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Summary	

Genetic	 interaction	 studies	 are	 a	 powerful	 approach	 to	 identify	 functional	 interactions	 between	
genes.		This	approach	can	reveal	networks	of	regulatory	hubs	and	connect	uncharacterised	genes	
to	 well-studied	 pathways.	 However,	 this	 approach	 has	 previously	 been	 limited	 to	 simple	 gene	
inactivation	 studies.	 Here,	 we	 present	 an	 orthogonal	 CRISPR/Cas-mediated	 genetic	 interaction	
approach	that	allows	the	systematic	activation	of	one	gene	while	simultaneously	knocking	out	a	
second	 gene	 in	 the	 same	 cell.	We	 have	 developed	 this	 concept	 into	 a	 quantitative	 and	 scalable	
combinatorial	screening	platform	that	allows	the	parallel	interrogation	of	hundreds	of	thousands	
of	genetic	interactions.	We	demonstrate	that	the	established	platform	works	robustly	to	uncover	
genetic	 interactions	 in	 human	 cancer	 cells	 and	 to	 interpret	 the	 direction	 of	 the	 flow	 of	 genetic	
information.	
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Introduction	

For	 over	 a	 decade,	 RNA	 interference	 (RNAi)	 has	 been	 used	 to	 systematically	 assign	 function	 to	
genes	 by	 studying	 loss-of-function	 phenotypes1.	More	 recently,	 it	 was	 shown	 that	 the	 bacterial	
pathogen-defence	system	CRISPR/Cas	can	be	used	to	edit	mammalian	genomes2	and	carry	out	a	
large	 variety	 of	 additional	 tasks	 including	 transcriptional	 repression	 and	 activation	 as	 well	 as	
epigenetic	modifications3.	The	currently	available	CRISPR/Cas	 toolbox	allows	 the	highly	parallel	
functional	interrogation	of	every	single	gene	in	the	human	genome4.	Nevertheless,	dissecting	the	
functional	 connectivity	 within	 complex	 cellular	 circuits	 is	 a	 major	 challenge	 in	 mammalian	
biology.	 While	 knockout	 and	 knockdown	 approaches	 above	 have	 proven	 highly	 successful	 to	
systematically	 attribute	 function	 to	 individual	mammalian	 genes,	 they	 do	 not	 provide	 a	 deeper	
understanding	of	how	these	genes	function	together	in	complex	genetic	signalling	networks.	For	
this	 purpose,	 genetic	 interaction	 mapping	 has	 proven	 highly	 valuable	 to	 assign	 functional	
connectivity	between	cellular	components.		

Genetic	interaction	mapping	traditionally	analyses	loss-of-function	phenotypes	of	individual	genes	
and	 their	 combinations	 to	 identify	 aggravating	 or	 alleviating	 genetic	 interactions5.	 Genetic	
interaction	 studies	 in	model	 organisms	 including	 yeast6-10,	 C.	 elegans11,	 Drosophila12,	 and	more	
recently	human	cells	have	established	functional	relationships	between	genes13-18.	Although	these	
studies	have	illuminated	new	connections	between	genes,	they	have	not	explicitly	addressed	the	
directionality	of	genetic	interactions	in	hierarchical	genetic	networks	in	human	cells.	But,	knowing	
the	 direction	 of	 genetic	 interactions	 can	 be	 critical	 for	 properly	 interpreting	 functional	
dependencies	 between	 genes,	 and	 offer	 rational	 approaches	 for	 therapeutic	 intervention.	 Yet,	
attempts	 to	 illuminate	 the	 direction	 of	 genetic	 interactions	 have	 been	 limited	 to	 model	
organisms19-22.	In	these	studies,	directionality	could	only	be	inferred	in	cases	where	either	one	of	
the	 interaction	 partners	 displays	 a	 no-loss-of-function	 phenotype,	 or	 both	 partners	 display	
opposing	 phenotypes20.	 However,	 the	 loss	 of	 each	 of	 two	 interacting	 genes	 generally	 has	 a	
phenotype	 by	 itself19	 and	 in	 the	 case	 of	 activating	 interactions,	 which	 are	 frequently	 found	 in	
aberrantly	 activated	 signalling	 cascades	 in	 cancer	 cells,	 such	 as	 MAPK	 signalling23	 –	 these	
phenotypes	go	in	the	same	direction.	

Overall,	tumour	genomes	display	a	large	variety	of	genetic	and	epigenetic	changes,	causing	tumour	
initiation,	progression	and	therapy	resistance24.	Owing	to	next-generation	sequencing	technology,	
the	list	of	genes	that	are	characterised	to	be	either	mutated	or	differentially	expressed	in	different	
tumours	is	growing	steadily25.	The	functional	interpretation	of	such	sequencing	data,	however,	is	
challenging	 and	 further	 complicated	 by	 the	 fact	 that	 genes	 rarely	 ever	 act	 by	 themselves,	 but	
rather	in	complex	genetic	interaction	networks,	in	which	the	function	of	one	gene	depends	on	the	
status	of	interacting	genes26.		

	

To	 reconstruct	 directional	 regulatory	 networks	 in	 human	 cells,	 we	 developed	 an	 orthogonal	
CRISPR/Cas	system	composed	of	two	Cas9	enzymes	from	different	species.	This	system	allows	the	
simultaneous	and	asymmetric	activation	of	one	gene	and	knockout	of	a	second	gene	in	the	same	
cell.	 When	 compared	 to	 conventional	 symmetrical	 loss-of-function	 experiments	 in	 which	 the	
function	of	 both	 interaction	partners	 is	 lost,	 our	 orthogonal	 asymmetric	platform	allowed	us	 to	
determine	whether	the	activated	gene	functionally	depends	on,	or	can	compensate	for	the	loss	of	a	
knocked-out	 gene.	 Using	 this	 platform,	 we	 identified	 directional	 genetic	 interactions	 between	
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genes	 whose	 activation	 or	 knockout	 altered	 the	 fitness	 of	 human	 chronic	 myeloid	 leukaemia	
(CML)	cells.	We	demonstrate	that	the	orthogonal	screening	approach	can	quantify	loss-	and	gain-
of-function	phenotypes	from	the	same	cell,	and	that	it	is	suitable	to	systematically	identify	genetic	
interactions	between	cancer	relevant	genes.	Importantly,	we	managed	to	reconstruct	a	significant	
number	 of	 directional	 dependencies,	 connecting	 uncharacterised	 ‘dark	 matter’	 genes	 to	 well-
studied	pathways.			

Results	

CRISPRa	screen	identifies	cancer	pathway	genes.	

CML	 is	 a	 leukaemia	 characterised	by	 a	 reciprocal	 translocation	between	 chromosome	9	 and	22.		
This	 translocation	 creates	 the	BCR-ABL	 fusion	 oncogene,	 a	 constitutively	 active	 tyrosine	 kinase	
oncogene	that	causes	myeloid	precursor	cells	to	divide	in	an	uncontrolled	fashion27.	Application	of	
BCR-ABL	tyrosine	kinase	inhibitors	(e.g.	 imatinib)	have	revolutionised	treatment	for	this	cancer,	
and	 decades	 of	 study	 have	 yielded	 fundamental	 information	 on	 the	 genes	 critical	 for	 BCR-ABL	
dependent	signalling.	We	thus	chose	CML	to	benchmark	our	novel	directional	genetic	interaction	
platform,	using	the	K562	CML	cell	line	to	systematically	identify	genes	that	function	as	negative	or	
positive	 regulators	 of	 cancer	 cell	 fitness.	We	 found	 that	 imatinib	 can	 tune	 the	 viability	 of	 K562	
cells	over	a	broad	range	of	concentrations	(10	-	1,000	nM),	and	that	CRISPR	mediated	activation	
(CRISPRa)	of	the	imatinib	efflux	transporter	ABCB1	resulted	in	an	approximately	2-fold	increased	
IC50	 at	 3	 days	 post	 treatment	 (Extended	 Data	 Fig.	 1a).	 In	 order	 to	 further	 optimise	 treatment	
conditions	for	a	CRISPRa	screen,	we	analysed	the	influence	of	repeated	treatment	cycles	at	IC50	on	
cell	viability.	We	found	that	after	three	cycles	of	100	nM	imatinib	(day	9),	ABCB1	overexpressing	
cells	 remained	 31.5-fold	 (sgABCB1-1)	 and	 23.5-fold	 (sgABCB1-2)	 more	 viable	 than	 negative	
control	 cells	 (sgNTC)	 (Extended	 Data	 Fig.	 1b).	 These	 results	 show	 that	 repeated	 cycles	 of	 low	
imatinib	 doses	 allow	 much	 greater	 enrichment	 of	 cells	 with	 activated	 resistance	 genes	 than	 a	
single	treatment.	

To	 systematically	 identify	 genes	 whose	 activation	 can	 alter	 the	 response	 of	 cells	 to	 BCR-ABL	
inhibition,	we	created	an	ultra-complex,	genome-scale	sgRNA	 library	consisting	of	over	260,000	
total	sgRNAs	targeting	every	Refseq	annotated	transcript	in	the	human	genome,	including	protein-
coding	and	non-coding	transcripts	and	each	isoform	thereof	individually	by	up	to	12	sgRNAs.	The	
sgRNA	 library	 was	 cloned	 into	 a	 lentiviral	 sgRNA	 expression	 vector	 and	 quality	 controlled	 via	
next-generation	 sequencing.	Fidelity	of	 sgRNA	sequences	was	 found	 to	be	high,	with	more	 than	
90%	perfect	 alignment	 rate	 and	 narrow	 distribution	 of	 sgRNA	 sequences,	with	 read	 counts	 for	
87%	of	sgRNA	sequences	falling	within	one	order	of	magnitude	(Extended	Data	Fig.	2).		

Quality-controlled	libraries	were	packaged	into	lentiviral	particles	and	used	to	transduce	the	K562	
CRISPRa	 target	 cells	 at	 low	multiplicity	of	 infection	 (MOI)	as	 summarised	 in	Figure	1a.	The	 low	
MOI	 used	 for	 transduction	 reduced	 the	 frequency	 of	multiple-infected	 cells;	 hence,	 one	 specific	
gene	was	activated	in	each	cell.	Following	antibiotic	selection	of	infected	cells,	escalating	doses	of	
imatinib	 ranging	 from	 IC50	 to	 IC80	were	 applied	 for	14	days	 to	 allow	cells	with	 altered	 imatinib	
tolerance	to	enrich	or	disappear	from	the	pool	of	cells	over	the	course	of	the	screen.	Genomic	DNA	
from	cells	at	the	beginning	and	end	of	the	screen	was	harvested	and	sgRNA	encoding	sequences	
were	 PCR-amplified	 from	 the	 genomic	 DNA.	 Cells	 that	 enriched	 or	 disenriched,	 following	
expression	of	a	certain	sgRNA	were	quantitated	via	next-generation	sequencing	(NGS)	of	the	pool	
of	 amplified	 sgRNA	 template	 sequences	 (Extended	Table	1).	Normalised	 read	 count	 ratios	were	
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used	by	averaging	the	phenotypes	of	the	top	25%	most	extreme	sgRNAs	to	compute	enrichment	
scores	(t)	and	p-values	for	each	gene.	Extended	Table	2	shows	a	summary	of	the	results	at	gene	
level,	 alongside	 the	 results	 from	 an	 untreated	 control	 screen	 without	 imatinib	 as	 well	 as	 the	
expression	 levels	 from	 each	 target	 gene	 in	 the	 K562	 CRISPRa	 cell	 line	 used	 for	 the	 screen.	We	
found	that	out	of	a	total	of	26,700	targeted	transcripts,	the	activation	of	332	of	them	significantly	
(FDR<0.05,	p<0.001)	altered	the	fitness	of	imatinib-treated	K562	cells	with	the	overexpression	of	
57%	 (188)	 causing	 depletion	 (blue)	 and	 43%	 (144)	 enrichment	 of	 cells	 over	 the	 course	 of	 the	
screen	 (Fig.	 1b).	Activation	of	83%	of	 those	 candidate	 genes	 (275)	 specifically	 altered	 the	 cells'	
response	to	imatinib	but	had	no	significant	effect	(FDR>0.05)	on	untreated	cells	while	17%	(57)	
affected	cell	growth	in	the	imatinib-treated	and	untreated	arm	of	the	screen	(Extended	Table	2).	
Phenotypes	 evoked	by	 the	 sgRNAs	 targeting	 the	 332	 candidate	 genes	were	 highly	 reproducible	
(r>0.98)	 between	 technical	 screen	 replicates	 (Extended	 Data	 Fig.	 3).	 Owing	 to	 this	 high	
reproducibility	and	the	large	complexity	of	the	employed	sgRNA	library	(12	sgRNAs/gene),	even	
subtle	 alterations	 of	 cell	 fitness	 could	 be	 detected	 at	 extremely	 high	 significance	 levels;	 for	
example,	the	slight	increase	in	fitness	observed	after	activation	of	the	cell	cycle	regulators	CDK6	(t	
=	 2.26,	 p	 =	 3x10-9)	 and	 CCND3	 (t	 =	 2.18,	 p	 =	 2.75x10-7),	 or	 the	 poorly	 understood	 noncoding	
lncRNA	PVT1	(t	=	2.25,	p	=	4x10-7).	

An	 important	 advantage	 of	 the	 gain-of-function	 approach	 used	 here,	 as	 opposed	 to	 more	
commonly	employed	loss-of-function	approaches,	is	that	non-expressed	genes	can	be	investigated.	
To	evaluate	 the	relationship	between	K562	gene	expression	 levels	and	the	ability	of	CRISPRa	to	
evoke	 significant	 fitness	 phenotypes	 from	 targeted	 genes,	 we	 compared	 FPKM	RNA	 expression	
levels	 to	gene	hit	probabilities	(Fig.	1c).	These	analyses	showed	an	approximately	 five	orders	of	
magnitude	 span	 in	 FPKM	 levels	 for	 the	 top	 332	 hit	 genes.	 These	 include	 non-expressed	 genes	
(21%,	 FPKM<100)	 like	 ABCB1,	 ABCG2,	 or	 CSF1R	which	 are	 frequently	 found	 activated	 in	 drug	
resistant	cancer	cells	from	leukaemia	patients28,	29.	Candidate	genes	also		include	expressed	genes	
(79%	 with	 FPKM>100)	 with	 well-studied	 roles	 in	 leukaemia,	 like	 MYC,	 BCR-ABL1	 or	 CDK630.	
Together	 these	 data	 indicate	 that	 imatinib	 responsive	 genes	 could	 be	 identified	 from	 the	 full	
spectrum	of	gene	expression	levels,	ranging	from	non-expressed	to	highly	expressed	genes.		

To	 assess	 the	 quality	 of	 the	 data	 on	 a	 global	 level,	we	 executed	 a	 gene	 set	 enrichment	 analysis	
(GSEA)31,	32	of	the	332	significantly	called	genes.	GSEA	identified	the	strongest	gene	enrichment	in	
leukaemia	and	other	cancer-related	KEGG	signalling	pathways	(Fig.	1d),	supporting	the	specificity	
of	 the	CRISPRa	screening	approach	 in	 identifying	positive	and	negative	regulators	of	cancer	cell	
survival	pathways.	A	subset	of	hit	genes	from	the	CRISPRa	screens	re-assembled	the	established	
pathways	 for	 Acute	 Myeloid	 Leukaemia	 (AML),	 reflecting	 shared	 core	 myeloid	 pathway	
components	with	CML.	Gene	sets	related	to	Erb	and	MAPK	signalling	and	cancer	related	pathways	
also	scored	significantly,	suggesting	that	the	top	332	genes	identified	in	the	CRISPRa	screen	were	
enriched	for	key	signatures	relevant	to	human	cancers.	To	give	a	graphic	summary	of	the	CRISPRa	
screen	results,	candidate	genes	with	known	roles	in	well-established	cancer	signalling	pathways,	
were	assembled	(Fig.	2a).	

Given	 the	enrichment	of	key	GSEA	signatures	 in	 the	set	of	 identified	candidate	genes,	we	 tested	
three	sgRNAs	against	each	of	the	top	20	genes	individually	in	an	arrayed	96	well	plate	validation	
assay.	 To	 quantitate	 cell	 survival	 and	proliferation,	 control	 cells	 that	 expressed	no	 sgRNA	were	
mixed	with	cells	transduced	with	an	individual	sgRNA	targeting	one	of	the	top	20	candidate	genes.	
Because	the	sgRNA	vector	carried	an	mCherry	reporter,	we	conveniently	monitored	relative	cell	
viability/proliferation	 over	 time	 via	 a	 red	 fluorescence	 FACS	 assay,	 a	 protocol	 which	 we	 have	
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found	 to	 be	 highly	 quantitative.	 The	 enrichment	 values	 from	 the	 arrayed	 validation	 assay	
exhibited	 a	 high	 degree	 of	 quantitative	 reproducibility	 when	 compared	 to	 screen	 enrichment	
datafor	 those	 sgRNAs	 (r	 =	 0.78)	with	 a	wide	 dynamic	 enrichment	 range	 over	 several	 orders	 of	
magnitude	(Fig.	2b).	Each	of	the	20	genes	showed	significant	activity	compared	to	the	activity	of	
Non-Targeting	Control	(NTC)	sgRNAs	(Fig.	2c).	Three	of	the	strongest	hits,	namely	ABCB1,	ABCG2	
and	 BCR-ABL1	 are	 well	 known	 to	 be	 overexpressed	 in	 CML	 patients	 with	 high	 tolerance	 to	
imatinib28.	 Additionally,	 we	 identified	 BCR-ABL1	 binding	 partners	 CBL	 and	 CRKL33,	 as	 well	 as	
downstream	 effectors	 SOS1,	 SOS2,	 GAB2,	 RAF1,	 MYC,	 PIM1,	 PIM2	 and	 STAT5B34,	 	 the	 c-Abl	
phosphatase	PTPN1235,	the	Ras-GAPs	NF1,	RASA1	and	RASA336	,	the	cell	cycle	regulators	CDK637	
and	 CCND338	 as	 well	 as	 receptor	 tyrosine	 kinases	 with	 well	 documented	 roles	 in	 imatinib	
resistance,	such	as	PDGFRB39,	FGF1R40,	CSF1R29	and	AXL41.	

	
An	orthogonal	screening	system	to	identify	directional	genetic	interactions	

Given	 the	 high	 quality	 of	 the	 CRISPRa	 screening	 data	 and	 the	 need	 to	 identify	 functional	
directional	 interactions	between	known	and	unknown	genes,	we	next	established	an	orthogonal	
screening	system	enablingthe	simultaneous	activation	of	one	gene	and	inhibition	of	a	second	gene	
(Fig.	 3a).	 Compared	 to	 traditional	 symmetric	 gene	 interaction	 study	 approaches,	 the	 combined	
gain-	and	loss-of-function	approach	results	in	two	opposing	outcomes	if	two	genes	interact	in	an	
activating	 way.	 To	 successfully	 conduct	 orthogonal	 screens,	 we	 created	 a	 new	 K562	 cell	 line	
harbouring	 the	 Streptococcus	pyogenes	based	 CRISPRa	 system	 described	 above,	 with	 wild	 type	
Cas9	 nuclease	 from	 Staphylococcus	 aureus	 (SaCas9).	 Cas9	 proteins	 from	 both	 species	 have	
different	 PAM	 requirements	 and	 Cas9	 structural	 studies	 found	 that	 each	 enzyme	 recognises	
different	constant	regions	of	the	cognate	sgRNA42,	43.	These	observations	indicate	that	each	Cas9	is	
not	likely	to	cross-react	with	the	cognate	sgRNA	engineered	for	the	other	orthogonal	Cas9	enzyme.	

We	 next	 wanted	 to	 employ	 the	 orthogonal	 CRISPR/Cas	 system	 to	 investigate	 functional	
interactions	between	different	genes.	For	that	purpose,	we	created	a	combinatorial	sgRNA	library	
composed	of	2.4	million	dual	 sgRNA	vectors.	This	 library	 consisted	of	192	preselected	CRISPRa	
sgRNAs,	 targeting	 87	 significantly	 enriched	 or	 disenriched	 candidate	 genes	 from	 the	 primary	
genome-scale	CRISPRa	screen	(2	sgRNAs/gene	plus	18	non-target	controls)	combined	with	12,500	
SaCas9	nuclease	sgRNAs	targeting	over	1,300	genes	for	knockout	(8	sgRNAs/gene	plus	878	non-
target	controls),	including	every	gene	in	KEGG	annotated	cancer-relevant	signalling	pathways.	The	
orthogonal	 sgRNA	 library	 sequences	 along	with	 target	 gene	names	 for	 the	CRISPRa	and	SaCas9	
nuclease	system	are	shown	in	Extended	Tables	3	and	4,	respectively.	

The	dual	sgRNA	expression	library	was	transduced	into	two	clonal	lines	of	orthogonal	K562	cells.	
The	 transduced	 clonal	 lines	were	 cultured	 in	 separate	 bioreactors	 in	 the	presence	 of	 escalating	
doses	of	imatinib.	After	19	days,	cells	were	harvested,	and	sgRNA	abundances	were	analysed	from	
the	 selected	 cells	 via	 NGS.	 Individual	 activation	 and	 knockout	 phenotypes,	 and	 all	 possible	
combinations	 thereof	 were	 quantified	 independently	 from	 the	 two	 clonal	 screen	 replicates	 as	
previously	described44.	To	permit	 the	most	 rigorous	quantification	 from	 the	determined	values,	
knocked-out	 genes	were	only	 retained	 for	 further	 analysis	 if	 the	 knockout	 showed	a	 significant	
phenotype	 by	 itself	 (FDR	 <	 0.05)	 and	 if	 genes	 were	 represented	 by	 at	 least	 two	 strongly	
correlating	sgRNAs	(based	on	the	correlation	between	genetic	 interaction	patterns,	see	Methods	
for	 details).	 Likewise,	 activated	 genes	 were	 retained	 for	 further	 analysis	 only,	 if	 their	 sgRNA	
showed	correlated	genetic	interaction	patters	above	a	certain	threshold	(see	Methods	for	details).	
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In	 this	 fashion,	 only	 the	 most	 stringent	 hit	 genes	 were	 included	 in	 the	 double	 perturbation	
analyses.	

A	necessary	value	in	gene	interaction	studies	is	the	measurement	of	single-gene	perturbations.		To	
facilitate	dissection	of	activation-only	phenotypes	and	knockout-only	phenotypes,	we	 included	a	
large	number	of	non-target	control	sequences	 in	the	combination	 library	(see	above).	Hence	the	
library	 contained	 dual	 sgRNA	 vectors	 which	 harboured	 only	 an	 activating	 sgRNA	 or	 only	 an	
inactivating	 sgRNA	 at	 one	 position	 and	 a	 non-targeting	 control	 sgRNA	 in	 the	 other.	 Dissecting	
these	two	populations	of	vectors	allowed	the	clean	evaluation	of	replicate	performance	 for	both	
single	 activation	 (r=0.96,	 Fig.	 3b)	 and	 knockout	 phenotypes	 (r=0.98,	 Fig.	 3c).	 Both	 single	 gene	
activation	and	single	knockout	phenotypes	included	negative	and	positive	regulators	of	cell	fitness	
in	 the	presence	of	 imatinib	and	these	results	were	 in	strong	agreement	between	both	replicates	
(Fig.	3b	and	c)	and	the	 initial	CRISPRa	screen	(Extended	Data	Fig.	4).	Most	 importantly,	we	also	
observed	 highly	 reproducible	 (r=0.94)	 and	 quantitative	 measurements	 of	 phenotypes	 derived	
from	the	dual	sgRNA	vectors	combining	all	possible	combinations	of	sgRNAs	(Fig.	3d).	All	single	
and	 combinatorial	 t	 values	 were	 clustered	 hierarchically	 based	 on	 the	 un-centred	 Pearson	
correlations	of	their	t	profile	and	a	map	of	the	results	is	shown	in	Extended	Data	Fig.	5.	Together	
these	data	confirm:	1)	 the	ability	 for	both	Cas	systems	to	work	 in	parallel	 to	produce	activation	
and	knock-out	phenotypes	 in	 the	same	celland	2)	 the	suitability	of	our	NGS	analysis	pipeline	 to	
accurately	quantify	phenotypes	from	combinatorial	gene	perturbations.	

To	systematically	identify	genetic	interactions	in	the	deep	dual	sgRNA	dataset,	t	values	were	used	
to	 compute	 genetic	 interaction	 (GI)	 scores	 for	 all	 gene-gene	 combinations.	 For	 this	 purpose,	 all	
individual	 gene	 activation	 and	 knockout	 t	 values	 at	 the	 sgRNA	 level	 were	 used	 to	 compute	
expected	 combinatorial	 t	 values,	 which	 were	 then	 compared	 to	 the	 measured	 combinatorial	 t	
values44.	Genes	were	considered	to	interact	when	their	GI	scores	exceeded	a	1x	standard	deviation	
cut-off	consistently	in	both	biological	screen	replicates,	restricting	the	resulting	dataset	to	a	higher	
stringency.	Directionality	of	the	identified	interactions	was	interpreted,	depending	on	whether	the	
activated	or	knocked	out	gene	was	dominating	the	combinatorial	phenotype	(Fig.	3e).	To	permit	
quantitative	 interpretation	of	directionality	 in	 the	measured	 interactions,	GI	scores	and	t	values	
were	integrated	into	a	single	directionality	score	Y.	For	genetic	interactions	between	genes	having	
opposing	phenotypes,	and	to	maintain	stringency,	directionality	was	inferred	if	Y	exceeded	a	1x	
standard	deviation	cut-off.	For	each	of	 the	 thousands	of	 interrogated	gene-gene	combinations,	t	
values,	 gene	 interaction	 scores	 and	 Y directionality	 scores	 from	 both	 clonal	 replicates	 are	
provided	 in	 Extended	 Table	 5.	 Based	 on	 the	 determined	 t values	 and	Y scores,	 a	 directional	
genetic	 interaction	 network	 that	 consists	 of	 only	 significant	 and	 reproducible	 interactions	
determined	 by	 our	 orthogonal	 screen	 (Extended	 Table	 6)	 was	 constructed	 and	 inferred	
directionality	is	indicated	by	arrow	heads	where	possible	(Fig.	4a).	These	data	comprise	the	only	
reported	 instance	 of	 deduced	 directionality	 for	 a	 large-scale	 cancer	 gene	 interaction	 network	
screen,	 providing	 a	 compendium	 of	 directional-edge	 models.	 Together,	 these	 directional-edge	
models	 connect	 a	 total	 of	 70	 nodes,	 demonstrating	 a	 high	 level	 of	 interconnectivity	 between	
nodes.	For	 clarity,	 interactions	 from	all	70	 separated	nodes	are	 shown	 individually	 in	Extended	
Data	Fig.	6.		

SPRED2	sensitises	cells	through	NF1.	

The	orthogonal	screen	data	suggest	that	the	cell	growth	inhibitive	function	of	SPRED2	is	lost	with	
the	loss	of	NF1,	suggesting	a	function	of	SPRED2	upstream	of	NF1.	NF1	encodes	Neurofibromin	1,	
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a	Ras-GAP,	 that	 switches	 the	Ras	protein	 from	 its	 active	GTP-bound	 state	 into	 its	 inactive	GDP-
bound	 state,	 thereby	 turning	 off	 MAPK	 signalling	 promoted	 proliferation45.	 Inactivating	 NF1	
mutations	are	found	at	high	frequency	not	only	in	Neurofibromatosis	146	but	also	in	a	variety	of	
cancers	 like	melanoma47,	48,	 glioblastoma49,	50	 and	 ovarian	 cancer51.	We	 first	 confirmed	 by	 qRT-
PCR	that	SPRED2	mRNA	levels	following	CRISPRa	mediated	gene	activation	were	almost	identical	
in	 K562	 cells	 with	 or	 without	 NF1	 (Fig.	 4b).	 When	 treated	 with	 imatinib,	 NF1-knockout	 cells	
enriched	4.5x,	while	NF1-wildtype	cells	with	CRISPRa-mediated	NF1	activation	became	3x	more	
sensitive	 to	 the	 treatment	when	compared	 to	control	 cells	 (Fig.	4c).	As	expected,	 the	sensitising	
effect	 of	 NF1	 activation	 was	 reversed	 in	 NF1-knockout	 cells,	 which	 showed	 the	 same	 level	 of	
enrichment	 than	 NF1-knockout	 control	 cells	 without	 CRISPRa	 mediated	 NF1	 activation	 (4.5x).	
Most	 importantly,	 activation	 of	 SPRED2	 by	 two	 different	 sgRNAs	 significantly	 sensitised	 NF1-
wildtype	cells	 to	 imatinib	 treatment	while	 in	NF1-knockout	cells	 this	sensitising	effect	was	 fully	
lost,	 suggesting	 that	 SPRED2	 acts	 exclusively	 through	 NF1	 in	 order	 to	 sensitize	 K562	 cells	 to	
imatinib	(Fig.	4c).	 	 In	support	of	these	results,	we	show	that	SPRED2	overexpression	suppresses	
EGF-induced	Ras	activation	in	HEK293	cells	(1.93x	versus	1.36x	induction)	which	is	 in	 line	with	
previous	 findings	showing	 that	 the	double	knockdown	of	SPRED1/2	 leads	 to	 increased	Ras-GTP	
levels52.	 In	 addition,	we	 show	 that	 the	 ability	 of	 SPRED2	 to	 suppress	Ras	 activation	was	 lost	 in	
NF1-knockout	 cells	 (1.56x	versus	1.5x	 induction)	 (Fig.	 4d)	which	 further	 confirms	 that	 SPRED2	
requires	NF1	to	exert	its	sensitising	function.	

The	directional	SPRED2-NF1	interaction	represents	only	one	example	of	the	genetic	interactions	
identified	by	our	orthogonal	Cas9	screen.	In	addition,	a	number	of	genetic	interactions	observed	in	
our	screen	have	already	been	described	in	the	literature,	including	the	activation	of	the	MYC	gene	
by	 the	 MYB	 transcription	 factor53-55,	 the	 synergistic	 interaction	 between	 MYB	 and	 ETS1	 in	
transcriptional	 regulation	 of	 their	 shared	 targets56-58,	 dephosphorylation	 of	 STAT5B	 by	 the	
phosphatase	PTPN1	(also	known	as	PTP1B)59-61,and	the	accepted	interaction	between	PTPN1	and	
BCR-ABL62.	Together,	these	validated	and	published	data	confirm	the	usefulness	of	this	technology	
to	uncover	directional	genetic	interactions	between	known	and	unknown	factors	in	cancer	cells.	

Discussion	

Inferring	 the	 direction	 of	 genetic	 interactions	 in	 model	 organisms	 has	 been	 a	 long-standing	
challenge.	 Here,	 we	 describe	 a	 systematic	 highly	 quantitative	 approach	 using	 orthologous	
CRISPR/Cas	 enzymes	 in	 human	 cells.	 While	 all	 previous	 genetic	 interaction	 studies	 have	 used	
symmetric	 systems	 where	 the	 function	 of	 both	 potential	 interaction	 partners	 is	 lost,	 the	
orthogonal	 approach	 combines	 the	 CRISPR/Cas	 mediated	 activation	 of	 one	 interaction	 partner	
with	the	functional	loss	of	a	second	one.	Here,	we	established	the	full	methodology	and	reagents	
necessary	 to	conduct	highly	parallel	dual	 sgRNA	CRISPR/Cas	screens,	 including	stable	CRISPRa-
SaCas9	 nuclease	 cell	 lines,	 dual	 sgRNA	 libraries	 and	 a	 barcode-free	 next	 generation	 sequencing	
strategy	 to	 quantify	 sgRNA	 combinations	 in	 orthogonal	 screens.	 We	 demonstrate	 how	 this	
approach	can	be	used	to	accurately	quantify	gene	activation	and	knockout	phenotypes	as	well	as	
combinations	 thereof,	 to	 interpret	 orientation	 in	 activating	 genetic	 interactions,	 simply	 by	
expressing	two	sgRNAs,	a	task	that	would	have	been	incredibly	challenging	to	achieve	before	the	
advent	of	CRISPR/Cas	technology.	Moreover,	 the	orthogonal	screening	approach	developed	here	
significantly	advances	previous	approaches	 that	 characterise	genetic	 interactions	 in	mammalian	
cells	by	means	of	RNAi13-15,	17	and	complements	more	recently	published	symmetric	CRISPR/Cas	
knockout	 based	 screening	 approaches63.	 It	 also	 opens	 the	 door	 to	 combinations	 of	 any	 two	
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CRISPR/Cas-based	 technologies,	 such	 as	 transcriptional	 silencing64	 or	 targeted	 DNA	
methylation65,	 which	 represents	 a	 substantial	 advance	 compared	 to	 the	 only	 other	 orthogonal	
CRISPR/Cas-based	method	published	to	date	by	Dahlmann	et	al.,	which	achieves	gene	activation	
and	knockout	using	'catalytically	dead'	sgRNAs	in	combination	with	a	catalytically	active	CRISPRa	
Cas9	enzyme	from	S.pyogenes66.	

Approaches	to	construct	quantifiable	directional	models	have	been	limited	and	there	have	been	no	
established	 technologies	 to	 efficiently	 specify	 directionality	 in	 pathways.	 This	 is	 particularly	 a	
problem	 in	 fields	 such	as	 cancer	biology,	where	a	major	ongoing	 focus	 is	 to	 identify	 synergistic	
genetic	vulnerabilities	and	directional	dependencies	that	provide	a	sound	basis	for	the	design	of	
rational	 polytherapies	 to	 help	 prevent	 drug	 resistance.	 We	 provide	 a	 large	 map	 of	 genetic	
interactions	 that	 will	 help	 to	 further	 understand	 why	 some	 patients	 respond	 well	 to	 tyrosine	
kinase	 inhibitors	 while	 others	 acquire	 resistances.	 These	 dependencies	 need	 to	 be	 considered	
when	 designing	 a	 treatment	 plan	 for	 patients	 harbouring	 these	 biomarkers	 and	 the	 described	
orthogonal	platform	offers	an	informed	basis	by	which	therapeutic	intervention	strategies	can	be	
designed.	Decoding	directional	genetic	interactions	through	orthogonal	CRISPR/Cas	screens	offers	
a	 fresh	 new	 approach	 to	 uncovering	 key	 dependencies	 in	 pathways	 critical	 for	 understanding	
human	gene	function	and	disease.	
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Figure	legends	
Figure	1	 |	Ultra-complex	CRISPRa	 screen	 identifies	hundreds	of	 genes	 involved	 in	 cancer	
signalling	 pathways.	 a,	 Schematic	 of	 genome-scale	 CRISPRa	 screening	 approach	 (see	 text	 for	
details).	b,	Overview	of	CRISPRa	screen	results.	Negative	t	values	indicate	a	decrease	and	positive	
values	 an	 increase	 of	 cell	 fitness	 following	 gene	 activation.	 Significant	 candidate	 genes	 (FDR	 <	
0.05,	dotted	 line)	are	 in	colour	(blue	=	decrease,	 red	=	 increase	 in	 fitness).	Previously	 identified	
gene	 names	 are	 highlighted	 in	 gray	 (see	 also	 Fig.	 2a)	 while	 newly	 identified	 and	 validated	
candidate	genes	are	labelled	in	black	(see	also	Fig.	2c).	c,	Comparison	of	absolute	gene	expression	
levels	(FPKM)	to	results	from	the	CRISPRa	screen	(-log10	p-value).	d,	GSEA	with	the	332	significant	
candidate	genes	identified	by	CRISPRa	screen.	

Figure	 2	 |	 Phenotypes	 from	 pooled	 CRISPRa	 screen	 are	 highly	 reproducible.	 a,	 Subset	 of	
identified	 candidate	 genes	 mapped	 onto	 known	 signalling	 pathways	 (blue	 =	 negative,	 red	 =	
positive	 regulatorof	 fitness).	 b,	 sgRNA	 sequences	 against	 20	 significant	 candidate	 genes	 from	
pooled	 CRISPRa	 screen	 (n=3	 sgRNAs/gene)	 were	 individually	 sub-cloned	 and	 re-assayed	 in	 an	
arrayed	 96-well	 format.	 Validation	 results	 show	 high	 levels	 of	 correlation	 betweeneven	 subtle	
phenotypes	 (e.g.	 CDK6,	 PVT1)	 from	 the	 pooled	 screen.	 Non-target	 controls	 (NTC)	 show	 no	
enrichment.	Mean	values	with	s.e.m.	are	shown.	c,	Candidate	gene	enrichment	was	measured	over	
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time.	Values	represent	the	mean	of	three	sgRNAs	targeting	each	gene	with	s.e.m.	Grey	shading	=	
two	standard	deviations	of		sgNTCs.	

Figure	3	|	Orthogonal	CRISPR/Cas	screens	can	quantify	directional	genetic	interactions.	a,	
Schematic	 of	 the	 orthogonal	 CRISPR/Cas	 system.	 CRISPRa	 system	 (S.pyogenes	 Cas9-based)	was	
combined	with	Cas9	nuclease	from	S.aureus	and	dual	sgRNA	expression	vectors	were	developed	to	
express	appropriate	 sgRNAs	 to	direct	either	 system	to	distinct	genomic	 target	 sites	 in	 the	same	
cell.	Correlation	of	t	values	from	two	biological	replicates	is	shown	for	b,	gene	activation,	c,	gene	
knockout	and	d,	all	possible	combinations	thereof.	e,	 if	 the	combinatorial	phenotype	mimics	the	
knockout	phenotype,	the	activated	gene	was	interpreted	to	act	upstream	of	the	knocked	out	gene	
B	(left	panel),	and	if	the	combination	mimics	the	activation	phenotype,	the	activated	gene	A	was	
interpreted	to	act	downstream	(right	panel).	

Figure	4	|	Validation	of	directional	genetic	 interaction	between	SPRED2	and	NF1.	a,	Based	
on	GI	scores	determined	by	the	full	orthogonal	interaction	screen,	a	genetic	interaction	model	was	
constructed.	 For	 positive	 regulators	 of	 cell	 fitness,	 nodes	 are	 shown	 in	 red	 and	 for	 negative	
regulators	in	blue.	Arrow-shaped	edges	indicate	inferred	directional	interactions	between	nodes.	
Line-shaped	 edges	 symbolise	 genetic	 interactions	where	 directionality	 could	 not	 be	 inferred.	b,	
Significantly	 increased	 SPRED2	 mRNA	 levels	 were	 detected	 via	 qRT-PCR	 in	 NF1	 wildtype	 and	
knockout	 cells	 that	 expressed	 SPRED2	 activating	 CRISPRa	 sgRNAs	 (mean	with	 s.e.m.	 is	 shown,	
n=3,	 x-axis	 indicates	 expressed	 CRISPRa	 sgRNAs).	 c,	 NF1	 and	 SPRED2	 activation	 significantly	
sensitises	 NF1	wildtype	 but	 not	 NF1	 knockout	 cells	 to	 imatinib	 treatment	 (mean	with	 s.e.m.	 is	
shown,	 n=3,	 x-axis	 indicates	 CRISPRa	 sgRNAs).	 d,	 Overexpression	 of	 SPRED2	 suppresses	 Ras	
activation	only	in	NF1-wildtype	cells,	as	judged	by	Ras-GTP	levels.	Quantified	Ras-GTP	level	fold-
changes	of	EGF-induced	versus	non-induced	cells	are	shown.	Negative	control	(CTRL)	and	SPRED2	
overexpression	 constructs	 were	 transiently	 transfected	 into	 HEK293T	 cells	 24h	 before	 EGF	
stimulation.	

	

Extended	Data	Figure	1	|	a,	Dose	response	curve	on	K562-CRISPRa	cells	with	non-target	control	
sgRNA	 (sgNTC)	 or	 sgRNAs	 targeting	 the	 imatinib	 efflux	 transporter	 ABCB1	 for	 activation	
(sgABCB1-1	and	sgABCB1-2).	IC50	values	are	shown	in	brackets.	b,	K562-CRISPRa	cells	expressing	
sgRNAs	from	a	or	no	sgRNA	treated	repeatedly	with	100	nM	imatinib	on	days	0,	3	and	6.	Fractions	
of	viable	cells,	SEMs	and	resistance	factors	(RF	=	fraction	of	viable	ABCB1	overexpressing	cells	/	
fraction	of	viable	control	cells)	are	shown	from	days	3,	6	and	9.	

Extended	Data	Figure	2	|	CRISPRa	sgRNA	library	distribution.	Shown	is	the	cumulative	fraction	
of	sgRNAs	in	the	CRISPRa	library	ranked	by	their	normalised	read	counts.	Shaded	area	highlights	
one	order	of	magnitude	around	median	read	count.	

Extended	 Data	 Figure	 3	 |	 CRISPRa	 screen	 reproducibility.	 Correlation	 between	 sgRNA	
phenotypes	 from	three	 technical	 screen	replicates	 (R1-3).	Shown	are	 fold-changes	 from	sgRNAs	
(cutoff>100	reads	per	sgRNA	in	baseline	sample)	targeting	all	significantly	dis-/enriched	CRISPRa	
screen	candidate	genes.	

Extended	Data	Figure	4	|	CRISPRa	t	values	from	the	primary	screen	and	CRISPRa	t	values	from	
the	 orthogonal	 screen	 (non-target	 control	 in	 SaCas9	 nuclease	 position)	 show	 a	 high	 level	 of	
correlation	(r	=	0.9267).	
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Extended	Data	Figure	5	|	Gene	activation	phenotypes	are	shown	in	rows,	knockout	phenotypes	
in	columns.	Colours	represent	a	decrease	(blue)	or	increase	(red)	in	cell	fitness	following	indicated	
genetic	modifications.	

Extended	Data	Figure	6	|	All	genetic	 interactions	identified	from	the	orthogonal	CRISPR	screen	
separated	by	nodes	(highlighted	in	yellow).	
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Methods	

CRISPRa	and	orthogonal	K562	cell	lines.	K562	CRISPRa	cells67,	68	were	kindly	provided	by	Luke	
Gilbert	and	cultured	 in	RPMI	1640	medium,	supplemented	with	10%	fetal	bovine	serum	and	1x	
Anti-Anti	 (Gibco).	 Via	 lentiviral	 transduction,	 S.	 aureus	 Cas9	 under	 the	 control	 of	 an	 EF1a	
promoter,	was	 introduced	 into	K562	CRISPRa	cells.	 	Successfully	 transduced	cells	were	selected	
with	hygromycin	(200	ug/mL)	and	single	clones	were	expanded	for	14	days.		

Cell	viability	assays.	Cells	were	seeded	at	10,000	cells	per	96-well	 in	200	uL	RPMI-1640	(10%	
FBS,	1%	pen-strep)	with	indicated	imatinib	concentrations.	Viability	was	determined	at	indicated	
time	 points	 by	mixing	 100	 uL	 cell	 suspension	with	 50	 uLresazurine	medium	 (50	 ug/mL,	 Acros	
Organics).	After	2h	 incubation,	 fluorescence	was	quantified	on	 a	plate	 reader	 (BMG	Labtech)	 at	
excitation:	530	nm	and	emmision:	590	nm.	

Vector	 maps.	 For	 the	 single	 sgRNA	 (sgLenti),	 dual	 sgRNA	 (sgLenti-orthogonal)	 and	 SaCas9	
nuclease	vector,	vector	maps	are	provided	in	Genbank	format	(Extended	Data	1-3).	

CRISPRa	and	orthogonal	sgRNA	library	design.	For	the	initial	CRISPRa	screen,	a	genome-wide	
sgRNA	 library	 of	 260,000	 sgRNAs	 was	 generated	 targeting	 the	 promoter	 regions	 of	 coding	
transcripts	and	selected	non-coding	regions,	including	7,700	non-target	control	sequences	(NTC).	
The	 promoter	 regions	 for	 coding	 transcripts	 targeted	 windows	 25	 to	 500bp	 upstream	 of	 the	
Refseq-annotated	transcription	start	sites.	SgRNAs	were	designed	against	targets	in	the	promoters	
that	 are	 of	 the	 format	 (N)20NGG,	 and	 selected	 sgRNAs	 must	 pass	 the	 following	 off-targeting	
criteria:	1)	the	11bp-seed	must	not	have	an	exact	match	in	any	other	promoter	region,	and	2)	 if	
there	is	an	exact	off-target	seed	match,	then	the	rest	of	the	sgRNA	must	have	at	least	7	mismatches	
with	the	potential	off-target	site.	After	all	sgRNAs	that	pass	off-targeting	criteria	were	generated,	
up	 to	12	 sgRNAs/transcript	were	 selected	 that	were	nearest	 to	 the	 transcription	 start	 sites.	All	
sgRNA	 sequences	 are	 shown	 in	 Extended	 Table	 1.	 In	 addition	 to	 the	 sgRNA	 sequence,	 every	
plasmid	contained	a	unique	20	nt	barcode	sequence	(see	sgLenti	vector	map,	Extended	Data	1).	
This	 sequence	 allowed	 the	 distinction	 between	 sgRNAs	 expressed	 from	 different	 plasmids	 and	
hence	 in	 different	 sub-populations	 of	 cells	 and	 was	 used	 to	 bin	 cells	 into	 mutually	 exclusive	
barcode	bins	to	create	technical	screen	replicates	after	sequencing.	

For	the	secondary	genetic	interaction	screen,	a	focused	nuclease-active	S.	aureus	Cas9	library	was	
generated	 targeting	 1327	 genes.	 For	 the	 selected	 genes,	 sgRNAs	 targeting	 coding	 exons	 and	
microRNA	hairpins	were	generated	using	Cas-Designer	69,	generating	sgRNAs	that	were	adjacent	
to	the	PAM	sequence	‘NHGRRT’	(H	=	A,	C,	or	T),	which	allows	for	targeting	with	S.	aureus	Cas9	but	
not	with	S.	pyogenes	Cas9.	Potential	off-targets	against	 the	human	genome	were	 identified	using	
Cas-OFFinder66.	Cas-OFFinder	 sgRNA	results	were	 ranked,	penalizing	 sgRNAs	 that	have	perfect-
seed	off-targets	and	5	mismatches	or	less	in	potential	off-target	regions.	The	20%	of	sgRNAs	with	
the	highest	off-target	penalties	and	bottom	20%	of	 sgRNAs	with	 the	 lowest	out-of-frame	scores	
from	Cas-Designer	were	eliminated.	From	the	resulting	list	of	sgRNAs,	up	to	8	sgRNAs/gene	were	
selected,	targeting	the	most	5’	constitutive	exons	for	each	gene.		

CRISPRa	 and	 orthogonal	 sgRNA	 library	 cloning.	 The	 designed	 20	 nt	 target	 specific	 sgRNA	
sequences	 were	 synthesised	 as	 a	 pool,	 on	 microarray	 surfaces	 (CustomArray,	 Inc.),	 flanked	 by	
overhangs	compatible	with	Gibson	Assembly58	into	the	pSico	based	sgLenti	sgRNA	library	vector	
after	AarI	(Thermo-Fischer)	restriction	digest.	The	synthesised	sgRNA	template	sequences	were	of	
the	 format:	 5’-GGAGAACCACCTTGTTGG-(N)20-GTTTAAGAGCTATGCTGGAAAC-3’.	 Template	 pools	
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were	PCR	amplified	using	Phusion	Flash	High-Fidelity	PCR	Master	Mix	(ThermoFisher	Scientific)	
according	to	the	manufacturers	protocol	with	1	ng/uL	sgRNA	template	DNA,	1	uM	forward	primer	
(5’-GGAGAACCACCTTGTTGG-3’),	1	uM	reverse	primer	(5’-	GTTTCCAGCATAGCTCTTAAAC-3’)	and	
the	following	cycle	numbers:	1x	(98C	for	3	min),	15x	(98C	for	1	sec,	55C	for	15	sec,	72C	for	20	sec)	
and	1x	 (72C	 for	 5	min).	 PCR	products	were	purified	using	Minelute	 columns	 (Qiagen).	 	 Library	
vector	 sgLenti	was	preapred	by	 restriction	digest	with	AarI	 (Thermo-Fischer)	at	37C	overnight,	
followed	by	agarose	gel	excision	of	the	digested	band	and	purification	using	NucleoSpin	columns	
(Macherey-Nagel).	Using	Gibson	Assmbly	Master	Mix	(NEB),		1000	ng	digested	sgLenti	and	100	ng	
amplified	sgRNA	 library	 insert	were	assembled	 in	a	 total	200	uL	 reaction	volume	 for	15	min	at	
50°C.	 The	 reaction	 was	 purified	 using	 P-30	 buffer	 exchange	 columns	 (Biorad)	 that	 were	
equilibrated	 5x	 with	 H2O	 and	 the	 total	 eluted	 volume	 was	 transformed	 into	 three	 vials	 of	
Electromax	DH5a-E	(Invitrogen)	using	pre-chilled	1	mm	cuvettes	and	2.0	kV,	200 Ohm,	25	uF	on	
the	Gene	PulserXcell	 system	(Biorad).	Transformed	E.coli	were	recovered,	 cultured	overnight	 in	
500	mL		LB	(100	ug/mL	ampicillin)	and	used	for	Maxiprep	(Qiagen).	In	parallel,	a	fraction	of	the	
transformation	 reaction	 was	 plated	 and	 used	 to	 determine	 the	 total	 number	 of	 transformed	
clones.	The	coverage	was	determined	to	be	70x	clones	per	sgRNA	ensuring	even	representation	of	
all	library	sgRNA	sequences	and	their	narrow	distribution	(Extended	Data	Fig.	2).	

For	orthogonal	CRISPR	 libraries,	CRISPRa	 sgRNA	pools	were	 cloned	 into	position	1	of	 the	AarI-
digested	 plasmid	 sgLenti-orthogonal	 exactly	 as	 described	 for	 the	 CRISPRa	 library.	 Following	
amplification	 in	 E.coli,	 library	 plasmids	with	 the	 first	 position	 cloned	were	 digested	with	BfuAI	
(NEB)	 to	 allow	 cloning	 of	 SaCas9	 sgRNAs	 into	 the	 second	 position.	 To	 remove	 undigested	
orthogonal	sgRNA	library	plasmid	from	the	pool,	the	purified	(Nucleospin,	Macherey-Nagel)	BfuAI	
digested	 plasmid	 was	 subsequently	 digested	 with	 AscI	 for	 which	 restriction	 sites	 exist	 in	 the	
stuffer	sequences	in	sgRNA	positions	1	and	2.	BfuAI/AscI	digested	plasmid	was	extracted	from	1%	
Agarose	gel	 (Nucleospin,	Macherey-Nagel).	 Synthesised	SaCas9	sgRNA	 template	 sequences	were	
of	 the	 format:	 5’-GAAAGGACGAAACACCGTG-(N)22-GTTTTAGTACTCTGGAAACAGAATCT-3’.	 PCR	
amplification	 of	 the	 SaCas9	 template	 pool	 was	 performed	 as	 described	 above	 using	 primer	
sequences:	5’-GAAAGGACGAAACACCGTG-3’	and	5’-AGATTCTGTTTCCAGAGTACTAAAAC-3’	and	the	
purified	PCR	product	was	cloned	into	BfuAI	digested	sgLenti-orthogonal	via	Gibson	Assembly	as	
described	above.	The	resulting	orthogonal	sgRNA	library	was	transformed	into	Electromax	cells	at	
30x	 coverage	 as	 described	 above	 and	 the	 plasmid	 sgRNA	 library	 pool	 was	 purified	 (Qiagen	
Plasmid	Maxi	kit).	From	the	resulting	plasmid	pool,	sgRNA	sequences	were	recovered	via	PCR	as	
described	below	and	sequenced	for	quality	control.	At	a	read	depth	of	94x,	2.389	million	out	of	the	
total	possible	2.394	million	combinations	(>99%)	were	read	at	least	once,	with	less	than	5%	of	the	
library	elements	read	20	or	less	times.		

Lentivirus	production.	HEK293T	cells	were	seeded	at	65,000	cells	per	ccm	in	15	cm	dishes	in	20	
mL	media	 (DMEM,	10%	 fetal	 bovine	 serum)	and	 incubated	overnight	 at	37C,	 5%	CO2.	The	next	
morning,	 8	 ug	 sgRNA	 library	 plasmid,	 4	 ug	 psPAX2	 (Addgene	#12260),	 4	 ug	 pMD2.G	 (Addgene	
#12259)	and	40	uLjetPRIME	(Polyplus)	were	mixed	into	1	mL	serum	free	OptiMEM	(Gibco)	with	
1x	jetPRIME	buffer,	vortexed	and	incubated	for	10	min	at	RT	and	added	to	the	cells.	24	h	later,	40U	
DNAseI	 (NEB)	were	 added	 to	 each	 plate	 in	 order	 to	 remove	 untransfected	 plasmid	 and	 at	 72h	
post-transfection,	supernatant	was	harvested,	passed	through	0.45	um	filters	(Millipore,	Stericup)	
and	aliquots	were	stored	at	-80C.	

Genome-wide	 and	 orthogonal	 CRISPR	 screens.	 K562	 CRISPRa/orthogonal	 cells	 were	
transduced	with	lentivirally	packaged	sgRNA	libraries	at	MOI=0.3	and	500x	coverage	and	cultured	
in	 RPMI	 with	 10%	 FBS	 and	 1x	 Anti-Anti	 (Gibco)	 in	 a	 37°C	 incubator	 with	 5%	 CO2.	 48h	 post	
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transduction,	cells	were	selected	with	puromycin	(2	ug/mL)	for	96h.	Following	selection,	aliquots	
of	 300	million	 cells	 each,	 were	 frozen	 down	 in	 FBS	with	 10%	DMSO	 for	 analysis	 via	 NGS	 (see	
below).	Fully	 selected	cells	 (300	million)	were	 transferred	 into	a	14	 liter	CelligenBlu	bioreactor	
(Eppendorf)	 and	 sub-cultured	 at	 37°C,	 pH=7.4	 and	 2%	 oxygen.	 Coverage	 at	 cell	 level	was	 kept	
above	1000x	throughout	the	whole	screen	and	the	culture	medium	was	replaced	when	cell	density	
reached	1	mio/mL.	

For	 the	 genome-wide	 imatinib	 CRISPRa	 screen:	 14	 days	 post	 transduction,	 aliquots	 of	 300	mio	
cells	 each	 were	 frozen	 down	 (baseline	 sample)	 as	 described	 above	 and	 and	 the	 an	 IC50	
concentration	 of	 100	 nM	 imatinib	 (Sigma)	 were	 added	 to	 the	 bioreactor	 vessel.	 Imatinib	 was	
refreshed	on	day	17	(IC60	=	150	nM)	and	day	19	(IC80	=	300	nM)	and	cells	for	the	analysis	of	the	
final	time	point	were	harvested	on	day	28.	For	the	untreated	control	screen,	cells	were	cultured	
under	 identical	 conditions	 for	 14	days	 but	without	 the	 addition	 of	 imatinib.	 For	 the	 orthogonal	
genetic	 interaction	 screen:	Puromycin	 selected	 cells	 (2	ug/mL)	at	8	days	post	 transduction	 (2.5	
billion	per	sample)	were	frozen	down	as	described	above	and	100	nM	imatinib	(IC50)	were	added	
to	the	bioreactor	vessel.	Imatinib	concentrations	were	increased	throughout	the	screen	to	the	IC60	
concentration	of	150	nM	(day	10),	the	IC80	of	300	nM	(day	13	and	15)	and	finally	the	IC90	of	500	
nM	(day	17).	On	day	19	2.5	billion	cells	per	sample	were	harvested	for	downstream	analysis	via	
NGS.	

Genomic	DNA	(gDNA)	extraction.	Cell	pellets	 from	baseline	 and	 imatinib	 treated	or	 end	point	
(untreated)	samples	were	resuspended	in	20	mL	P1	buffer	(Qiagen)	with	100	ug/mL	RNase	A	and	
0.5%	 SDS	 followed	 by	 incubation	 at	 37C	 for	 30	 min.	 After	 that,	 Proteinase	 K	 was	 added	 (100	
ug/mL	final)	followed	by	incubation	at	55C	for	30	min.	After	digest,	samples	were	homogenised	by	
passing	 them	 three	 times	 through	 a	 18G	needle	 followed	by	 three	 times	 through	 a	 22G	needle.	
Homogenised	samples	were	mixed	with	20	mL	Phenol:Chlorophorm:Isoamyl	Alcohol	(Invitrogen	
#15593-031),	 transferred	 into	 50	mL	MaXtract	 tubes	 (Qiagen)	 and	 thoroughly	mixed.	 Samples	
were	 then	 centrifuged	 at	 1,500g	 for	 5	min	 at	 room	 temperature	 (RT).	 The	 aqueous	 phase	was	
transferred	into	ultracentrifuge	tubes	and	thoroughly	mixed	with	2	mL	3M	sodium	acetate	plus	16	
mL	 isopropanol	 at	 RT	 before	 centrifugation	 at	 15,000g	 for	 15	 min.	 The	 gDNA	 pellets	 were	
carefully	washed	with	10	mL	70%	ethanol	and	dried	at	37C.	Dry	pellets	were	resuspended	in	H2O	
and	gDNA	concentration	was	adjusted	to	1	ug/uL.	The	degree	of	gDNA	shearing	was	assessed	on	a	
1%	agarose	gel	and	gDNA	was	sheared	further	by	boiling	at	95C	until	average	size	was	between	
10-20	kb.		

PCR	recovery	of	sgRNA	sequences	from	gDNA.	Multiple	PCR	reactions	were	prepared	to	allow	
amplification	of	the	total	harvested	gDNA	from	a	1000x	cell	coverage	for	each	sample.	For	the	first	
round	of	two	nested	PCRs,	the	total	volume	was	100	uL	containing	50	ug	sheared	gDNA,		0.3	uM	
forward	(5’-ggcttggatttctataacttcgtatagca-3)	and	reverse	(5’-cggggactgtgggcgatgtg-3’)	primer,	200	
uM	each	dNTP,	 1x	Titanium	Taq	buffer	 and	1	uL	Titanium	Taq	 (Clontech).	 PCR	 cycles	were:	 1x	
(94C	-	3	min),	16x	(94C	-	30	sec,	65C	–	10	sec,	72C	–	20	sec),	1x	(68C	–	2	min).	All	first	round	PCRs	
were	pooled.	The	total	volume	of	the	second	round	PCR	was	100	uL	containing	2	uL	pooled	first	
round	PCR,	0.5	uM	forward	(5’-AATGATACGGCGACCACCGAGATCCACAAAAGGAAACTCACCCTAAC-
3’)	 and	 reverse	 (5’-CAAGCAGAAGACGGCATACGAGAT-(N)6-GTGACTGGAGTTCAGACGTG-3’)	
primer	where	 (N)6	 is	 a	6	nt	 index	 for	 sequencing	on	 the	 Illumina	HiSeq	platform,	200	uM	each	
dNTP,	 1x	Titanium	Taq	buffer	 and	1	uL	Titanium	Taq	 (Clontech).	 PCR	 cycles	were:	 1x	 (94C	 -	 3	
min),	16x	(94C	-	30	sec,	55C	–	10	sec,	72C	–	20	sec),	1x	(68C	–	2	min).	The	resulting	PCR	product	
(344	bp)	contained	adapter	sequences	compatible	with	Illumina	Hiseq	sequencing	platforms	and	
was	extracted	from	a	1%	agarose	gel.	For	the	orthogonal	genetic	interaction	screen,	conditions	for	
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the	 first	 round	 PCR	 were	 slightly	 modified	 to:	 total	 reaction	 volume	 80	 uL	 containing	 20	 ug	
sheared	gDNA	and	the	second	round	PCR	product	was	887	bp.	

Gel	 extracted	 bands	 from	 the	 primary	 CRISPRa	 screen	 were	 submitted	 for	 sequencing	 on	 an	
Illumina	HiSeq	 2500	 platform	 using	 paired	 end	 50	 kits	with	 the	 custom	 sequencing	 primer	 5’-
GAGACTATAAGTATCCCTTGGAGAACCACCTTGTTGG-3’	 for	 reading	 the	 sgRNA	 sequence	 and	 the	
Truseq	Illumina	reverse	primer	to	read	out	20	nt	random	barcode	sequences	used	for	generation	
of	 technical	 screen	 replicates	 (separation	 of	 sgRNA	 reads	 into	 three	 groups	 with	 mutually	
exclusive	barcode	sequence	bins).	For	orthogonal	dual	sgRNA	library	analysis,	single	end	50	kits	
were	 used	 and	 read	 cycles	 were	 split,	 25	 cycles	 for	 Read1	 with	 the	 sequencing	 primer	 above	
(reading	 the	S.pyogenes	 sgRNA)	and	25	read	cycles	 for	 the	 Index	read	with	 the	custom	indexing	
primer	5’-TTGGCTTTATATATCTTGTGGAAAGGACGAAACACCGTG-3’	(reading	the	S.aureus	sgRNA).	
	
Data	analysis.	Total	read	counts	of	sgRNA	sequences	from	each	NGS	sample	were	collapsed	and	
quantified	 via	 alignment	 to	 the	 sgRNA	 library	 reference	 sequences	 using	 Bowtie	 2.028.	 Data	
analysis	was	 conducted	 similarly	 as	 described	 previously14,	44.	 Briefly,	 for	 the	 primary	 CRISPRa	
screen,	the	frequency	of	sgRNAs	was	determined	by	deep	sequencing	and	the	average	read	count	
of	three	technical	replicates	was	used.	The	phenotype	 	was	calculated	to	quantify	the	effect	of	an	
sgRNA	on	cell	growth	in	the	presence	of	imatinib.	Specifically,	 	was	calculated	as:	

	

	
where	 Nx	denotes	 the	 frequency	 of	 sgRNA	 x	 and	 NWT	 denotes	 the	 frequency	 of	 non-targeting	
control	sgRNAs	before	(t0)	or	after	(t)	imatinib	treatment.		Gene-level	phenotypes	were	calculated	
by	 averaging	 the	 phenotypes	 of	 the	 top	 25%	 most	 extreme	 sgRNAs	 targeting	 this	 gene.	 The	
statistical	 significance	 for	 each	 gene	 is	 determined	 by	 comparing	 the	 set	 of	 s	 for	 sgRNAs	
targeting	it	with	the	set	of	 s	for	non-targeting	control	sgRNAs	using	the	Mann-Whitney	U	test,	as	
described	 previously44.	 To	 correct	 for	 multiple	 hypothesis	 testing,	 we	 first	 performed	 random	
sampling	with	replacement	among	the	set	of	 s	for	non-targeting	control	sgRNAs	and	calculated	P	
value	 for	 each	 sampling.	 Then,	 we	 calculated	 the	 false	 discover	 rate	 (FDR)	 based	 on	 the	
distribution	of	P	values	for	all	genes	in	the	library	and	for	non-targeting	controls	generated	above.	
The	P-value	cutoff	was	chosen	based	on	an	FDR	<	0.05.		

For	the	orthogonal	double-sgRNA	screen,	combinations	of	non-targeting	control	sgRNAs	served	as	
negative	control,	combinations	of	one	non-targeting	control	sgRNA	and	one	targeted	sgRNA	were	
used	to	determine	single-sgRNA	phenotypes	and	combinations	of	two	targeted	sgRNAs	were	used	
to	 calculate	 double	 phenotypes.	 To	 construct	 high	 quality	 genetic	 interaction	 (GI)	 maps,	 we	
implemented	a	series	of	filtering	steps	on	the	sgRNA	level.	First	of	all,	on	the	SaCas9	nuclease	side,	
P	values	were	calculated	for	each	gene	as	described	above.	Only	the	sgRNAs	targeting	genes	that	
have	significant	cutting	phenotypes	(P	value	<cutoff)	were	retained.	Subsequently,	GI	scores	were	
calculated	using	 the	 ‘force-fit’	definition	 for	genetic	 interactions	on	 the	sgRNA	 level	and	sgRNAs	
were	 further	 filtered	 by	 GI	 correlation	 as	 described	 previously44.	 	 On	 the	 CRISPRa	 side,	 if	 two	
sgRNAs	targeting	the	same	gene	have	low	correlation,	the	gene	was	excluded	for	further	analysis.	
After	the	filtering	process,	gene-level	phenotypes	and	GI	scores	were	calculated	by	averaging	all	
double-sgRNAs	 targeting	 the	 same	 gene-gene	 combinations.	 Two	 biological	 replicates	 were	
analysed	separately	and	were	combined	for	the	averaged	t	map	and	GI	map.	Genes	were	clustered	
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hierarchically	based	on	the	uncentered	Pearson	correlations	of	their	t profile	using	Cluster70	and	
visualised	by	TreeView71.	

Directional	genetic	interaction	network	model.	Genetic	interactions	whose	GI	scores	exceeded	
a	1x	standard	deviation	consistently	in	both	clonal	screen	replicates	were	used	to	construct	a	GI	
network	 (Extended	 Table	 6).	 To	 quantify	 directionality	 in	 genetic	 interactions,	 a	 directionality	
score	(Y)	was	calculated	as	Y	=	(tactivation)x(tknockout	)x(GI)2,	resulting	 in	a	negative	Y	when	gene	
activation	and	knockout	have	opposing	phenotypes.	Negative	Ys	below	a	1x	standard	deviation	of	
all	 calculated	Ys	were	 used	 to	 infer	 the	 direction	 of	 genetic	 interactions.	 The	 network	 analysis	
software	 platform	 Cytoscape72	 was	 used	 to	 visualise	 the	 genetic	 interaction	 model.	 Where	
applicable,	 directionality	 in	 GIs	 was	 indicated	 by	 arrow	 shaped	 edges	 and	 line	 shaped	 edges	
indicate	 significant	 GIs	 for	 which	 directionality	 could	 not	 be	 inferred.	 Nodes	 were	 coloured	
according	to	gene	function	with	blue	symbolizing	genes	that	act	 to	decrease	and	red	to	 increase	
cell	fitness.	

Arrayed	competitive	growth	validation	experiments.	 Individual	 CRISPRa	 or	 orthogonal	 dual	
sgRNA	 sequences	 for	 validation	 experiments	 were	 sub-cloned	 into	 the	 same	 vector	 as	 the	
respective	 libraries	 using	 the	 library	 cloning	 protocols	 described	 above.	 All	 library	 vectors	 co-
expressed	mCherry	which	was	used	to	track	the	abundance	of	sgRNA	expressing	cell	populations	
in	growth	competition	assays.	For	this	purpose,	sgRNA	expressing	cells	were	mixed	with	parental	
-	 mCherry-negative	 –	 cells	 at	 ratios	 between	 1:1	 and	 1:3	 in	 96-well	 plates	 before	 repeated	
treatment	 with	 100	 nM	 imatinib	 for	 up	 to	 15	 days.	 Enrichment	 or	 depletion	 of	 the	 mCherry	
positive	 (sgRNA	 expressing)	 cell	 population,	 indicating	 an	 increase	 or	 decrease	 of	 imatinib	
resistance	following	sgRNA	expression,	could	conveniently	be	followed	via	FACS	quantification	of	
the	mCherry-positive	versus	mCherry	negative	population.	Enrichment	factors	were	calculated	as	
follows:	 (mCherry-positive/mCherry-negative)IMATINIB/(mCherry-positive/mCherry-
negative)UNTREATED.	Each	value	was	quantified	from	three	separate	96-wells.	
	
Quantitative	RT-PCR.	Total	 RNA	 from	 sgRNA	 expressing	 cells	was	 purified	 using	 Rneasy	Mini	
columns	 (Qiagen).	 Taqman	 probe	 assays	 (Applied	 Biosystems)	 were	 used	 with	 FAM	 labelled	
probes	for	target	genes	and	VIC	labelled	probes	for	the	housekeeping	gene	HPRT1.	Reactions	were	
carried	 out	 using	 the	 one	 step	 qRT-PCR	 master	 mix	 TaqMan	 RNA-to-CT	 (Applied	 Biosystems)	
according	 to	 the	 manufacturer's	 instructions	 on	 the	 2900	 HT	 Fast	 RT-PCR	 machine	 (Applied	
Biosystems).	
	
Western	 blot	 analyses.	HEK	 293T	 cells	 were	 transfected	with	 indicated	 flag	 tagged	 plasmids,	
serum	starved	 for	24	hours,	 and	 stimulated	with	EGF.	Ras-GTP	was	assessed	by	GST-Raf1	RBD.	
HEK	293T	 cells	were	 transfected	with	pcDNA3.1	 Flag-eGFP	 (CTRL)	 and	Flag-SPRED2	 (SPRED2)	
using	Lipofectamine	2000	(ThermoFisher	Scientific,	11668019),	serum	starved	for	24	hours,	and	
stimulated	 with	 20ng/ml	 recombinant	 human	 EGF	 (Invitrogen,	 PHG0311).	 Cells	 were	 washed	
with	PBS	and	lysed	in	TNM	buffer	(0.2	M	Tris	pH	7.5,	1%	Triton	X-100,	1.5M	NaCl,	50	mM	MgCl2,	
1mM	DTT,	protease	and	phosphatase	inhibitor	cocktails.	Lysate	was	cleared	and	1,000ug	protein	
was	subject	GST-Raf1	RBD	agarose	beads	(McCormick	lab,	in	house)	for	1.5	hours.	Samples	were	
analysed	 by	 Western	 blot	 using	 the	 following	 antibodies:	 NF1	 (SCBT,	 sc-67	 [D]),	 Flag	 (Sigma,	
F1804),	 pan-Ras	 (Cytoskeleton,	 Inc,	AESA02),	 β-Actin	 (Sigma,	A5441).	NF1-Null	HEK	293T	 cells	
were	 generated	 using	 Cas9	 and	 sgRNA	 targeting	 exon	 2	 with	 the	 sequence	
AGTCAGTACTGAGCACAACA	 	 (Shalem,	 O.,	 et	 al.,	 2013).	 Following	 single	 cell	 cloning,	 target	
sequence	 amplification	 by	 PCR,	 TOPO	 cloning,	 and	 Sanger	 sequencing,	 both	 NF-1	 alleles	 were	
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confirmed	 deleted	 by	 a	 1bp	 insertion	 resulting	 in	NF1(N39fs)	 and	 a	 11bp	 deletion	 resulting	 in	
NF1(S35fs).	
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