parameter [4]. A large number 
of models include single classifier such as linear and nonlinear density-
based classifiers, K-nearest neighbor (KNN), decision trees, naïve Bayes, 
SVMs, neural networks and the others are the ensemble of several single 
classifiers such as Random Forest, bagSVM, etc. It can be concluded that 
for an efficient classification solution one must combine experts from var-
ious specific areas in which base classifiers are fully trained. The final so-
lutions and performance will be better as compared to integrated base clas-
sifiers and also the performance of base-classifier algorithms. Following 
are the few of the supervised techniques for classification involving both 
single classifier and ensemble classifier.  
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Support Vector Machine (SVM) 
SVM is most widely used machine learning supervised learning technique, 
introduced by Vapnik (2000) [34]. Giveki et al, 2012 [35] modified 
cuckoo search for automatic diabetic diagnosis which was based on 
weighted SVM [1]. The Bhatia et al, 2006 [36] successfully classified 
heart disease by implementing a SVM-based classification system using 
integer coded genetic algorithm feature selection method which selected 
relevant feature from Cleveland Heart disease database. This maximized 
the accuracy of SVM classification by reducing the number of irrelevant 
features which could potentially hinder the performance of the typical 
SVM classifier to classify heart disease. On similar approach used SVM to 
classify heart failure patients [37]. 
Method: SVM basically develops separating hyper-planes to enhance the 
classifying margin between positive dataset and negative dataset. The 
nearest two points to the hyper-plane in a pair are called support vectors. A 
set of labelled input training data with positive and negative input samples 
are fed to SVM classifier from which it learns for linear decision boundary 
to be able to efficiently discriminate the unseen genes of experiment. A 
key attribute of SVM is that it can take only fixed length of the input vec-
tor. 

First of all genes in training set and test set needs to be transformed into 
feature vectors, then training vectors are fed to SVM for constructing clas-
sifier. The output for SVM is a predicted class for each sample in the test 
set [38]. Similar approach is employed for RNA samples and other large 
datasets prone to high dimensionality problem. SVM first constructs a hy-
per-plane according to training RNA-Seq dataset, and then maps an input 
vector into higher dimensional vector space (also called Hillbert space). 
Then mapping is usually done via kernel function. Software based on 
LIBSVM algorithm was employed for SVM classification and regression 
[38]. 

Bagging support vector machines (bagSVM) 
A single SVM classifier is incapable of learning the exact parameters 

that could be generalized to all datasets. Therefore, bagging ensemble of 
several SVM classifiers can sort this issue. A machine learning approach 
called Bagging support vector machines (bagSVM) is a bagged ensemble 
of SVMs for classification of RNA-Seq data. bagSVM trains each of the 
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SVM separately using bootstrapping technique then combines result from 
each trained SVM model using majority voting [2]. 
Method: Zararsiz et al, 2014 applied a bagSVM on simulated data [2] and 
real dataset [2]. The simulated datasets taken here was generated using a 
negative binomial distribution model and two of the real RNA-Seq data-
sets taken were obtained from public resources. Then DESeq normaliza-
tion was performed over each of them to reduce batch effects. Variance 
stabilizing transformation (vst) was performed. Further the genes are 
ranked in decreasing order of their significance. Since BagSVM is a boot-
strap ensemble method. For a given test data several SVM classifiers are 
trained individually using learning algorithm through bootstrapping tech-
nique and then are summed up using aggregation technique. SVM ensem-
ble is done through repeated random sampling with replacements of train-
ing dataset, K replicated training sets are generated.  Each sample xi may a 
repeatedly occur several time or might be not at all in any particular repli-
cate training set TR. Each of the TR will be further used to train a specific 
SVM classifier [2]. If datasets has class labels for different classes, then 
these labels can be used to train a decision tree for classifying raw data [1]. 

Classification and regression trees (CART) 
Binary tree classifiers can be constructed by iteratively splitting the data 

into two child subsets (nodes). Each of the terminal nodes is assigned a 
class label and the partition corresponds to classifier. The three rules for 
tree building are (i) selecting appropriate splitting rule; (ii) split-stopping 
rule to consider a node to be terminal or to continue splitting and (iii) as-
signment of each terminal node to specific class. CART was developed by 
Breiman et al, 1984 [39]. It is a popular decision tree classifiers imple-
mented in several fields. It randomly chooses a split by applying “Gini in-
dexing” technique that effectively reduces noises at each node.  

Let the probability of class i at node j be p(i | j), then the calculated Gini 
index will be 1- Σi (p2(i | j). The generated tree is gradually trimmed up-
ward approaching reduced sequence of subtrees in order to grow a maxim-
al tree. Then a cross validation method is implemented in order to identify 
the subtree with lowest error rate of classification. Further the class is cho-
sen for each terminal node to minimize estimate of resubstitution for mis-
classification probability [2, 39]. 
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Random forests (RF) 
RF is also an example for ensemble method. It is collection of several un-
touched CART trees. In RF, predictions from several weak classifier trees 
of forest are averaged to result in a strong classifier to give most accurate 
prediction result [40]. Firstly, the training set for individual trees is pro-
duced by bootstrapping the original sample data [2]. Then bagging of each 
of the decision trees is done after training it over this bootstrapped sample 
dataset. Then RF selects few features to split at each node in order to grow 
tree [8]. It is more flexible than other machine learning classification ap-
proaches like SVM, etc. It has a few tunable parameters. 

Let for kth tree, a random vector Ɵk is generated. It is unaffected by pre-
vious random vectors with same distribution as Ɵk ……… Ɵk-1. Using the 
training dataset and Ɵk, a tree can be grown to construct a classifier h(x, 
Ɵk), where x is an input vector. In bagging step, random vector Ɵ is gener-
ated from counts obtained by N training set. 

Definition: A random forest is a ensemble classifier that consists of sev-
eral tree-structured classifiers {h(x, Ɵk), k = 1, . . .} where each  Ɵk inde-
pendent random vectors and each tree plays role in determining most ap-
propriate class at input x. RFs gives better result than boosting and 
adaptive bagging without altering the training set. They are accurate and 
reduce biases [40]. 

When several enough trees are generated from the procedure, then there 
is need to find most appropriate class for prediction [41]. RF involves 
bootstrap resampling process (also called bagging) which is partitioning of 
a random feature. Here, at each tree node a subset of features is selected 
for modeling prior to modeling as in Fig. 9 [42]. Since bootstrapping is a 
sampling process by iterative replacement from the training data, some se-
quences may be missed from the sample and some may be repeated in 
sample. The missed sequences will be out-of-bag (OOB) sample. Usually, 
forest is generated using approx. 2/3 of training sequences and 1/3 is 
missed as OOB. Since OOB sequences are not involved in forest construc-
tion, so can be used in predicting performance. The 2/3 of training se-
quences is used to construct forest. The average error of 1/3 of OOB train-
ing data points is calculated [8]. Thus bootstrap resampling process leads 
to simultaneous cross-validation with help of OOB making OOB error 
rates a key for performance measurement for random forest algorithm for 
prediction [42]. Values of each feature are then further exchanged among 
rest of the 2/3 training data and again the OOB error is calculated with the 
help of new trained. In order to meet curse of dimensionality, Random 
Forest approach was applied to rank importance of these features based on 
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some selected subset. Only top few features are then considered for further 
study [8]. 

By partitioning features, the modeling biases of dataset or feature can be 
effectively reduced. In this step, in order to generate a decision tree, a non-
parametric methods (CART) or parametric methods is applied to each of 
the randomly selected features. Hence, we get a collection of several deci-
sion trees as a result in form of Random Forest model with unbiased fea-
ture evaluation and greater classification capability [42]. 

  

   
Fig. 9 Flowchart of the core algorithm for random forest [42].  

Method: The Fig. 4 shows a flowchart of the random forest based feature 
selection classification method. The process outline is as follows:  A univariate filtering is performed over validated miRNA-Seq dataset 

using analysis of variance (ANOVA) or Student’s t-test in order to 
eliminate statically insignificant.  A bootstrapping method of Random Forest is performed on the filtered 
dataset to calculate the variable importance (VI) associated to each of 
the feature variables.  Permutation-based VI value is assigned to all the features. This VI 
value is actually the average difference between error rates calculated 
from all the RF trees involved.  VI values are used to rank all features in descending order. 
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 Then standard deviation (SD) for each of the feature along with their 

corresponding VI ranks is used in CART regression modeling to calcu-
late the minimum SD.   This SD is then used as threshold for the VI rank-based feature elimi-
nation step. The more relevant feature has larger variance in VI values.   The remaining features then undergo further bootstrapping (50 times) 
process SFS-like process starting from feature ranked at the top of the 
VI ranking.  Finally, the subset of features with mean OOB error rate less than the 
minimum OOB error rate and one standard deviation is considered to 
be the final result [42]. 

In case of identifying miRNA for a specific process, identification of 
maximum number of features is recommended since their regulatory res-
ponses are statistically correlated when establishing a RF feature selection 
procedure [43]. The recursive RF approaches shows maximum perfor-
mance for correlated features so suitable for handling gene expression da-
tasets [44]. It is also to be noted that evaluation of computational power 
and time requirement for this process is also necessary as we have already 
seen that Boruta though identified all the features but required large sam-
ple sizes and computational power [45]. 

Poisson linear discriminant analysis (PLDA) 
Witten (2011) proposed a classification method for RNA-Seq data called 
Poisson linear discriminant analysis (PLDA) [22] which assumes that 
RNA-Seq data follow Poisson distribution. When biological replicates of 
RNA-Seq data are not available, Poisson distribution is suitable for model-
ing purpose but when it is available, it is not recommended use Poisson 
distribution due to overdispersion issue where variance of data exceeds its 
mean [24]. Overdispersion highly affects the performance and accuracy of 
classification [46]. 

PLDA may be a good choice for count based classifier after power trans-
formation of data in all dispersion settings [47]. Recently, a few studies 
were performed to classify the sequencing data involving PLDA which 
concluded that PLDA classifier is somewhat similar to diagonal LDA and 
performs satisfactory over sequencing data [22, 48]. 
Comparison between these classification models: Zararsiz et al, 2014 [2] 
compared result of models with implementing classifiers single SVM, 
classification and regression trees (CART), Poisson linear discriminant 
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not suitable for overdispersed data and others were well for it. Perfo
mance of PLDA was better than RF and
more overdispersed, bagSVM tend to be the best classifier [2].
represents the performance of classification methods on overdispersed d
taset such as RNA-Seq data.
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The clustering methods 

erarchical clustering, density
and soft computing
working, as shown in 
 

  
Fig. 11 Taxonomy of unsupervised learning.

Partitional Clustering
This approach submits objects either of the k clusters formed. The k is a
tually a user defined parameter that optimizes the criteria of clustering. In 
this K means approach of clustering object is assigned iteratively to the 
nearest centroid of cluster until all objects get assigned. 

CLARANS [54]
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dataset. It developed two spatial data mining algorithms that can discover 
knowledge which was earlier difficult to find with existing spatial data 
mining algorithms by establishing relationships between spatial and no
spatial attributes [54]. 
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Hierarchical clustering 
This method is subdivided into agglomerative and divisive hierarchical 
clustering methods. In agglomerative clustering, individual object is consi-
dered a separate leaf node which is gradually clustered in bottom up ap-
proach of the tree iteratively to reach its root [1].In divisive approach, the 
large cluster (root) having all the objects (nodes) are iteratively redefined 
and split into daughter nodes in order to reach leaf node ultimately [53]. 

Its implementation is BIRCH (Balanced Iterative Reducing using Clus-
ter Hierarchies) for agglomerative [64], CURE for divisive [65]. 

Density-based clustering 
This method relies on measuring the density of node using neighborhood 
approach and then categorizing cluster by dense area boundaries by lower 
dense [55]. 

Its implementation is DBSCAN [66]. It is a density-based clustering 
method that starts from an initial object and includes objects from its 
neighborhood iteratively if they satisfy a user defined threshold to form a 
cluster. DENCLUE [67] uses kernel density function to find a local maxi-
mum so as to call it a cluster [1]. 

Graph theoretic clustering 
This method uses the basic properties and concepts of a typical graph 
theory. 

Its implementation is “Chameleon”. Chameleon [68] is a graph theoretic 
clustering method that uses k-nearest neighbor graph. Here, edges get de-
leted iteratively deleted if associated nodes are not included in the k-
nearest neighbor sets [1, 56]. 

Soft computing-based clustering 
This method makes use of fuzzy sets, neural networks and other soft com-
putation tools. One of its examples is fuzzy c-means. It is a crisp clustering 
method that allows an object to be associated with several cluster on a rule 
that sum of the membership feature of object to associated SOM consists 
of vectors with high dimensionality in a 2-D space. It iteratively allows ob-
jects to join dense region cluster [1, 57]. 
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4.3  Hybrid Method (Deep Learning) 

The increase in dimensionality of biological data is a great challenge to 
conventional analysis techniques like simple Supervised (Naïve Bayes, 
ANNs, Random Forests, etc.) and Unsupervised (Clustering, etc). Artifi-
cial neural networks (ANNs) is a powerful approach for learning complex 
patterns at multiple layers inspired from biological neurons responsive to 
brain processing. ANNs implement learning by involving some sorts of 
simpler base elements arranged in complex networks. However, their in-
ternal representations are difficult to be interpreted and training these 
deeply layered models has been algorithmically challenging and is statisti-
cally prone to overfitting [69]. Therefore, the modern machine learning 
methods like Deep Learning technique processes large datasets such as 
RNA-Seq data to find the hidden structures within them enabling more ac-
curate predictions [63]. Deep learning is actually a modified multilayered 
ANNs [69]. Deep learning is models higher level data abstractions using 
some model architectures composed of several non-linear transformations. 
Deep learning is an efficient learning method which involves deep archi-
tecture to perform some intellectual learning (Eg. learning the features). 
The deep architecture is the multilayer network with interconnected adja-
cent layered module.  

Depending on the learning nature of these layered modules, the existing 
deep learning algorithms can be classified into as follows (Fig. 12 and Fig. 
13):  Generative (e.g. deep auto-encoder, deep Boltzmann machine and 

deep Belief networks (DBNs)),  Discriminate (e.g. convolutional neural networks (CNNs) and deep 
stacking networks (DSNs))  Hybrid architectures (e.g. deep neural networks (DNNs)) [14] 

DNNs require stochastic gradient descent which makes simultaneous 
network parameter learning virtually impossible. Therefore, the deep 
stacking networks (DSNs) were introduced. The basic DSN architecture 
consists of several stacking modules which are individually a shallow mul-
tilayer perception. It uses convex optimization for learning the perceptron 
weights. ‘‘Stacking’’ is achieved by concatenating the output predictions 
of all previous modules, original input vector form new ‘‘input’’ vector in 
the new module. Deep learning architectures are convolutional CNNs, 
DBNs, DNNs and DSNs which have been successfully shown better re-
sults in computer vision, automatic speech recognition, natural language 
processing, and music/audio signal recognition, etc [14]. 
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Fig. 12 Deep learning classification. 
These approaches have also been applied to several computational bio
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Fig. 13 Four of the most popular classes of deep learning architectures in bi
logical data analysis. (A) Convolutional neural network (CNN): has several levels 
of convolutional and subsampling layers optionally followed by fully connected 
layers with deep architecture. (B) Stacked autoencoder: consists of multiple sparse 
autoencoders. (C) Deep belief network (DBN): trained layer
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vious layer’s weights and feeding the output to the next layer. (D) Restricted 
Boltzmann machine architecture: includes one visible layer and one layer of hid-
den units [7].  
Most popular approach to deal with high dimensional data such as RNA-
Seq data involves DNNs. DNNs are able to handle large datasets with high 
dimensionality, sparse, noisy data with nonlinear relationships such as in 
case of transcriptomics and other -omics data in biology. DNNs have high 
generalization advantages. Once trained on a dataset, it can be applied to 
other large datasets. Therefore, it can interpret heterogeneous multiplat-
form data efficiently such as Gene expression datasets reducing the issues 
like dimension reduction and selectivity/invariance [7]. 

Deep learning algorithms such as DNNs can be used in biological re-
search field like in annotation, biomarker development, drug development 
and discovery, transcriptomic data analysis, etc. A combination deep learn-
ing with shallow learning methods like supervised, unsupervised, and rein-
forcement learning can be applied to biomedical datasets such as RNA-Seq 
data to understand the biological mechanism for disease and help in devel-
oping personalized medicine.  

Fan & Zhang, 2015 developed lncRNA-MFDL [14] predictor to iden-
tify lncRNA by fusing several features (k-mer, the secondary structure and 
the most-like coding domain sequence) together and using deep learning 
classification algorithm [14]. In one deep learning application using five 
tissue-specific RNA-seq data sets, a DNN was developed using hidden va-
riables for features in both genomic sequences and tissue types and was 
shown to outperform Bayesian methods in predicting tissue splicing within 
individuals and across tissues, specifically the change of the percentage of 
transcripts with an exon spliced (PSI), a metric for splicing code [70]. Fea-
tures from gene expression were extracted with regions of noncoding tran-
scripts (miRNA) using DBNs and active learning. Here deep learning fea-
ture extractors were used to reduce the dimensionality of six cancer data 
sets and outperformed basic feature selection methods [71].  
 
Important considerations for implementing deep learning 
One of the challenges faced while implementing Deep learning in solving 
a problem is selecting the appropriate DNN type for the task. Few of the 
following consideration should be kept in mind while developing DNNs 
for a particular application. DNNs can be classified into following three 
major categories [7]. 
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Networks for Unsupervised learning: They ensure data correlation by iden-
tifying combined statistical distributions with some particular kind of asso-
ciated classes when available. Bayes rule can further be implemented to lat 
discriminative learning machine classification. 
Networks for Supervised learning: They provide maximum discriminative 
power in classification. They are trained only with labeled data where all 
outputs must be tagged. 
Hybrid or Semi-supervised networks: It is used to classify data using the 
outputs from generative (unsupervised) model. The data is used to train the 
network weights prior to supervision to speed up the learning process prior 
to the supervision stage.  

 Methodology for deep learning in context of computational biology 
Angermueller et al. (2016) gave a systematic method to implement deep 
learning method for biological dataset classification (Ex. RNA-Seq data). 
These steps are enlisted below [63]. 
 
Data Preparation 
The more informative features of training dataset usually result in better 
performance. Therefore effort should be spent on collecting, labeling, 
cleaning and normalizing data. Machine learning models need to be 
trained, selected and tested on independent data sets to avoid overfitting 
and assure that the model will generalize to unseen data. 

Dataset size: For a supervised learning setting sufficient labeled train-
ing samples should be available to fit complex models. The number of 
training samples should be higher to avoid overfitting though special archi-
tectures and model regularization are present to deal it training data are 
scarce. 

Partitioning data into training, validation and test sets: For DNNs im-
plementation initial task is to partition r dataset (e.g. RNA-Seq data) into 
training, validation and test sets. The training set is then subjected to learn-
ing process to learn models with different hyper-parameters. Then they are 
assessed validation set. The model with best performance (prediction accu-
racy) is selected and further evaluated on the test set to quantify the per-
formance on raw data or for comparing to other methods. If the data set is 
small in size, k-fold cross-validation or bootstrapping can be used for 
evaluation. 

Normalization of raw data: When the features of RNA-Seq data are 
skewed (biased) due to some batch effects, log transformation or similar 
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normalization methods can be adopted to accelerate the training and identi-
fication phase in “Classification” process. 

 
Model Building 
Choice of model architecture: The default architecture is a feedforward 
neural network with several fully connected hidden layers. The convolu-
tional architectures are suitable for multi and high-dimensional data. Re-
current neural networks can capture long-range dependencies in sequential 
data of varying lengths, such as text, protein or DNA sequences. 

Determining the number of neurons in a network: The optimal number 
of hidden layers and hidden units is problem dependent and should be op-
timized on a validation set without overfitting the data. Higher the number 
of hidden layers and unit, higher is the number of representable functions. 

 
Model Training 
It is performed to detect the parameters that would minimize the objective 
function which measures the fit between predictions from the paramete-
rized model and actual observation. Stochastic models are used to train the 
deep models. 

Some of the central parameters for ANNs are learning rate, batch size, 
momentum rate, weight initialization, per-parameter adaptive learning 
rate methods, batch normalization, learning rate decay, activation func-
tion, dropout rate. 

Parameter initialization: Usually model parameters are anlysed ran-
domly. These can be sampled independently from normal distribution of 
small variances or variance scaled inversely by hidden units in input layer.  

Analysis of the learning curve: This is done in order to validate the 
learning process done earlier. If the curve decreases slowly, learning rate is 
small and needs to be increased. If curve decreases steeply, learning rate 
may be high. High learning rate leads to fluctuating learning curves.  

Training and validation performance monitoring: Along with monitor-
ing the loss in training it is also necessary to monitor target performance 
like accuracy of training and validation sets. Low validation performance 
compared to training performance signifies overfitting of data. Overfitting 
results from too complex model relative to the size of training set. Thus by 
decreasing the model complexity (decreasing number of hidden layers and 
units) or by data augmentation (i.e. increasing size of training dataset), 
overfitting can be avoided. 
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The basic learning algorithm for Deep Stacking Network  
The general algorithm of Deep Stacking Network (DSN) consists of the 
weight parameter called input network weight matrices W and the output 
network weight matrices U in each module is learnt from training dataset 
with the help of basic tuning algorithm and learning algorithm.  

Let there be training vectors  X = [x1,. . .,xi,. . .,xN] and some target vec-
tors  T = [ti,. . .,ti,. . .tN] for total N number of training samples. The output 
of this DSN learning module will be yi = U T hi; where hi = σ(W T xi) is 
hidden layer output and σ (.) represents the sigmoid function. The loss 
function error of the mean square error is utilized to learn the output 
weight matrices assuming that the lower layer weight matrix w is already 
given. This is achieved by minimizing the average of total square error E = 
||Y-T||2 = Tr[(Y-T)(Y-T)T] to learn the parameter.  If w is fixed, the hid-
den layer values H can be calculated and thus the upper layer weight ma-
trix U in each module can be determined by calculating the gradient  

 
ப୉
ப୙ = 2H(U୘H − T)୘  

to 0. This result in equation, 
U =  (HH୘)ିଵ HT୘ 

It is to be noted that in DNS module, all the weight matrices w should be 
set empirically. This can be done either by using various distributions for 
generating random numerals to set w; or by training Restricted Botzmann 
Machine (RBM) separately using contrastive divergence, then this trained 
RBM set w. The weight matrix w of DSN in each module can be further 
learnt by applying gradient descent as, 

∂E
∂W = 2 × [H୘Ο (1 − H)୘ Ο [Hற(HTற)(THற) − T୘ (THற)] ] 

 
w(୨ାଵ)  = w(୨) +  ƞ × ப୉(ౠ)

ப୛(ౠ)  
 where,  Hற =  H୘(HH୘)ିଵ 
The symbol O represents the element-wise matrix multiplication, and ƞ 

is the learning rate of updating the weight matrices w [14]. 
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5 Tools and pipelines implementing machine learning approaches for RNA transcript identification and 

classification 
Over the years, several tools and pipelines have been developed to find so-
lution for bioinformatical problem. Tools developed prior to Big Data era 
were usually standalone. During last decade several data analysis tools and 
pipelines have been developed for identification and classification of RNA 
transcripts, coexpressed genes analysis of gene-gene network, etc. 

5.1 miRNA-dis 
It is used for identification of microRNA precursor. miRNA-dis uses SVM 
in order to predict structure order information. On the basis of distance 
pair, the feature vector can be constructed. It employed SVM. The SVM 
analyses the data and recognizes pattern for classification and regression 
analysis. SVM training algorithm builds a classifier model that assigns 
new test sample either of the categories. Hence it is a non-probabilistic bi-
nary linear classifier. In miRNA-dis LIBSVM algorithm [58] was em-
ployed which is based on SVM [38]. 

5.2 iSeeRNAs 
It uses SVM model to detect lncRNAs by implementing several features 

[12]. iSeeRNA uses SVM model to identify the lincRNAs by using several 
features such as  conservation, ORF, di- and tri-nucleotide sequence fre-
quencies [14]. 

5.3 PredcircRNA 
It is a machine learning approach which identifies circularRNA from 
lncRNAs by implementing multiple kernel learning. Firstly, different dis-
criminative features like graph features, sequence compositions, etc are ex-
tracted. Then fusing these feature using multiple kernel learning. This 
analysis was based on Random Forest method [8]. 
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5.4 MiPred 
It is based on Random Forest prediction model. It differentiates real pre-
miRNAs from pseudopre-miRNAs by involving a hybrid feature system 
with participating features such as structure-sequence composition, mini-
mum free energy (MFE) of secondary structure and P-value of randomiza-
tion. RF method implemented here showed 10% higher accuracy than 
triple SVM classifier because of ensemble of features [41]. 

5.5 rxDTree 
It is used to estimate a fast and distributable decision tree on big data. It is 
implemented in classification and regression problems. It builds a decision 
tree in Breadth-first manner by constructing histogram for generating dis-
tribution functions of data [59]. 

5.6 CAMUR models 
The Classifier with Alternative and MUltiple Rule-based (CAMUR) model 
includes some knowledge databases and a query tool. It extracts out sever-
al similar classification models. For this, it first computes classification 
model based on single rule, and then it calculates the power set of genes in 
rules. Then it removes these combinations from data iteratively if stopping 
criteria is not satisfied. Then again performs classification process until 
stopping criteria is verified [60]. 

5.7 QUBIC algorithm 
The QUalitative BIClustering (QUBIC) algorithm uses qualitative or semi 
quantitative methods of gene expression data along with optimizing tech-
nique to solve biclustering problems within a short time period. It can effi-
ciently recognize statistically significant biclusters [61]. 

6 Discussion and future challenges 
Various computational tools have been developed for studying pathogen or 
virus from RNA Seq data by classifying them according to the attributes in 
several pre-defined classes, but still statistical tools and approaches to ana-
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lyze complex datasets are still lacking. Moreover there is no ‘one fit to all’ 
technique for classification and analysis of RNA-Seq data therefore it’s a 
challenging task. Few of the challenges in RNA-Seq data classification in 
these contexts is enumerated as follows: 
Imbalanced data problem: The imbalanced data occurs in medical diagno-
sis along with other practical fields like banking, oil exploration, informa-
tion retrieval, text classification, etc. This problem of imbalance is largely 
seen in miRNA-Seq data. It consists of both positive and negative example 
set. Only positive examples are required for validation in a biological ex-
periment. Overrepresentation of these negative examples is very common. 
These can be filtered out but is not a solution for this overrepresentation 
and imbalance problem. Traditional machine learning methods of classifi-
cation gives inferior performance for it. Therefore, it is highly recom-
mended to develop efficient machine learning algorithms for classification 
of unbalanced data positive and negative resources in bioinformatics [4]. 
Performance affected due to high density data generated: The real time 
analytics of RNA-Seq data had become harder to be processed due to 
speedy data generation. This is attributed to next generation and third gen-
eration sequencing techniques. Though batch mode of processing is ap-
plied to this high density data using distributed and parallel computing but 
still analytic performance get affected due to this big data [1]. Moreover 
bioinformatical data is massive and holds dimensionality problem while 
the number of instances is geographically distributed worldwide. 
Heterogeneous nature of data: The bioinformatical data generated today 
specially RNA-Seq data are heterogeneous in nature with several features 
sources summed in a single test sample. The traditional databases those are 
inferred for processing are based on a definite schema are unable to handle 
this heterogeneous data [1]. Since bioinformatical data are relatively het-
erogeneous in nature, they require several heterogeneous and independent 
databases for analytics and validation [62]. 
Data is not in a uniform format: Since the big data from RNA-Seq is ob-
tained from different sources and are widely heterogeneous in nature, they 
are obtained in different format. This increases the complexity of data 
analysis process. Therefore, more intelligent machine learning algorithms 
are required to classify this discrete formatted data [1]. Bioinformatical 
data are usually generated by many several independent organizations 
worldwide so there are high chances that same types of data may be repre-
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sented in different forms at source. This results in need of highly sensitive 
analytics approach [62]. 
Challenges posed in training deep learning models: Training deep learning 
models poses far greater challenges than training shallow models, both for 
defining model parameters and model structures. Deep learning models are 
still not optimized, lack an adequate formulation, require more research, 
and rely heavily on computational experimentation.  
Deep learning is not suitable for sparse dataset: There is no single method 
which can be applicable to all sorts of problems. The choice of deep learn-
ing approach and usage totally depends on nature of problem dataset. Con-
ventional analysis approach is no doubt still advantageous when dataset is 
sparse and need to be just statistically considered. This is still not suitable 
in deep learning. 
The “Black Box”: They learn by simple association and co-occurrence and 
have limited sources from which could interpret internal representations.  
The high dimensional biological data is not easily interpretable and needs 
additional quality control and pre-processing. Thus, DNNs lack transpar-
ency and interpretability concerning to structural relationships common in 
biology without human input. 
Need for large data sets to avoid overfitting: It is not suitable for sparse 
dataset and require large training dataset which might not be always avail-
able specially the RNA-Seq data. When data sets is not sufficiently large, 
problem of overfitting can be encountered where training error is low and 
test error is high which deteriorates the generalization property of model 
and reduces the predictive performance of model. Overfitting can be regu-
larized but still unbiased and noisy biological dataset such as RNA-Seq 
data may face overfitting. 
The computation costs: Finally, while shallow learning require few compu-
tational resources, but deep learning are usually computationally intensive 
and time-consuming and often requires access to and programming knowl-
edge for graphics processing units (GPU) [7] and multi-processing distrib-
uted architecture over cloud. 
These mentioned challenges paves the path for research in developing 
more efficient tools and technologies for Big RNA-Seq data analytics in 
field of bioinformatics. 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted March 26, 2017. ; https://doi.org/10.1101/120592doi: bioRxiv preprint 

https://doi.org/10.1101/120592


32      Machine Learning-based state-of-the-art methods for the classification of RNA-Seq data 
7 Conclusion 
The transcriptomic analysis involves quantifying variation in various types 
of transcripts like mRNA), long, lncRNA), miRNA), etc. to gather wide 
range of information from data such as biomarkers for disease, etc. The 
Gene Expression data can be represented in form of Gene Expression Ma-
trices which holds the quantitative value of expression. These obtained 
data faces curse of dimensionality problem signal-to-noise in the dataset. 
Thus, statistical analysis for the dataset becomes difficult. This high di-
mensional data can be handled either by dimensionality reduction through 
feature extraction methods (SVM or Random Forest algorithms) or by 
pathway analysis; or by using such methods which are less sensitive to 
high-dimensional data such as Random Forest or deep belief networks. 
One can use either deep learning or shallow learning for classification of 
dataset, depending upon the type of raw data. Shallow learning such as 
SVMs, ensemble methods like bagSVM, Random forest is used suitable 
for sparse dataset but not the deep learning as it may encounter overfitting 
problem. But deep learnt networks can effectively discover high level fea-
tures thus improving the performance over traditional shallow learning 
models, thus they can benefit researcher with additional information about 
biological datasets such as RNA-Seq data. 

We can conclude that deep learning is a better choice for classification 
of large RNA-Seq data for biomedical investigations. But due to unavaila-
bility of large enough dataset, this approach may encounter overfitting 
problem. Moreover, this approach is still costly. Thus, there is need of de-
velopment of further classification models which could successfully over-
come the pitfalls of deep learning as well as shallow learning without loss 
of any important feature from dataset. 
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