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Abstract

Motivation: Genotyping and parameter estimation using high throughput sequencing data are everyday
tasks for population geneticists, but methods developed for diploids are typically not applicable to polyploid
taxa. This is due to their duplicated chromosomes, as well as the complex patterns of allelic exchange
that often accompany whole genome duplication (WGD) events. For WGDs within a single lineage
(autopolyploids), inbreeding can result from mixed mating and/or double reduction. For WGDs that
involve hybridization (allopolyploids), alleles are typically inherited through independently segregating
subgenomes.
Results: We present two new models for estimating genotypes and population genetic parameters from
genotype likelihoods for auto- and allopolyploids. We then use simulations to compare these models to
existing approaches at varying depths of sequencing coverage and ploidy levels. These simulations show
that our models typically have lower levels of estimation error for genotype and parameter estimates,
especially when sequencing coverage is low. Finally, we also apply these models to two empirical data
sets from the literature. Overall, we show that the use of genotype likelihoods is a promising approach for
conducting population genomic inferences in polyploids.
Availability: A C++ program, EBG, is provided to perform inference using the models we describe. It is
available under the GNU GPLv3 on GitHub: https://github.com/pblischak/polyploid-genotyping.
Contact: blischak.4@osu.edu.
Supplementary information: Supplementary data are available online.

1 Introduction
The discovery and analysis of genetic variation in natural populations
is a central task of evolutionary genetics, with applications ranging
from the inference of population structure and patterns of historical
demography, detecting selection and local adaptation, and performing
genetic association studies. The ability to use high throughput sequencing
technologies to detect variants across the genome has further advanced
our understanding of the impact of evolutionary forces on genetic
diversity in populations. However, the nature of data sets collected
using high throughput sequencing often require special considerations
regarding sequencing error and, especially, the level of sequencing
coverage. Common approaches for dealing with low-coverage sequence
data use genotype likelihoods to integrate over the uncertainty of
inferring genotypes when estimating other parameters [allele frequencies,
inbreeding coefficients, population differentiation, etc.] (e.g., Martin et al.,
2010; Li, 2011; Nielsen et al., 2011, 2012; Fumagalli et al., 2013; Vieira
et al., 2013; Huang et al., 2016, among others). Genotype likelihoods for
biallelic SNPs are calculated as the probability of the sequencing read data
mapping to a variable site (total number of reads, number of reads with the
alternative allele, and probability of sequencing error) given the possible
values of the genotypes (e.g., typically 0, 1, or 2 for the number of copies

of the alternative allele in diploids). When combined with computationally
efficient algorithms for inference, these models are the primary tools used
for conducting population genetic analyses from high throughput data.

Although the theory for these models is well established for diploids
and even special cases of higher ploidy samples (treated equivalently to
pooled samples of multiple diploids), the application of these tools to
taxa that have experienced a recent whole genome duplication (WGD) is
currently limited (McKenna et al., 2010; DePristo et al., 2011; Li, 2011).
This is due in part because of ambiguity in the copy number of each allele
in the genotype of a polyploid, a phenomenon referred to as allelic dosage
uncertainty (Blischak et al., 2016). Another important aspect of polyploid
evolution to consider is that the occurrence of WGD can have an impact
on how alleles are exchanged in a population, making the assumption
of randomly inherited alleles inappropriate. Together these two factors
have limited the widespread application of population genomic tools to
gain insights about levels of genetic variation following WGD. Given both
the evolutionary and economic importance of many of these organisms
(e.g., agricultural crops, farmed fishes), the development of methods that
can accommodate more complex patterns of inheritance is critical for the
study of polyploids (Stebbins, 1950; Grant, 1971; Otto and Whitton, 2000;
Soltis and Soltis, 2000; Soltis et al., 2014).

In this paper we present two new models for SNP genotyping in
polyploids using high throughput sequencing data. The models correspond
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to two different ways in which polyploids can be formed: WGD within a
lineage (autopolyploid) or involving hybridization between two lineages
(allopolyploid). The former builds off of previous work to relax the
assumption of Hardy-Weinberg equilibrium by including inbreeding
(Blischak et al., 2016) and the latter provides a framework for separately
determining the genotypes within the two genomes that compose the
allopolyploid (typically referred to as subgenomes). We test our models
using a wide range of simulations and describe our numerical approach for
parameter estimation using the expectation maximization (EM) algorithm
(Dempster et al., 1977). For comparison, we analyzed our simulated data
sets using two additional approaches based on models that assume either
Hardy Weinberg or equal genotype probabilities. Finally, we also test the
models on empirical data sets collected for a diploid-allotetraploid species
pair from the genus Betula (birch trees) and a mixed-ploidy grass species,
Andropogon gerardii. Overall, we demonstrate that genotype uncertainty
resulting from both low-coverage sequencing data and allelic dosage
uncertainty can be overcome in polyploids using genotype likelihoods.

2 Models
Assumptions: For each of the models below, we assume that SNPs
are biallelic, and that loci and individuals are independent. For the
autopolyploid model, we do not directly include double reduction (but see
Discussion). For the allopolyploid model, we assume that subgenomes
are independent and that they do not interact during meiosis (i.e., no
homoeologous recombination).

Notation for each model is introduced in the descriptions we provide
below and is also summarized in Table 1. Throughout the paper, we use
boldface letters to denote an array of the respective parameter across
either individuals (N ), loci (L), or both (e.g., p := p1, . . . , pL,
F := F1, . . . , FN , and G := g11, g12, . . . , gN(L−1), gNL).

2.1 Autopolyploid Model

The genotype for a biallelic SNP in an autopolyploid with K sets of
chromosomes has K + 1 possible values. For example, using A and
a to denote the two alleles, an autotetraploid can have genotypes equal
to AAAA, AAAa, AAaa, Aaaa, or aaaa (e.g., gi` = 0, 1, 2, 3, or
4, if a is the alternative allele; i = 1, . . . , N and ` = 1, . . . , L). A
simple extension of the typical binomial sampling (Hardy Weinberg; HW)
model used for diploids but with larger sample size to accommodate higher
ploidy levels has been used previously (Li, 2011; Blischak et al., 2016).
However, inbreeding in various forms can bias inferences made when HW
equilibrium is assumed. Vieira et al. (2013) introduced a genotype prior to
include inbreeding either per-site or per-individual for a sample of diploids
(implemented in the programs ngsF and ANGSD). This model used a
formulation for generalized HW that includes the inbreeding coefficient,
F , which is the probability that two alleles are identical by decent (ibd).
Instead of using a generalized HW formulation for autopolyploids, we used
the Balding-Nichols beta-binomial model (Balding and Nichols, 1995,
1997; Bradburd et al., 2013), which also models the probability of two
alleles being ibd but is more easily extended to higher ploidy levels by not
directly enumerating all combinations of allele draws for the genotype of
an autopolyploid.

Given genotype values at L loci for N individuals each of ploidy mi,
we model individual genotypes at each locus (gi` = 0, . . . ,mi copies
of the alternative allele) as a beta-binomial random variable. The log
likelihood of the genotype data given the allele frequency at each site
(p`) and the per-individual inbreeding coefficients (Fi) is then

logL(p,F ;G) =
∑
i

∑
`

logP (gi`|p`, Fi)

=
∑
i

∑
`

log

B
(
gi` + p`

1− Fi

Fi

,mi − gi` + (1− p`)
1− Fi

Fi

)
B
(
p`

1− Fi

Fi

, (1− p`)
1− Fi

Fi

) .

(1)

whereB(α, β) represents the beta function with parametersα andβ. Since
genotypes must be inferred from sequence data (di`; see Methods), we
can also account for this uncertainty by summing over genotypes to get
the likelihood of the sequence data given allele frequencies and inbreeding
coefficients by including genotype likelihoods:

logL(p,F ;D)

=
∑
i

∑
`

log

[∑
a

P (di`|gi` = a)P (gi` = a|p`, Fi)
]
. (2)

Because maximization of the log likelihood is encumbered by the
logarithm of the sum over genotypes, we instead use an expectation
conditional maximization algorithm to obtain maximum likelihood (ML)
estimates for p and F (Meng and Rubin, 1993). Since an analytical
solution for the maximization step is not readily available, we instead
employ numerical maximization of the likelihood using Brent’s method
(Brent, 1973). Then, given the ML parameter estimates, we can calculate
the posterior probability of the genotype of each individual at each locus
using Bayes’ theorem:

P (gi` = a|di`) =
P (di`|gi` = a)P (gi` = a|p̂`, F̂i)∑mi

a′=0
P (di`|gi` = a′)P (gi` = a′|p̂`, F̂i)

, (3)

for a = 0, . . . ,mi.

2.2 Allopolyploid Model

Deviations from HW are evident in allopolyploids in that they have
two (sometimes more) sets of chromosomes inherited from separate
evolutionary lineages. When these sets of chromosomes (called
homoeologs, or homoeologous chromosomes) segregate during meiosis,
they are inherited separately from one another and should be treated
independently. For example, the genotypes for a biallelic SNP in an
allotetraploid could have valuesAA|A′A′,AA|A′a′,AA|a′a′,Aa|a′a′,
or aa|a′a′. Here the vertical bar ‘|’ denotes separation between the
subgenomes and the ′ indicates homoeologous alleles. With perfect
knowledge about which alleles go with each subgenome, determining the
genotypes could be done completely independently. However, if separate
reference genomes for the homoeologous chromosomes are not available,
all reads mapping to a variable position will not be separable into reads
coming from one subgenome or the other. Thus, when considering a
variable site across the full set of homoeologs, we need to account for
the fact that the frequency of the alternative allele may not be the same
in each subgenome due to their separate evolutionary histories. When
we cannot separate reads, we can instead consider the overall genotype
of an allopolyploid with two subgenomes as being a combination of the
genotypes within the subgenomes. For example, a tetraploid with two
diploid subgenomes can have an overall genotype of 0, . . . , 4 copies of
the alternative allele, but each of these full genotypes can be found via a
different combination of genotypes in the subgenomes: {0 = (0, 0); 1 =

(0, 1), (1, 0); 2 = (0, 2), (2, 0), (1, 1); 3 = (1, 2), (2, 1); 4 = (2, 2)}.
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In general, for an allopolyploid that has two subgenomes with ploidy
levels equal tom1i andm2i, there are a total of (m1i +1)× (m2i +1)

genotype combinations to consider. The probabilities of these genotypes
are then determined using the allele frequencies for the alternative allele
in the subgenomes.

An obvious complication of not being able to separate the sequencing
reads into sets coming from each subgenome is that it makes independently
estimating the allele frequencies and genotypes impossible. However, it
is sometimes the case that the parental species of the allopolyploid are
known, which can help with inferring genotypes by providing an outside
estimate of the allele frequencies within the subgenomes. For our model,
we relax this use of outside knowledge further and assume that only a
single parent has been identified. Arbitrarily designating the known parent
as subgenome one, we treat the allele frequencies at each locus estimated in
the parental population to be known (p∗1) and require only the estimation
of the allele frequencies in subgenomes two (p2). We then model the
full genotype in the allopolyploid as the sum of the two independent
subgenomes with separate, and potentially unequal, allele frequencies.
Using binomial distributions to model the genotype in each subgenome
(G1 and G2), the log likelihood for known genotype data is given by

logL(p2;p
∗
1,G1,G2)

=
∑
i

∑
`

[
log
(m1i

g1i`

)
(p∗1`)

g1i` (1− p∗1`)
(m1i−g1i`)

+ log
(m2i

g2i`

)
(p2`)

g2i` (1− p2`)(m2i−g2i`)
]
. (4)

The inclusion of genotype likelihoods is done in a similar way to
the autopolyploid model, only now we are summing over the values
of the genotypes in both subgenomes one and two. The log likelihood
for observed sequence data given the allele frequencies in each of the
subgenomes is

logL(p2;p
∗
1,D)

=
∑
i

∑
`

log

[∑
a1

∑
a2

P (di`|gi` = g1i` + g2i`)

× P (g1i` = a1|p∗1`)P (g2i` = a2|p2`)
]
. (5)

Because maximizing the log likelihood involves the logarithm of a
double sum, we turn once again to the expectation maximization algorithm
to obtain a ML estimate for the allele frequency at each locus in subgenome
two (Dempster et al., 1977). An analytical solution for the maximization
step of the EM algorithm is given by

p
(t+1)
2` =

∑
i

∑
a1

∑
a2
a2P (gi` = a1 + a2|di`, p∗1`, p

(t)
2` )∑

im2i
. (6)

Using these ML estimates, an empirical Bayes estimate of the genotypes
within each of the subgenomes can be found using their joint posterior
probability (note that subscripts i and ` are dropped for readability)

P (g1 = a1, g2 = a2|d)

=
P (d|g = g1 + g2)P (g1 = a1|p∗1)P (g2 = a2|p̂2)∑

a′1

∑
a′2
P (d|g = g1 + g2)P (g1 = a′1|p∗1)P (g2 = a′2|p̂2)

, (7)

where a1 = 0, . . . ,m1i and a2 = 0, . . . ,m2i.

Table 1. A key to the symbols and notation that are used in describing the
autopolyploid and allopolyploid models. We use a either a bold or bold-
capitalized letter when referring to the collection of parameters together (e.g.,
G refers to gi` for all individuals at all loci). Parameters within subgenomes
for the allopolyploid model use the same symbol but with either a 1 or a 2 added
as a subscript.

Symbol Description
N , L The number of individuals and loci sampled.

mi Ploidy level of individual i.

di` Sequence data for individual i at locus ` (={ti`, ri`, ε`}).

ti` Total number of reads for individual i at locus `.

ri` Number of alternative allele reads for individual i at locus `.

ε` Average sequencing error at locus `.

gi` Genotype for individual i at locus `.

p` Allele frequency at locus `.

Fi Inbreeding coefficient for individual i.

2.3 Other Approaches

We consider two additional approaches that use genotype priors that
have been described in previous studies. The first is an implementation
of the SAMtools Hardy Weinberg equilibrium prior (Li, 2011) and the
second is a flat prior on genotypes that is similar to the model used
by the Genome Analysis Toolkit (GATK; McKenna et al., 2010). Other
approaches that accommodate polyploids such as the FITTETRA package
in R (Voorrips et al., 2011) and the method of Maruki and Lynch (2017)
were not considered here because they can only handle specific ploidy
levels (triploids and/or tetraploids).

3 Methods
Genotype likelihoods were calculated using a simplified version of the
SAMtools model by using average sequencing error values at each locus,
ε`, across reads and individuals (Li, 2011). Then for the possible values
of the genotype (a = 0, . . . ,mi), the probability of the read data, di` =
{ti`, ri`, ε`} (ti` = total read count, ri` = alternative allele read count),
given the genotype, gi`, is

P (di`|gi` = a) =
(ti`
ri`

)
fε(a,mi, ε`)

ri`

×[1− fε(a,mi, ε`)](ti`−ri`), (8)

where

fε(x, y, e) =
x

y
(1− e) +

(
1−

x

y

)
e. (9)

3.1 Simulations

We generated sequencing read data with mean coverage per individual,
per locus equal to 2x, 5x, 10x, 20x, 30x, and 40x, simulated from a
Poisson distribution for 10 000 sites. The number of individuals was set
to 25, 50, or 100, and we tested ploidy levels equal to 4, 6, and 8 (4=2+2,
6=2+4, and 8=4+4 for allopolyploids). Sequencing errors were drawn
from a beta distribution with parameters α = 1 and β = 200 (mean
error ≈ 0.005)]. Allele frequencies were drawn from a truncated beta
distribution with a minimum minor allele frequency of 5% and parameters
α = β = 0.01. For the autopolyploid model, the values of the inbreeding
coefficient were set to 0.1, 0.25, 0.5, 0.75, and 0.9. For the allopolyploid
model, the allele frequencies simulated for subgenome one were treated as
the reference panel. Genotypes were drawn according to their respective
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generating models (autopolyploid or allopolyploid), and the number of
alternative reads for each individual at each locus was drawn from the
binomial distribution in Eq. (8) given the total read count, genotype, and
level of sequencing error. For each simulation, we evaluated estimation
error using the root mean squared deviation (RMSD)

RMSD =

√√√√ 1

R

R∑
r=1

(X
[r]
est. −Xtrue)2 , (10)

whereR represents the number of replicates,X[r]
est. is the estimated value

for replicate r, and Xtrue is the original value used to simulate the data.
To compare our models with other methods, we reused these simulated

data as input for the estimation of genotypes and model parameters
using priors that assume either Hardy Weinberg equilibrium or equal
genotype probabilities (GATK-like). For the allopolyploid model, this
also equates to ignoring the fact that genotypes are drawn from two
independent subgenomes. Inference for the Hardy Weinberg model used
the EM algorithm described in Li (2011). Genotyping based on the GATK-
like model were calculated based on normalized genotype likelihoods as
described in McKenna et al. (2010).

Comparisons for the autopolyploid model were based on the RMSD
of four estimates of the inbreeding coefficient. The first of these was
the estimate obtained by our ECM algorithm, which is built directly
into the model. The other three estimates were calculated as a summary
statistic from estimated genotypes for the three models (Supplemental
Materials, Supplemental Text). We then also compared RMSD values of
the estimated genotype values for the three methods. For the allopolyploid
model, direct comparisons with models that assume Hardy Weinberg or
uniform genotype priors are more difficult because they do not share the
assumption of two subgenomes. Therefore, we focused on the accuracy of
the models to infer the full genotype by again comparing RMSD values.

3.2 Empirical Data Analysis

3.2.1 Andropogon gerardii
We tested our autopolyploid model on an empirical data set collected
in the grass species Andropogon gerardii. SNP data from McAllister
and Miller (2016) were downloaded from Dryad as a VCF file
(http://datadryad.org/resource/doi:10.5061/dryad.05qs7). The data were
filtered using VCFtools with the following criteria: biallelic SNPs only,
no more than 50% missing data per site, one SNP per 10 000 base pair
window, and a minimum sequencing depth of five reads (Danecek et al.,
2011). The output from VCFtools was then converted to a plain text
format containing the number of total reads and alternative allele reads per
individual per site using a Perl script (read-counts-from-vcf.pl;
available on GitHub). We then also removed any individuals with more
than 50% missing data using an R script (filter-inds.R; available on
GitHub). Since A. gerardii has two cytotypes (6N and 9N), we analyzed
the hexaploid and nonaploid individuals separately and compared the
estimates of the inbreeding coefficients across ploidy levels.

3.2.2 Betula pubescens and B. pendula
To test the allopolyploid model, biallelic SNP genotypes from
Zohren et al. (2016) for the allotetraploid Betula pubescens and
its putative diploid progenitor, B. pendula, were downloaded from
Dryad (http://datadryad.org/resource/doi:10.5061/dryad.815rj). Treating
the genotypes as known, we simulated read data and error values as
before using Eq. (8) with beta distributed error values. We varied the
level of sequencing coverage (5x, 10x, 20x) but did not alter the amount of
missing data. Allele frequencies for B. pendula were estimated under the
assumption of Hardy Weinberg equilibrium and disequilibrium to assess
which was a better fit. These allele frequency estimates were then used
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Fig. 1. RMSD values for simulations under the autopolyploid model with inbreeding for (a)
estimated inbreeding coefficients and (b) estimated genotypes. Each individual plot within
(a) and (b) displays the RMSD on the y-axis and inbreeding coefficients on the x-axis. Rows
correspond with the depth of sequencing coverage (2x, 5x, 10x) and the columns correspond
to the ploidy level (4, 6, 8). The different estimation methods (diseq, diseqCG, gatk, hwe)
are represented by different shapes within each plot. (a) The inbreeding coefficient estimated
by our model (diseq) is consistently the lowest across all depths of sequencing coverage,
ploidy level, and level of inbreeding. (b) Genotypes estimated by our model are at least as
accurate as the other methods and are not as affected by high or low levels of inbreeding.

as the reference panel for genotype estimation in B. pubescens using the
allopolyploid model.

3.3 Software and reproducibility

We have packaged our code for the EM/ECM algorithms in a command
line C++ program called EBG, which we have included as part of a
GitHub repository for this manuscript (doi:10.5281/zenodo.195779). This
software includes our implementations of the autopolyploid (diseq),
allopolyploid (alloSNP), Hardy Weinberg (hwe), and GATK-like (gatk)
models for genotyping in polyploids. Code for the simulation study and
empirical data analyses was written using a combination of the R statistical
language and C++ through the use of the RCPP package (Eddelbuettel and
François, 2011; Eddelbuettel, 2013; R Core Team, 2014). Figures were
generated using the GGPLOT2 package in R (Wickham, 2009). Additional
figure manipulations were done using Inkscape (https://inkscape.org/).

4 Results

4.1 Simulations

4.1.1 Autopolyploid model
Simulated read count data were generated to assess the impact of
sequencing coverage and ploidy level on estimation error in autopolyploids
using an expectation conditional maximization (ECM) algorithm.
Convergence of the ECM algorithm depended on the number of individuals
sampled, sequencing coverage, and ploidy. Each iteration of the algorithm
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employs Brent’s method, itself an iterative maximization algorithm,
resulting in slower M-steps than the other EM algorithms we describe.
However, overall convergence was reached before the maximum number
of allowed iterations (1000) in all cases, with analyses typically employing
between 50–100 iterations.

For the estimation of individual inbreeding coefficients (Fi), Figure 1a
shows the root mean squared deviation (RMSD) for estimated inbreeding
coefficients for the four different estimation methods across ploidy levels
and the three lowest levels of sequencing coverage (sample size of 50
individuals). Compared with the other methods that used called genotypes
(diseqCG, hwe, gatk), the level of sequencing coverage and ploidy level
had virtually no effect on estimation error using our model (diseq). For
the other estimates, increasing sequencing coverage lowered estimation
error as expected, and higher ploidy levels showed higher levels of error.
However, inbreeding coefficients estimated from genotypes called from
our model (diseqCG) did have lower RMSD values than the other methods,
except when the inbreeding coefficient was 0.5, when the level of error was
about the same. All of the methods except for Hardy Weinberg showed
low levels of estimation error once the depth of sequencing reached 10x.
Figures S1–S3 show the results for all simulated depths of sequencing (2x
to 40x) and sample sizes (25, 50, and 100 individuals).

Our empirical Bayes approach for maximum a posteriori (MAP)
genotype estimation resulted in a similar overall pattern of lower estimation
error for increased sequencing coverage (Figure 1b). Interestingly, the
other two methods for genotyping (gatk, hwe) showed opposing patterns
of accuracy: the GATK-like model increased in accuracy with increasing
levels of inbreeding but the Hardy Weinberg model had decreasing
accuracy. Genotypes called by our method showed some dependence on
the level of inbreeding with intermediate values having the most error.
However, our method was still the most accurate across the range of
inbreeding values simulated. Ploidy also had an impact on genotyping
with higher ploidy levels having higher levels of estimation error. This is
largely due to the fact that higher ploidy individuals have a larger number of
possible values for the genotype and that the average sequencing coverage
per allele (chromosome) is lower (e.g., 10x coverage in a tetraploid is on
average 2.5x per allele but is 1.25x in an octoploid). Once the depth of
sequencing reached 10x, the only model that still showed a higher level of
error was the Hardy Weinberg model. Figures S4–S6 show the results for
all simulated depths of sequencing (2x to 40x) and sample sizes (25, 50,
and 100 individuals).

4.1.2 Allopolyploid model
Using the same general parameter settings as the simulations for the
autopolyploid model (except for inbreeding), we calculated genotype
likelihoods by simulating read data from genotypes generated under
the model from Eq. (4). The ploidy of each subgenome was as
follows: tetraploids = diploid + diploid, hexaploid = diploid + tetraploid,
and octoploid = tetraploid + tetraploid. Our expectation maximization
algorithm for this model was slow to converge, despite each maximization
step taking less time when compared with the autopolyploid model.
Analyses never reached the upper limit on the number of iterations (again
1000) but some analyses did not reach convergence until over 900 iterations
had been run. To make analyses with this model more practical, we
reanalyzed all simulated data sets using only 100 EM iterations followed
by direct maximization of the observed data log likelihood function in Eq.
(5) using Brent’s method (EM+Brent).

Comparing our model with other genotype priors (Hardy Weinberg,
GATK) only allowed us to consider the full genotype estimates from the
different methods. Figure 2 shows the level of estimation error for each
of the three genotyping methods for each ploidy level across all depths of
sequencing coverage. For low depths of sequencing, genotyping with the

p4 p6 p8

c2 c5 c1
0

c2
0

c3
0

c4
0 c2 c5 c1

0
c2

0
c3

0
c4

0 c2 c5 c1
0

c2
0

c3
0

c4
0

0

1

2

R
M

S
D

Method allosnp gatk hwe

Full Genotype Estimation

Fig. 2. RMSD values for full genotype estimation. Sequencing coverage is on the x-axis
and RMSD values are on the y-axis. Each column represents a different ploidy level and the
three methods used (allosnp, gatk, hwe) are represented by different shapes. For low levels
of sequencing coverage, the allosnp and hwe models have much lower levels of estimation
error when compared with the gatk model. The level of sequencing coverage required for
the three methods to converge in error rate depends on the ploidy level, with tetraploids
needing less coverage and octoploids needing more.

GATK-like model resulted in high levels of error. As the depth of coverage
increased, the three methods converged. However, this was dependent on
the ploidy level: octoploids required a higher depth of sequencing for
the GATK model than tetraploids or hexaploids to achieve the same level
of accuracy. The Hardy Weinberg prior performed almost identically to
our allopolyploid model, most likely as a result of our assuming Hardy
Weinberg within the subgenomes of the allopolyploid.

We also assessed the accuracy of the model for estimating parameters
based on the true values used for the simulations. Allele frequency
estimates for subgenome two improved as the number of individuals
and sequencing coverage were increased (Figure S7). Tetraploids showed
the highest estimation error for subgenome two (diploid), followed by
octoploids and hexaploids (tetraploid subgenomes), respectively. This
pattern with hexaploids and octoploids is counterintuitive considering
that higher ploidy levels typically result in better estimates of allele
frequencies since more alleles are sampled from the population (Blischak
et al., 2016). However, the tetraploid subgenomes in the hexaploid and
octoploid individuals do not show similar levels of error as would be
expected. This is likely a result of subgenome one having higher ploidy
in the octoploid simulations, resulting in a larger number of possible
genotype combinations and therefore higher estimation error (octoploid:
5 × 5 = 25 vs. hexaploid: 3 × 5 = 15). Figures S8 and S9 show the
error in genotype estimation in subgenome one and two, respectively. Here
we again observe that higher ploidy levels have higher levels of estimation
error for genotypes. Overall, genotype estimates were inferred with higher
error for subgenome two. This result makes sense given that we treat the
allele frequencies for subgenome one as known but have to estimate them
in subgenome two.

4.2 Empirical Data Analysis

4.2.1 Andropogon gerardii
Analyzing and filtering the data sets for hexaploid and nonaploid A.
gerardii separately resulted in slightly different numbers of loci (6N: 83
individuals, 6 928 loci; 9N: 70 individuals, 6 887 loci). The average depth
of sequencing coverage was 10.9x for hexaploids and 10.8x for nonaploids.
Though levels of inbreeding for both cytotypes were low, nonaploids
showed significantly higher levels of inbreeding than hexaploids (Figure
3a; F1,151 = 36.14, p = 1.3× 10−8).
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Fig. 3. Results of empirical data analyses. (a) Levels of inbreeding in Andropogon gerardii.
Inbreeding in the two cytotypes of A. gerardii is generally low, but the nonaploid (9N)
samples have higher levels of inbreeding on average. (b) Genotype estimation error in Betula
pubescens. The left panel shows the RMSD values for each of the possible genotypes (0–4).
The right panel shows a relative measure of the RMSD where each value is weighted the
occurrence of the particular genotype in the data set (see text for details).

4.2.2 Betula pubescens and B. pendula
The data set for the species of Betula consisted of 130 individuals for
B. pubescens and 34 individuals for B. pendula with genotype data for
49 021 loci. For B. pendula, we inferred allele frequencies and genotypes
assuming Hardy Weinberg (HW), as well as using our model for individual
inbreeding coefficients. The log likelihoods of the two models were very
similar and most of the inbreeding coefficients were estimated to be close
to 0, so we used the allele frequency estimates from the HW model
as the reference panel for the allopolyploid model. After estimating the
parameters of this model for B. pubescens using the EM+Brent method,
we assessed the accuracy of our empirical Bayes genotype estimates by
comparing them to the original data set using the root mean squared
deviation. This comparison is shown for each of the possible genotype
values (0–4) in Figure 3b. The left panel shows the RMSD for each
genotype value and the right panel shows a weighted measure of the RMSD
that corresponds to the relative amount of error based on the frequency of
that genotype in the original data set. For example, we do a poor job of
estimating the genotype when the true value is 0, but very few of the true
genotypes have that value (∼0.5%), so the relative contribution to the
overall error is much less. In contrast, roughly 75% of the true genotypes
have a value of 4, which is the value that we estimate the best. In addition,
many of the genotypes in B. pendula were equal to 2 (∼88%), so the
estimates of the allele frequencies were very close to 1.0, which could
have led to more error prone estimates of the genotypes in B. pubescens
when using them as the reference panel.

5 Discussion
The ability to genotype individuals in a population can be an under-
appreciated task, even though it is typically the first step of any population
genetic analysis. This is especially true for populations of polyploids,
where genotyping is further complicated by duplicated chromosomes and
their subsequent genome evolution. Until recently, genotyping polyploids
using high throughput sequencing data was only possible in model
organisms with reference genomes and/or subgenomes. However, recent
studies have begun genotyping SNPs in both model and non-model
organisms using whole genome resequencing and reduced representation
methods such as restriction-site associated DNA sequencing (RADseq)
and its variants (e.g., Arnold et al., 2015; Douglas et al., 2015; Cornille
et al., 2016; Zohren et al., 2016). Most of these studies used already
existing pieces of software to perform SNP calling and genotyping [e.g.,
Genome Analysis Toolkit (McKenna et al., 2010), UNEAK (Lu et al.,
2012), TASSEL-GBS (Glaubitz et al., 2014)] but others used novel
approaches for estimating genotypes (e.g., Voorrips et al., 2011; Zohren
et al., 2016; Maruki and Lynch, 2017). Using these tools to identify variants
in combination with our models for genotyping and parameter estimation
will be especially helpful for studies with low-coverage data.

The use of genotype likelihoods for arbitrary ploidy levels using EM
algorithms and the inclusion of deviations from Hardy Weinberg is a much
needed addition to allow for the analysis of low-coverage sequencing data
in autopolyploids and allopolyploids. We have also written algorithms
for genotype and parameter estimation using Hardy Weinberg and flat
genotype priors. The use of EM algorithms improves greatly on our
previous approach, which used Gibbs sampling for a model that assumed
Hardy Weinberg equilibrium for autopolyploids (Blischak et al., 2016).
The computational burden of inferences based on Markov chain Monte
Carlo (MCMC) rendered this approach impractical for most reasonably
sized population genomic data sets. Our new implementation of the Hardy
Weinberg model, plus the others, now run in a matter of minutes, rather
than hours or possibly even days using MCMC.

Though our models were accurate for many of our simulations
and outperformed comparable methods at low depths of sequencing
coverage, it is important to consider scenarios when their assumptions
are inappropriate. One concern for autopolyploids is the occurrence of
double reduction, a process by which alleles in the genotype are identical
by decent due to the segregation of sister chromatids to the same gamete
during meiosis (Haldane, 1930). As we mentioned before, our model does
not directly estimate rates of double reduction. However, because double
reduction leads to identity by descent, it contributes to deviations from
Hardy Weinberg that are similar to inbreeding. Therefore, our model for
individual inbreeding coefficients should be able to accommodate, but not
specifically estimate, double reduction.

Allopolyploids present a different set of challenges that are a result of
their hybrid origins. In our model, we assume that the two subgenomes
of the allopolyploid are completely independent. However, homoeologous
recombination can make this assumption inappropriate. Future work that
models this exchange of alleles between subgenomes will be an important
extension of the model we presented here. Another potential avenue
would be to develop ways to use more parental information, as well as
demographic parameters to account for the amount of divergence between
the allopolyploid and its parents. Models that help to identify parental taxa
will also be an important contribution for future research on allopolyploids.

6 Conclusions
As methods for the analysis of polyploid data continue to be developed,
we are hopeful that the barriers to more widespread study of these taxa
will begin to drop. The prevalence of polyploidy in plants and other
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groups of eukaryotes, including fish, amphibians, and fungi, make these
methods critically important for furthering our understanding of the impact
of WGD on genetic diversity (Rogers, 1973; Otto and Whitton, 2000;
Gregory and Mable, 2005; Wood et al., 2009). Of the main problems that
complicate population genetics in polyploids, we believe that modeling
allelic inheritance is the most difficult. It was previously thought that
ambiguity in the dosage of alleles in the genotype was also a major
complicating factor. As we have shown in this study, dealing with this
type of genotype uncertainty can easily be overcome using genotype
likelihoods.
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