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Abstract 

microRNAs are short RNAs that serve as master regulators of gene expression and are essential 

components of normal development as well as modulators of disease. MicroRNAs generally act 

cell autonomously and thus their localization to specific cell types is needed to guide our 

understanding of microRNA activity. Current tissue-level data has caused considerable 

confusion and comprehensive cell-level data does not yet exist. Here we establish the landscape 

of human cell-specific microRNA expression. This project evaluated 8 billion small RNA-seq 

reads from 46 primary cell types, 42 cancer or immortalized cell lines, and 26 tissues.  It 

identified both specific and ubiquitous patterns of expression that strongly correlate with 

adjacent super-enhancer activity. Analysis of unaligned RNA reads uncovered 207 unknown 

minor strand (passenger) microRNAs of known microRNA loci and 2,632 novel putative 

microRNA loci.  Although cancer cell lines generally recapitulated the expression patterns of 

matched primary cells, their isomiR sequence families exhibited increased disorder suggesting 

Drosha and Dicer-dependent microRNA processing variability. Cell-specific patterns of 

microRNA expression were used to deconvolute variable cellular composition of adipose tissue 

samples highlighting one use of this cell-specific microRNA expression data. Characterization of 

cellular microRNA expression across a wide variety of cell types provides a new understanding 

of this critical regulatory RNA species.  
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Introduction 

MicroRNAs are an established class of small regulatory RNAs that, within the RISC 

complex, bind mRNAs and repress protein production (Valencia-Sanchez et al. 2006). In this 

role, they control essential cell processes in health and disease (Ambros 2004; Mendell and 

Olson 2012). Despite all that is known about microRNA processing and function, the cellular 

localization of microRNAs is still widely underappreciated. An understanding of which cells 

express which microRNAs is useful as we move towards microRNA therapeutics (Janssen et al. 

2013) and microRNA biomarkers (Mitchell et al. 2008). Knowing a microRNA’s full 

localization pattern will maximize efficacy and minimize off-target effects of therapeutics and 

will better rationalize candidate biomarkers (Haider et al. 2014).  

MicroRNA expression has been predominately characterized in tissues, with no 

comprehensive cellular studies. Initial tissue studies sequenced individual clones or used array 

methods providing low-depth coverage of abundant microRNAs (Lagos-Quintana et al. 2002; 

Barad et al. 2004; Liu et al. 2004; Baskerville and Bartel 2005). The most thorough of these 

microRNA localization projects performed small RNA library sequencing (RNA-seq) on over 

250 libraries from 26 organ systems. But this nascent effort sequenced only ~1,200 reads per 

library (Landgraf et al. 2007).  While providing valuable insights into the relationship of 

microRNA expression and disease (Lu et al. 2005), these and subsequent studies (Cheng et al. 

2015; Ludwig et al. 2016) have not unraveled cellular microRNA expression. Because all tissues 

are composed of multiple, unique cell types, it is essential to understand from which cell the 

microRNA signal is obtained. Additionally, the anonymity of microRNA nomenclature, with 

sequential numerical naming has not allowed an intrinsic understanding of what microRNAs are 

ubiquitous and which have cell-restricted patterns of expression (Witwer and Halushka 2016). 

This determination is fundamental to understanding the proper biologic and regulatory roles of 

microRNAs.   

 Small RNA-seq has become a robust method to fully characterize known microRNA, 

capture complete isomiR families, and identify novel microRNAs. IsomiRs are related sequences 

with mostly 5’ and 3’ nucleotide modifications that collectively make up the totality of a given 

microRNA (Neilsen et al. 2012).  The microRNA community has been forthright in depositing 

RNA-seq data into central public repositories. As a result, there is a significant amount of data 
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that can be collectively analyzed. We combined new sequencing of 39 primary cell lines or 

isolated cells with hundreds of publicly available primary cell and immortalized/cancer cell line 

datasets, with all microRNA assignment performed by a single robust and high-throughput 

microRNA alignment method (Baras et al. 2015) to establish the most complete characterization 

of the human cellular microRNAome including novel microRNA discovery and isomiR 

diversity.  We additionally analyzed whole tissue microRNA data to understand the extent to 

which cells obtained from ex vivo cultures could recapitulate a tissue signal and compared 

matched primary and cancer/immortalized cells to determine the extent of similarity in their 

expression patterns. 

Results 

Generation of a cellular microRNAome 

 Towards cataloguing a high-quality complete cellular microRNAome, we generated new 

small RNA-seq data from 39 primary cells obtained by culture, flow cytometry or centrifugation. 

We augmented this with Sequence Read Archive (SRA) small RNA-seq read data from 496 

samples with > 1 million microRNA reads. These were primary cell cultures, 

immortalized/cancer cell lines or normal tissues (Fig. 1). All samples were processed through 

miRge (Baras et al. 2015). miRge uses modified microRNA libraries and multiple Bowtie steps 

for optimal alignments on multiplexed runs. (Fig. 2A, Table 1).  Overall, 2,319 of 2,546 known 

microRNAs (miRBase v21) had a minimum expression of 1 read per million microRNA reads 

(RPM) in at least one sample (Supplemental Table S1).  
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Figure 1.  A generalized overview of the 530 cells and tissues included in this study. (A) 

Representation of 46 main cell types (B) Representation of 42 cancer or immortalized cell lines 

(C) Representation of 26 tissues/organ types. 

 

 

 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 24, 2017. ; https://doi.org/10.1101/120394doi: bioRxiv preprint 

https://doi.org/10.1101/120394
http://creativecommons.org/licenses/by-nc/4.0/


6 

 

 

Figure 2. Method and primary analysis of the cellular distribution of microRNAs. (A) 694 total 

samples were processed through miRge yielding 530 samples available for analysis and novel 

microRNA detection through miRDeep2. (B) t-SNE distribution of 161 primary cells showing 4 

main clusters (hematologic, epithelial, mesenchymal and neural/stem cell) and subclustering by 

cell type. Cell types are color-coded and round symbols indicate epithelial cells. * indicates an 
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intestinal epithelial cell that was either contaminated or underwent mesenchymal transformation. 

(C) A selection of microRNAs that have unique expression to certain primary cell types. * 

indicates specificity for flow-sorted colonic epithelial (likely goblet) cells. (D) Across 334 

microRNAs with >1,000 RPM, both strands of a hairpin microRNA give rise to the dominant 

microRNA in fairly equal measures. (E) The presence of nearby super-enhancers strongly 

correlates with high microRNA expression. (F) The individual cellular microRNA patterns can 

be used to deconvolute the cellular composition of tissue. (G) A representative hematoxylin & 

eosin (H&E) section of adipose with significant red blood cells (lower part of the panel) as an 

example of heterogenous elements that can contribute microRNA expression (10x original 

magnification). (H) A H&E representative section of adipose with a small cluster of lymphocytes 

(lower part of the panel) that may be randomly sampled modulating the tissue signal (10x 

original magnification). 

Table 1. Overall Sequencing Data 

 
 

Primary Cell 
Cancer/ 

Immortalized 
Tissue Total 

RNA-seq Runs 161 100 269 530 

Unique Classes 46 42 26 114 

Total Reads 2,329,481,747 1,741,232,555 3,976,537,372 8,047,251,674 

Total microRNA 
Reads 

1,273,974,684 843,209,452 2,367,360,331 4,420,393,245 

Average 
microRNAs/Run 

705 809 693 719 

microRNAs 
identified 

2,094 2,123 2,171 2,319* 

All other RNAs 411,017,393 300,011,463 664,726,863 1,375,755,719 

Total Residual 
Reads 

543,983,463 330,245,320 515,559,855 1,389,788,638 

 
 

*out of 2,546 known microRNAs (miRBase v21), minimum RPM =1 
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The 161 primary cell RNA-seq data sets encompassed 46 main cell types, many from 

multiple anatomic locations (Fig. 1A, Supplemental Table S2). There were 100 cancer cell or 

immortalized cell line RNA-seq data sets from 42 separate cell lines (19 general cancer types) 

(Fig. 1B, Supplemental Table S3). The 269 small RNA-seq data sets from 26 normal 

tissues/organs aided in the normalization methods employed due to organ coverage from 

multiple separate studies (Fig. 1C, Supplemental Table S4). As much of this primary data was 

derived from different laboratories using different protocols, significant attention was given to 

potential confounding and batch-effects. 

We utilized the DEXUS algorithm (Klambauer et al. 2013), to identify discrete 

expression states for each microRNA.  The resulting cell-type specific patterns of discretized 

microRNA expression across the 161 primary cell types (Supplemental Fig. S1) are inherently 

robust to batch effects. This method clustered cell types into hematologic, neural/embryonic stem 

cell (ESC), epithelial and mesenchymal groups, identifying general patterns of microRNA 

expression. T-distributed Stochastic Neighbor Embedding (t-SNE) clustering was then compared 

between uncorrected primary cell RPM data and primary cell data that underwent Remove 

Unwanted Variation (RUV) normalization for 5 variables using the most abundant microRNAs 

(Risso et al. 2014). The use of RUV improved clustering of similar cell types from different 

experiments (Supplemental Fig. S2). 

t-SNE was then performed separately for primary cells, cancer/immortalized cells and 

tissues using RUV normalization (Fig. 2B, Supplemental Fig. S3).  Akin to the DEXUS results, 

amongst primary cell types, microRNA expression patterns generated four major groups: 

hematologic, mesenchymal, neural/ESC and epithelial.  Strong clustering by biological group 

was observed for all samples, overcoming most technical concerns. 

Diverse microRNAs expression patterns.   

We assessed common, potentially functional microRNAs (Mullokandov et al. 2012) by 

their frequency of expression across the different normal cell classes (Supplemental Table S5). 

There were 320 microRNAs that had an RPM ≥ 1,000 in any of the 46 normal cell types. Of 

these, 94 (29%) were present in only a single class of cells (Fig. 2C). Most of these are well-

known associations (ex. miR-144-3p and red blood cells or miR-1-3p with skeletal myocytes) 
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that highlight the non-ubiquitous nature of microRNA expression (Haider et al. 2014).  Six 

microRNAs were present in all 46 cell types at this RPM threshold (miR-107, miR-103a-3p, 

miR-103b, miR-191-5p, miR-21-5p, and miR-92a-3p) and an additional 9 microRNAs were 

present in all cells at a lower threshold of 100 RPM: miR-16-5p, miR-25-3p, miR-26a-5p, miR-

26b-5p, miR-30d-5p, miR-101-3p, miR-128-3p, miR-140-3p, and miR-181a-5p (Supplemental 

Table S6). Among tissues containing a mixture of cell types, 377 microRNAs were present at an 

RPM ≥ 1,000. Seven of these microRNAs (let-7a-5p, let-7c-5p, let-7b-5p, let-7f-5p, let-7g-5p, 

miR-26a-5p, miR-30d-5p) were found in all tissues. Some well-known cell-specific microRNAs 

appear to be ubiquitous amongst tissue, but merely reflect the presence of a certain cell type 

across tissues. miR-451a was abundantly present in 20 of 26 tissues but is from only one cell 

class (red blood cells). Likewise, miR-126-3p, abundant only in endothelial cells, was present in 

21 tissues and miR-150-5p, abundant in lymphocytes, was present in 11 tissues. We then 

determined microRNA abundance from the 5p or 3p arm and found the guide/“driver” (more 

abundant, thermodynamically-stable) microRNA to be equally from either arm of the hairpin 

microRNA suggesting no strand bias in microRNA selection (Fig. 2D). 

Super-enhancers are dense genomic regions of transcription factor binding sites that have 

a multiplicative effect on increasing adjacent gene expression (Whyte et al. 2013).  We examined 

the association between microRNA expression levels and the presence of a super-enhancer 

within 40kb of the microRNA loci in 11 primary cells and cancer cell lines, for which we had 

matching data.  MicroRNA expression in the presence of a super-enhancer was significantly 

increased compared to microRNA expression at sites not adjacent to a super-enhancer (Wilcoxon 

rank sum test p<2.2-16). This association was observed with and without batch effect adjustment 

and was generally consistent across samples. Importantly, cell-type restricted microRNAs 

showed active super-enhancer activity matching those specific cells (Fig. 2E). These data further 

support the cell-type restricted microRNAs seen above and indicate that analyses of global tissue 

microRNA expression require an understanding of the source of each microRNA of interest, lest 

misinterpretations of the data result in spurious disease associations (Kent et al. 2014).   

Taking advantage of cell-specific microRNAs, we determined the feasibility of using 

cellular microRNA expression data to deconvolute an overall tissue signal to discern the 

individual components.  We investigated 15 white adipose samples from participants in the 
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METSIM study (Civelek et al. 2013). We used CIBERSORT (Newman et al. 2015) to determine 

the composition of each tissue based on grouped microRNA signatures for mesenchymal cells, 

endothelial cells, blood, B/T lymphocytes and dendritic cells (Fig. 2F).  Surprisingly, the red 

blood cell component (blood) was a major and variable (18-56%) part of each tissue suggesting 

inconsistent and inadequate sample washing prior to RNA isolation (Fig. 2G). Lymphocytes 

were also variable (0-5%) between samples (Fig. 2H), while endothelial cells were generally 

more consistent (4-9%).  Altogether, these data demonstrate the importance and feasibility of 

solving for the cellular content of tissues to better understand the composition of the analyzed 

tissue. 

Variable expression in cancer cell lines 

 Immortalized and cancer-derived cell lines are frequent surrogates for primary cells in 

understanding biologic pathways. However, the extent of differences in microRNA expression 

between these cell lines and primary cells is unknown. We analyzed fibroblasts and T 

lymphocytes, the only two cell types in which there exists sufficient numbers of primary and 

immortalized/cancer cell types to determine the extent of their microRNA similarities. An 

analysis of 12 primary and 3 immortalized fibroblast cell line microRNA signatures identified 

overall strong correlation (RUV corrected, log2 normalized, pairwise R >0.80-0.99) with the 

immortalized lines being slightly less correlated (Supplemental Fig. S4A).  A global comparison 

of microRNA differences identified only miR-1304-3p to be significantly different among 

fibroblasts (Supplemental Fig. S4B). Eight primary T lymphocyte samples and 14 T lymphocyte 

malignancy samples also revealed moderate to strong correlation, but with separate primary and 

cancer-derived cell clustering (Supplemental Fig. S4C).  There were more microRNAs that 

differed between primary and cancer-derived cells (Supplemental Fig. S4D) including miR-150-

5p which was 6 log2-fold higher in the primary T cells, as has been reported (He et al. 2014).  

miR-9-3p, 6 log2-fold higher in the cancer-derived cells, has been previously reported as 

elevated in Hodgkins lymphoma (Leucci et al. 2012) but not in these three cell types.  Other 

markedly different, well-studied, microRNAs include miR-363-3p, miR-146a-5p and miR-146b-

5p and miR-486-3p.  We also ascertained how consistent the microRNA expression pattern of 

cancer cell lines would be after years of divergent growth in separate laboratories. A comparison 

of HeLa cells obtained from 5 sources had a range of expression correlation between 0.35-0.75, 
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while fibroblasts from 3 separate batches, but obtained from different organ systems, had a 

correlation between 0.75-0.9 (Supplemental Fig. S5). These analyses suggest some key 

differences between immortalized/cancer cell lines and primary cells and highlight NIH concerns 

about the rigor and reproducibility of widely used cancer cell lines. 

Novel human microRNAs 

We investigated 1.2 billion reads, unmapped by miRge, from 474 samples for putative novel 

microRNAs in miRDeep2 (Friedlander et al. 2012).  miRDeep2 identified, and we assigned 

names (JHU_ID_xxx), to 25,218 putative “driver” (thermodynamically stable) and “passenger” 

(thermodynamically unstable and degraded) microRNAs from 21,338 loci with the majority 

(18,480/65%) being from individual samples and frequently (5,662/22%) identified from only a 

single read (Supplemental Table S7A). A small percent (394, 0.7%) were identified in more than 

50 samples and 207 were the unassigned “passenger” 5p or 3p microRNA from a known 

microRNA locus (Fig. 1D, Supplemental Table S8). Because most of the rare novel microRNAs 

likely represent false positives and/or nonfunctional transcripts,(Mullokandov et al. 2012) we 

selected only the 2,724 loci containing 4,064 mature microRNAs that had ≥50 combined 

dominant microRNA reads and to consider further (Supplemental Table S9).  

Of these 2,724 microRNA loci, 2,632 were completely novel loci and 92 were either the 

“passenger” strand of known human microRNAs (n= 77) or orthologous (n = 15; Supplemental 

Table S10) to a different species’ microRNA (primarily primate). We checked the distribution of 

z-scores for these (and a subset of 21,338 loci) using novoMiRank and found that, the z-scores 

were right shifted, indicating less similarity to known microRNAs based on 24 features of 

comparison (Supplemental Fig. S7B,C)  (Backes et al. 2016). For these 2,632 putative novel 

microRNAs, 1,347 (51%) were located within a gene locus and 159 of these microRNAs were 

also adjacent to a known microRNA. These 2,724 putative microRNA loci were compared to 

3,707 novel microRNAs recently reported (Londin et al. 2015) and 21,908 putative novel 

microRNAs obtained from 105 Argonaute Clip-seq data sets (Ago) run through miRDeep2 and 

were found to frequently match these two data sets (667/24% to the Londin microRNAs; 

1,489/55% of the Ago microRNAs) with 561 microRNAs shared between all three groups (Fig. 

3A). We also investigated if these putative novel microRNAs overlapped repeat elements based 

on the RepeatMasker track of the UCSC Genome browser and indeed 900 (33%) did.  Although 
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this would suggest they were less likely to be true microRNAs, 46% and 20% of these putative 

novel microRNAs were also detected in the Ago and Londin data sets. As well, removing these 

900 putative novel microRNAs did not change the average NovoMiRank z-score (1.03 vs 1.03).  

The median number of reads per “driver” microRNA in this limited sample was 166 (range 50 - 

2,662,374). 
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Figure 3. Interesting novel human microRNAs still need to be characterized. (A) A Venn 

Diagram shows the overlap between putative microRNAs from this publication (JHU) and novel 

microRNAs reported in Londin et al (TJU). Numbers in parentheses represent microRNAs that 

also overlapped Ago-bound putative microRNAs. (B) 8 representative microRNAs that share the 

GAGGUA motif.  While the let-7 family is ubiquitously expressed, miR-202-3p and 

JHU_ID_04084 are highly expressed in testis. (C) 9 novel microRNAs were amplified that were 

predicted to be either cell-specific or ubiquitous. Most of these were lowly expressed. miR-21-5p 

was used as a control. (D) The predicted hairpin structure of novel microRNA JHU_ID_23828 is 
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shown. (E) JHU_ID_23828 is located in the EGFL7 gene locus and shares a pre-miRNA with 

miR-126, an endothelial cell-enriched microRNA. (F) From the same sequencing batch, the 

average number of reads for JHU_ID_23828 among 4 endothelial cell types was 3,673 and 8 

among 29 non-endothelial cell types. (*p=0.001, Mann-Whitney U test) (G) JHU_ID_23823 is 

present among primate species but is absent in lower mammals including mus musculus. 

 

Total reads per microRNA did not correlate with the number of samples within which the 

microRNA was detected (R2<0.01) (Supplemental Fig. S6). The median number of samples 

sharing a given microRNA loci was 11 (range 1 – 376) (Supplemental Fig. S7). We then 

investigated similarities by seed regions (bases 2-7 of a microRNA). There were 2,003 novel 

microRNAs that shared 803 seed regions with known microRNAs. This included 5 novel 

microRNAs with a “GAGGUA” seed that matched the common seed of 12 let-7 members and 2 

novel microRNAs that shared the common “AAGUGC” seed of 15 members of the miR-

302/miR-519/miR-520 family (Fig. 3B, Supplemental Table S11). This indicates the potential for 

more shared regulatory control of genes often in a more cell-specific manner. The other 1,694 

novel microRNAs shared 893 seeds, not present on any human microRNAs reported in miRBase 

(v21). 

We then validated 9 novel microRNAs from 6 different cell types or tissue by PCR (Fig. 

3C). As an example of potentially interesting novel microRNAs, JHU_ID_23828-3p was 

validated by PCR and is located in intron 8 of the EGFL7 gene, approximately 900 bp from miR-

126, and within the same pri-miRNA transcript (Chang et al. 2015) (Fig. 3D,E). Unsurprisingly, 

due to the specific high abundance of miR-126 in endothelial cells, JHU_ID_23828-3p was also 

significantly more abundant in four endothelial cell lines (avg. 3,673 reads) than 30 other cell 

types (avg. 8 reads; p=0.001, Mann-Whitney U test, Fig. 3F). Additionally, while miR-126 is 

highly conserved throughout chordates, JHU_ID_23828 is only conserved among primates (Fig. 

3G). 

Wide variation in the distribution of isomiRs 

Due to the inexact cutting of Dicer and Drosha and nucleotide additions/modifications, a 

collection of mostly similar sequences (with most diversity on the 3’ end) make up the isomiR 
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family of a microRNA (Morin et al. 2008; Neilsen et al. 2012). IsomiR families can be 

comprised of hundreds of different sequences, but most sequences that constitute an isomiR 

family are templated length variants of the canonical (consensus) sequence and additional 

nucleotides added to the 3’ end. We evaluated the isomiR distributions of 126 primary cell and 

82 cancer/immortalized cell samples.  

We evaluated both 3’ length variants ±4 bases from the reported canonical sequence 

(miRBase v21) and variations in the 5’ nucleotide starting location, which would affect the 

predicted seed sequence of the microRNA (Fig. 4A, Supplemental Table S12). The most 

abundant isomiR was widely variable between cells and often incongruent with the expected  

Figure 4. IsomiRs are a challenge to characterizing microRNA levels. (A) Among primary cells, 
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the most abundant (dominant) sequence for many microRNAs differs in length from the 

canonical “C” miRBase.org v21 sequence by up to 4 bases (C-4 to C+4). Between cell types, 

length diversity is also present as evidenced by microRNAs that are not entirely of one length. 

Eighteen representative microRNAs from 556 in total. (B) The general features of microRNA 

length among cancer/immortalized cells are similar, but the microRNA processing in these cells 

skews towards randomness. See also Supplemental Figure 10. (C) miR-150-5p, a lymphocyte-

specific microRNA, shows a diversity of non-templated nucleotide addition at the +1 site on the 

3’ end. Cytosine is the templated (genomic) nucleotide at this position and is not shown. (D) 

miR-151a-3p, a ubiquitous microRNA, has extreme variation in the first non-templated 

nucleotide addition.  Cytosine is again the templated nucleotide at this position. 

sequence. In primary cells, 556 microRNAs had reads sufficient for analysis.  A comparison of 

reads, all with the same 5’ starting location, revealed the most abundant isomiR to always be the 

canonical sequence for only 182 (33%) microRNAs. There were 204 (37%) microRNAs in 

which the miRBase v21 canonical sequence was never the most abundant sequence (Fig. 4A). 

This includes miR-10a-5p in which a 1 bp shorter sequence was the dominant species in 111 of 

112 samples and miR-140-3p in which the dominant species was 2 bp longer in 91 of 113 

samples (Supplemental Table S12).  

Across the primary cells, 84 microRNAs also had more abundant reads for template 

sequences that started proximal or distal to the canonical 5’ starting position (Supplemental 

Table S13), which is distinct from the 3’ changes reported in Fig 4A. This included miR-199b-3p 

(+1 shift), miR-181c-3p (+1 shift) and miR-302a-5p (+3 shift), all of which had highly abundant 

reads containing a completely different seed sequence than the one currently assigned with 

strong implications for the targeting of genes (Tan et al. 2014). Although technical factors may 

be responsible for some variation between cell types, the data clearly demonstrates a need to 

revise our understanding of the appropriate canonical microRNA sequences for better 

reproducibility and computational target prediction(Mestdagh et al. 2014; Agarwal et al. 2015). 

We then ascertained the nucleotide identity of the non-templated 3’ addition at the +1 

position from the most abundant canonical isomiR reported above. Across the 126 cell types, 

56% of non-template additions were adenines, followed by 41% uracils, 1% guanidines and 3% 

cytosines (Neilsen et al. 2012). Between cell types, these values were highly variable, with 
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additional non-templated adenines ranging from 28% (iPSC neurons) to 82% (H9 differentiated 

cells) of all additional nucleotides. As this may reflect sequencing or batch effect, we 

investigated just the 32 different primary cells that we generated in a shared batch and observed a 

two-fold range from 31% (dermal neonatal fibroblast) to 69% (bronchial epithelium) suggesting 

a real biological phenomenon (Supplemental Fig. S8).  

Finally, we assessed what percentage of all reads from a given microRNA family were 

assigned to the most abundant sequence.  On average, only 45% of all microRNA reads for each 

isomiR group were assigned to the most abundant isomiR sequence (Supplemental Fig. S9). This 

was quite variable and rarely >90% suggesting methods that fail to acquire isomiRs significantly 

underestimate the presence of microRNAs in a variable fashion (Mestdagh et al. 2014).  

We then investigated the isomiRs of 82 samples from 35 different cancer (or 

immortalized) cell types. Here we found subtle differences in the canonical microRNAs relative 

to primary cells. Only 22% of microRNAs (versus 33% of primary cells) had the most abundant 

isomiR as the miRBase v21 canonical sequence in 100% of cells. The diversity of most abundant 

microRNA sequences between samples (as characterized by Shannon entropy) among 

cancer/immortalized cells was a ~20% increase in disorder over primary cells (p<0.005 

Wilcoxon rank sum test) suggesting increased Dicer and Drosha miscleavages. (Fig. 4B, 

Supplemental Fig. S10, Supplemental Table S14). Nontemplated adenosines (62%) and uracils 

(30%) were again the dominant 3’ modifications in immortalized/cancer cell samples, but could 

vary widely between both primary and cancer/immortalized cells as a reflection of either 

biological differences or technical factors (Fig. 4C,D).  

Discussion 

Here we provide the first comprehensive delineation of cell-specific expression patterns 

of human microRNAs. These ubiquitous and cell-specific patterns of microRNA expression, 

identified by RNA-seq data, are further supported by matching super-enhancer data and highlight 

that there are many fewer ubiquitous microRNAs than currently believed. Of key importance is 

the specific expression patterns of certain microRNAs. Namely, miR-451a and miR-144 are 

exclusively expressed in red blood cells, yet, because blood is found in all tissues, they have 
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been inappropriately assigned a variety of functions in epithelial and mesenchymal cells based 

on misinterpreted tissue-level data (Kent et al. 2014; Halushka 2016).  

Having this encyclopedic knowledge of microRNA localization provides additional 

benefits. We provided one example, using adipose, of how cell-specific patterns can deconvolute 

complex tissue expression patterns. As more data is added to this growing cellular 

microRNAome, we can effectively work to reduce expression heterogeneity in tissue samples 

across large studies (McCall et al. 2016). This will improve the interpretation of tissue 

microRNA expression levels, which, to date, has significantly muddied our understanding of 

microRNA localization and biologically-relevant function (Kent et al. 2014). 

This study also has implications for the measurement and manipulation of microRNA 

expression. By using cell, not tissue data, we could observe cell-specific differences in the 

isomiR composition of microRNAs. For 205 common microRNAs, the most abundant sequence 

did not match the reported sequence in mirBase.org. This difference, which has previously been 

reported on a smaller scale (Morin et al. 2008), can have an important effect on PCR and 

hybridization based strategies that may target a secondarily abundant microRNA in the isomiR 

family, altering the reported expression level of a microRNA. This could explain some of the 

variability of microRNA expression across methods demonstrated by the miRQC project 

(particularly between RNA-seq and hybridization approaches) (Mestdagh et al. 2014) and impact 

the biologic activity of mimics and inhibitors relative to the true microRNA 5p end (Guo et al. 

2014). 

There are important limitations to this work. Because much of the data is taken from 

public sources, in which the RNA-seq has been performed across different platforms and with 

different sequencing methods, significant technical variation in microRNA expression is present. 

Despite our robust normalization methods, and requirement of >1 million microRNA reads, 

technical factors certainly drive some of the variation and clustering in these samples. As well, 

some of these cell types have few to no replicates, and it will be important to continue adding 

data for these cells. It is also unknown the extent to which microRNA expression patterns of 

cultured cells match cells in vivo. We strongly emphasize that the novel microRNAs described 

are putative as we have strong concerns about the methodology of current novel microRNA 

prediction programs and believe they have high false positive rates. New methods, taking into 
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account our collective knowledge of known microRNA structures and isomiR families, must be 

considered for the next generation of novel microRNA detection algorithms (Backes et al. 2016). 

Finally, we are only moving towards a complete cellular microRNAome as many cell types 

(hepatocytes, neutrophils, pneumocytes) were not available for this study. 

These microRNA expression patterns from 42 cell types are the first step towards a 

complete understanding of microRNA expression across all cells and establishing a human cell 

atlas. Our data also demonstrate general consistencies, but not without some concerning 

differences, between primary cells and immortalized/cancer cell lines. This work brings a new 

realization to the importance of cellular microRNA localization and enhances our understanding 

of this powerful regulatory RNA species. 

Methods 

Cell isolation and sequencing methods. Twenty-nine cell types were obtained from Lonza and 

cultured according to the manufacturers specifications for no more than 6 passages 

(Supplemental Table S15). Primary coronary endothelial cells, smooth muscle cells and 

fibroblasts were isolated and cultured in ECM or SMC media (ScienCell) from a 29 year old man 

and primary aortic endothelial cells were isolated and cultured from a 10 year old girl as 

described (McCall et al. 2011a). Red blood cells were isolated from whole blood by 

centrifugation at 900G for 10 minutes at room temperature and then pipetted and collected.  

Colonic epithelial cells were obtained by flow sorting (BD FACSAria II) of EpCAM+ cells 

through a modification of the protocol of (Dalerba et al. 2007). T lymphocytes were obtained by 

flow sorting of a homogenized spleen sample for CD3+ cells.  Cortical neurons were grown from 

iPSCs using the methods described (Xu et al. 2016). RNAs were isolated with the miRNeasy kit 

(Qiagen) according to the manufacturer’s protocol. RNA integrity was assessed using Agilent 

BioAnalyzer and the RNA concentrations were measured using a NanoDrop 2000 UV-Vis 

Spectrophotometer. Small RNA libraries were prepared using the Illumina TruSeq Small RNA 

Library Preparation kit according to the manufacturer’s protocol or purified using a Pippin Prep 

with a 3% Agarose Gel Cassette (Sage Science) and a size selection of 122-157bp. Multiplexed 

sequencing was performed as single read 50 base pair, using rapid run mode, and v2 chemistry 

on HiSeq2000 or HiSeq2500 systems (Illumina) at either the Genome Technology Center at the 
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NYU School of Medicine or the Next Generation Sequencing Center at the Johns Hopkins 

University School of Medicine.  

Differentiation of hES cells into dopamine neurons. H1 human embryonic stem cells (Wi 

Cell, Madison, WI) were cultured using standard protocols on inactivated mouse embryonic 

fibroblasts. Differentiation of hES cells to dopamine neurons was done as described (Kriks et al. 

2011). Single cells hES cells were cultured on matrigel coated plate at a density of 40,000 

cells/cm2 in SRM media containing growth factors and small molecules including FGF8 

(100ng/ml), SHH C25II (100ng/ml), LDN-193189 (100nM), SB431542 (10µM), 

CHIR99021(3µM) and Purmorphamine(2µM) for the first five days. Over the next six days, cells 

were maintained in neurobasal medium containing B27 minus vitamin A, N2 supplement along 

with LDN193189 and CHIR99021. In the final stage, they were made into a single cell 

suspension and seeded at a density of 400,000/cm2 on polyornithine and laminin coated plate in a 

neurobasal media containing B27 minus Vitamin A, BDNF(20ng/ml), GDNF(20ng/ml), 

TGFB1(1ng/ml) ascorbic acid(0.2mM), cAMP(0.5mM) and DAPT(10µM) till maturation 

(approx. 60 days). 

Publically available RNA-seq data. Sequence Read Archive and Array Express were searched 

for the terms “human” and “microRNA” or “miRNA” and the records were evaluated for any 

human primary cell type, cancer cell line, transformed/immortalized cell line or normal human 

tissue.  These generally represented the “control” materials in experiments. In total, 655 sra files 

were downloaded and converted into fastq files using fastq-dump of the SRA Toolkit. 

Sequencing was performed on Illumina systems (Genome Analyzer IIx, HiSeq2000, HiSeq2500, 

miSeq) and AB SOLiD Systems. Solexa colorspace data was converted to standard fastq format 

using SoLiD2Std.pl.   Data searches and collection ended on 2/8/16. The cell line H1264, which 

is a lung carcinoma cell line, has been reported as being cross contaminated with H157, which is 

a separate human lung carcinoma cell line (ICLAC.org).  However, in the context of the way 

data from this cell line was used, that distinction is of no consequence here.  

microRNA annotation via miRge. miRge was used as described (Baras et al. 2015). Briefly, 

miRge removes sequence adapters and performs quality control through cutadapt (Chen et al. 

2014). Then, reads are collapsed together and undergo a 5 step alignment to customized RNA 

libraries utilizing Bowtie and designed to optimally capture microRNAs and their isomiRs. For 
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microRNAs with high sequence similarity (ex. hsa-let-7a-5 and hsa-let-7c-5p), miRge reports 

them together (ex. hsa-let-7a-5p/7c-5p). The generally used command line for miRge was perl 

miRge.pl –adapter illumina –species human –CPU 8 –SampleFiles a.fastq,b.fastq…  In all, 694 

RNA-seq fastq files were run in batches or individually.  Prior to the run, the presence and type 

of adapter was noted for each fastq file.  A variety of sequencing methods resulted in a range of 

adapters used. For some fastq files, adapters were removed using the standalone version of 

cutadapt. A consensus adapter sequence could not be determined for 45 samples and the 

sequences were trimmed to 21 bp using the cutadapt –u command (ex. $ cutadapt <FILE>.fastq -

u -14 -o <FILE>_cut.fastq for a 35 bp read length). These samples were excluded from isomiR 

analyses. The 159 samples that had less than 1 million microRNA reads were excluded and are 

not represented in the data. We also removed 5 tissue samples (SRR1635903-8) with extreme 

technical skewing of microRNA reads (>60% of all reads were microRNA let-7b-5p). 

DEXUS Analysis. The DEXUS algorithm was used to fit a mixture of five negative binomial 

distributions to the RNA-seq counts from all cell-type samples (dexus R/BioC package version 

1.14.0). We then selected miRNAs that had at least one highly expressed distribution (highest 

mean >50,000). The most likely distribution from which each miRNA / sample value came 

(called responsibilities in the dexus package) were used as a discretized measure of expression. 

Distributions with a mean less than 2,500 were merged into a background / unexpressed 

distribution. This type of expression discretization has been shown to greatly reduce batch effects 

when combining data across studies and technologies (McCall et al. 2011b; McCall et al. 2014). 

Remove Unwanted Variation (RUV) Normalization of microRNA samples. The Remove 

Unwanted Variation algorithm(Risso et al. 2014) using replicate samples (RUVSeq R/BioC 

package version 1.8.0) was used to estimate five latent factors separately for combined primary 

cell and cancer cell line data and tissue data. Replicate samples were defined using biologically-

based clusters of tissues and cells.  We verified the ability of the five estimated latent factors to 

capture and adjust for batch effects by examining biological clusters comprised of multiple 

experiments.  The RUV normalized data clustered by biological cluster and not experimental 

batch.  

t-Stochastic Neighbor Embedding. t-SNE was performed using the Rtsne package (version 

0.11) in R on RPM corrected cell data and RUV normalized data for primary cells, 
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cancer/immortalized and tissue samples with perplexity set at 10 after evaluations of  perplexity 

values of 1-40 for each (van der Maaten and Hinton 2008). All RUV data was normalized to 

summed counts and log2 transformed. 

Determining the ubiquity of microRNAs.  All 162 primary cell runs were collapsed into their 

46 unique cell types keeping the maximum RPM value for each microRNA.  This method was 

replicated for the 26 tissue types. The frequency of a microRNA being >100 RPM across each 

common cell type was determined in a histogram. 

Calculation of 5p, 3p dominance. The sum of each microRNA’s RPM value across all 162 

primary cell runs was generated.  microRNAs that had fewer than 1,000 summed RPMs were 

excluded.  Equivalent levels represent the reads for 5p and 3p being within 10% of each other. 

Super-enhancer analysis. Super-enhancer genomic location data was obtained from the 

dbSUPER website (Khan and Zhang 2016) for 11 cells (primary or cancer/immortalized) in 

which there was matched RNA-seq data. As microRNA RPM data can be variable between 

samples, the specific samples used were SRR5127214, SRR5127200, SRR1264358, 

SRR1575597, SRR1200888, SRR5127213, SRR020286, SRR5127233, SRR873410, 

SRR1055962, and SRR5127217. The distance between 939 microRNA loci (hg19) and all super-

enhancers was determined and only those of distance <40kb to a microRNA loci were evaluated. 

The RPM (log2) of the mature microRNA strand was obtained for each genomic microRNA loci.  

Because some microRNAs are expressed from multiple genomic locations (ex. let-7a-1, let-7a-2 

and let-7a-3 on chromosomes 9, 11, and 22), and there is no way to distinguish the genomic 

source of the mature microRNA, we assign the mature miRNA expression value (let-7a-5p) to all 

sites. We caution that the activity of these super-enhancers on adjacent genes and microRNAs is 

generally unknown and these reported correlations are not proof of activity of the super-enhancer 

on the microRNA. 

CIBERSORT analysis. The CIBERSORT (Newman et al. 2015) web application: 

cibersort.stanford.edu was used to create a signature gene matrix using the following parameters: 

a maximum condition number of 20, qvalue threshold of 0.5, and between 5 and 50 signature 

genes per cell-type. This signature gene matrix was then used to estimate the composition of 

tissue samples from the METSIM study (Civelek et al. 2013). 
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Immortalized/Cancer vs Normal Cells. RUV corrected microRNA data was plotted using the 

pheatmap function in R.  A H7 ESC sample was used as an outgroup for each correlation. A 

MAplot was generated for the average of 12 primary fibroblast cell cultures vs. 3 immortalized 

fibroblast cell cultures.  A separate MAplot was generated for 8 primary T cell cultures vs. 14 T 

cell leukemias/lymphomas.  

Novel microRNA discovery. All reads of length 18-25bp that were initially unmapped were 

collected using a python script from each appropriate run (479 files). Samples that were trimmed 

to 21 bp in the initial miRge run were excluded. The SRA was searched for all instances of 

Argonaut (Ago) precipitated RNA, identifying 105 reads from 19 tissues and cells (Supplemental 

Table S16). This includes 43 reads used in (Londin et al. 2015). All reads of length 18-25 bp 

were also taken from the ~1.7 billion unmapped Ago Clip-Seq reads. Of note, distinguishing 

linker sequences in this dataset was not necessarily feasible, and 54% of reads were adjusted by 

cutadapt to only 21 or 22 bp lengths using the command described above, likely resulting in an 

over identification of Ago-bound microRNAs. Both of the 479 standard small microRNA RNA-

seq unmapped samples and the 108 Ago reads were processed in miRDeep2 for novel 

microRNA detection and aligned to the human genome (GRCh38/hg38). microRNA locations 

were compared to known repeat elements using the RepeatMasker track from the UCSC Genome 

Browser. A subset of the 21,338 initial microRNA loci and all 2,724 microRNA loci were 

evaluated using NovoMiRank and comparing the calculated z-scores to the z-score values of all 

miRBase versions (Backes et al. 2016). The 2,724 microRNA loci of novel and ‘orthologous’ 

miRNAs were compared to the 3,707 novel microRNAs described by (Londin et al. 2015) and 

all Ago-related discovered microRNAs. Any overlap between genomic locations indicated a 

shared loci.  Summary statistics were generated for the dataset.  pri-miRNA localization was 

performed using the UCSC tracks generated by Chang TC et al (Chang et al. 2015).  

Comments on novel microRNA localization.  For many novel putative microRNAs, the 

sequence reads overlapped, with several bases of extension/difference between samples. Thus 

the exact chromosome location of each novel microRNA is from a single sample of the 

collection and may not reflect the best absolute location on GRCh38/hg38. The microRNAs 

designated as .5p/.3p were named as such as each of these microRNA loci was identified in more 

than one sample, with two different pre-miRNA structures designating the sequence to the 5p or 
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3p arm.  There were no “passenger” reads to distinguish the correct structure, so either location 

remains plausible. 

Novel microRNA seed region analysis. The seed region (bases 2-7) were identified on each 

purported novel microRNA.  Due to some 5’ ambiguity between samples, the seed bases could 

differ for the same microRNA found between two different samples accounting for 3,697 seeds 

of the dominant strand from the 2,724 novel microRNA loci. 

Amplification of novel microRNAs. Amplification of novel PCRs was based on the stem-loop 

method of reverse transcriptase (RT) followed by PCR amplification of the microRNA as 

performed (Londin et al. 2015). miR-21-5p, a ubiquitous and abundant microRNA, was used as a 

positive control for all RNA sources. All RT primers, PCR primers, and PCR conditions are 

provided in Supplemental Table S17.  

IsomiR analysis.  A perl script was generated that took the mapped.csv file and counted the 

reads for each microRNA’s canonical microRNA sequence (from miRBase v21), length variants 

from -4 to +4 bp around the canonical sequence, additional canonical sequences, and the number 

of reads for non-templated (non-genomic) nucleotide additions (A,G,C,U) to the maximal count 

canonical length variant.  Only microRNAs with 1,000+ total reads and >10% of reads that were 

canonical length variants were evaluated. 126 primary cell samples (15,897 microRNA reads) 

and 82 cancer cell samples from 35 unique cancer (or immortalized) cell types had appropriate 

data for analysis. The nomenclature C-4, C-3, C-2, C-1, C, C+1, C+2, C+3, C+4 indicate the 

length of the dominant templated microRNA species relative to the canonical (C) sequence. 

Entropy analysis. The distribution of the lengths of miRNA species detected from a given 

miRNA family (locus) was characterized relative to the length of the canonical sequence as (≤-4, 

-3, -2, -1, 0, 1, 2, 3, ≥4). The degree of disorder in the cell line culture samples was characterized 

relative to the median Shannon entropy of the primary cell culture samples, in which this was 

used as the reference point in the calculation of percent maximal information loss (relative and 

normalized entropy calculation). 

Data Access 
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Novel RNA-seq data generated in this project is available through Bioproject PRJNA358331 and 

samples SRR5127200-36 & SRR5139121 in SRA. 
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