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Abstract

Type 1 diabetes genotype datasets have undergone several well powered genome wide
analysis studies (GWAS), identifying 57 associated regions at the time of analysis.
There are still many regions of smaller effect size or low frequency left to discover, and
better exploitation of existing type 1 diabetes cohorts with meta analysis and imputa-
tion can precede the acquisition of new or larger cohorts. An existing dataset of 5,913
case and 8,828 control samples was analysed using genome-wide microarrays (Affymetrix
GeneChip 500K and Illumina Infinium 550K ) with imputation via IMPUTE2 with the
1000 Genomes Project (phase 3) reference panel. Genotyping coverage was doubled in
known association regions, and increased by four fold in other regions compared to
previous studies. Our analysis resulted in new index variants for 17/57 regions, an
expanded set of plausible candidate SNPs for 17 regions, and five novel type 1 diabetes
association regions at 1p31.3, 1q24.3, 1q31.2, 2q11.2 and 11q12.2. Candidate genes
for the new loci included ITGB3BP, FASLG, RGS1, AFF3 and CD5/CD6. Further
prioritisation of causal genes and causal variants will require detailed RNA and protein
expression studies, in conjunction with genome annotation studies including analysis of
physical promoter-enhancer interactions.
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1 Introduction

Type 1 diabetes genotype associations have been explored through several well powered
genome wide analysis studies (GWAS), identifying 57 associated regions (catalogued by
ImmunoBase [10]). There are still many regions of smaller effect size or low frequency
left to discover, and better exploitation of existing type 1 diabetes cohorts with more
powerful and targeted methods is an informative step forward.

To declare a disease association region a SNP association should be observed with a
P value less than the genome wide significance threshold (GWST) of 5 ⇤ 10�8 [17, 27].
Additionally it has been argued that any variants in a GWAS with p < 10�5 and
p < 5 ⇤ 10�8 in another cohort can be use to define pleiotropic association regions
[20]. Six of the 57 known regions have been declared using pleiotropic criteria and the
remainder showed at least one variant with p < 5 ⇤ 10�8.

Given the huge effort required to acquire new cohorts, attempts have been made to
gain maximum statistical power from existing datasets. Genome wide imputation of
unmeasured SNPs [35, 37] is now routinely conducted for large genome-wide datasets
and for type 1 diabetes has been performed several times to obtain datasets of up to 2.6
million SNPs[9, 4, 51] using HapMap2 [28]. Simulations have shown that imputation
can increase the power of a GWAS by 10% [45].

Reference panels used for imputation serve as large libraries of haplotypes to which
we match our sparsely genotyped samples. Larger panels provide longer and more
accurate matched haplotypes [35]. An ethnically diverse panel is advantageous, even
for imputing for a European sample, because almost everyone has a small number of
exotic haplotype segments [25].

The latest 1000 Genomes Project phase 3 haplotypes dataset was released during
October 2014. This updated reference contains 79 million SNPs and 3 million other
variants for 2,504 samples from 26 ethnic populations. The majority are monomorphic
in Europeans, the remainder comprise �15 million rare variants and �10 million SNPs
with MAF > 1% (which is a threshold below which imputation is no longer robust).
Table 1 provides a breakdown of comparative densities between this reference set,
ImmunoChip, and the GWAS microarray platforms used in this study.

New associated regions have required increasing sample sizes to detect (Supplemen-
tary Figure 1), with power often supplemented by targeted genotyping of SNPs that
fell marginally short of the GWST in the first pass. With the recent type 1 diabetes
ImmunoChip study [40], new associations were facilitated through increased coverage in
high-prior genomic regions. Based on Table 1, imputation with 1000 Genomes Project
Phase 3 will more than double the ImmunoChip coverage in densely mapped regions,
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Illumina 550K Affymetrix 500K

All Post-QC All Post-QC
GWAS chips 201 184 178 141

Dense-regions Non-dense regions

All Post-QC All Post-QC
ImmunoChip 2,318 1,473 20 16

EUR EUR-MAF>0.01 EUR-MAF<0.01 Non-EUR

1000 Genomes Project Phase 3 8,750 3,579 5,218 20,860

Table 1 – Table showing densities (SNPs per megabase) for GWAS chips versus ImmunoChip, versus
the 1000 Genomes Project. Densities were calculated as medians to prevent skewness due to genome
annotation gaps. The densities for the two GWAS chips and ImmunoChip were calculated with the
full complement of SNPs and the post-QC set. Note that there is only roughly 20% overlap between
SNPs in the two GWAS chips so the coverage for the Barret et al. study (8) would be near to the sum
of the GWAS chip densities. ImmunoChip densities were calculated within dense autoimmune regions
(which were specifically targeted to be as complete as possible as part of the design of the chip) versus
the remainder of the genome. EUR = SNPs with MAF greater than zero in Europeans.

and should provide a four fold improvement in coverage for non-dense regions versus
previous imputation analyses of type 1 diabetes datasets [9, 51].

Building on the success of ImmunoChip for investigating novel type 1 diabetes
regions [40], candidate causal genes and SNPs, a similar analysis strategy has been
implemented, now with an imputed genome-wide dataset.

ImmunoChip was designed to target regions of prior autoimmune association in
greater detail, and due to its lower cost facilitated collection of large samples allowing
comprehensive mapping of candidate causal variants in established regions. However,
type 1 diabetes associations are also likely to exist outside of established autoimmune
regions. By densely imputing from genome-wide arrays the opportunity arises to find
SNPs in regions where LD between GWAS SNPs and the causal variants was too weak
to create a GWST association.
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2 Methods

2.1 Platform

The original set of genotypes used in this analysis were derived from the Affymetrix
GeneChip Mapping 500K Set and Illumina 550K Infinium microarray platforms. Fur-
ther detail for the data acquisition is provided in the original study [4].

2.2 Subjects

Samples, totalling 5,913 cases and 8,828 controls passing QC, for this study were
derived from several sources. Supplementary Table 5 provides a summary of the sample
characteristics and sources. The data sources have a complex structure with intersecting
sets of markers common to both platforms and intersecting samples acquired using both
platforms, this structure is described in Supplementary Figure 2.

The Affymetrix dataset originated from the WTCCC GWAS [11] and UKBS. The
WTCCC data included controls and Bipolar disorder samples, the latter of which were
used as extra controls as they showed very similar allele frequencies to controls [11].
The original study where this dataset was first used [4] also contained 3,305 USA
Affymetrix samples from GoKinD/NIMH [13] which had lower data quality and and a
subtly different structure of ethnicity.

The Illumina dataset was genotyped for use in the Barrett et al [4] study taking
samples from the 1958 Birth Cohort (1958BC, N=6,929, [42]) as well as type 1 diabetes
and control samples from the UK Genetic Resource Investigating Diabetes (UK GRID)
cohort [49]. There were 1,444 1958BC samples typed on both platforms. For the �75,000
SNPs common to both platforms genotype data from the Affymetrix platform was
used, and for imputation these samples were imputed alongside the uniquely Affymetrix
samples. This decision was made in the interest of more closely balancing the size of
the Affymetrix versus Illumina data sources, and to more closely following the cohort
groupings in the original Barrett et al [4] study.

2.3 Family data

Data from Onengut-Gumuscu et al [40] collected using ImmunoChip [14] was available
to us, but the cases and controls were largely overlapping with the current dataset. The
family samples were independent, and were used as a reliability check for new associa-
tions and for meta-analysis with three imputed SNPs shared with the ImmunoChip.
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2.4 Pre-imputation QC steps

2.4.1 Genotype QC

Quality control of the original dataset was performed for a previous study [51]. Samples
were excluded for non-European ancestry, both self report or PCA-inferred, or if they
were duplicated or strongly related to another sample in the study. SNPs were excluded
for MAF below 1% in cases or controls, or for HWE (P < 5.7 ⇤ 10�7), or for call rate
below 95%.

2.4.2 Alignment of datasets

Datasets were aligned to one another and then to the European groups of the 1000
Genomes Project phase III reference using the annotSnpStats R package (https://github.com/

chr1swallace/annotSnpStats). Alignment used allele codes where possible. Allele
codes are not helpful for ambiguous A/T or C/G genotypes, so in these cases alleles
were aligned using reference allele frequency. Any SNPs with ambiguous allele codes
and frequencies within 45% - 55% were considered too difficult to align and excluded.
Alignment success of study datasets is shown in Supplementary Figure 10.

2.4.3 Principal components and ancestry

To confirm that population structure had been adequately addressed, PCA was con-
ducted for ancestry, both projecting from the 1000 Genomes Project samples (Supple-
mentary Figure 3) and within the study dataset (Supplementary Figure 4). Details
of the strategy used for dealing with ancestry effects are described in Supplementary
Methods 1.4. Our resulting overall inflation �1000 statistic was 1.02, where this is defined
as the GC inflation lambda scaled for 1000 cases and 1000 controls [22].

2.5 Replication analysis of the Barrett et al GWAS

As an initial validation step the Barrett et al [4] GWAS was replicated with results
shown in Supplementary Table 6. The correlation between the original and replicated
Log10 P values was 0.988, where a non-perfect relationship was expected due to the
absence of the USA samples in our reanalysis.

2.6 Imputation using IMPUTE2

Imputation of unmeasured genotypes was performed using IMPUTE2 [37] with the
recently released 1000 Genomes Project phase III cohort as a reference.
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Pre-phasing [24] was not utilised, which slowed processing but should maximise
accuracy. It has been suggested that controls imputed on one platform should not be
compared to cases imputed on another [3]. Testing on chromosome 20 showed that
imputing separately by genotyping chip reduced the �1000 inflation estimate to 1.02,
from 1.14 when imputed together. Further details of imputation methods are provided
in Supplementary Methods 1.2.

A filter removing SNPs with MAF <1% was used and greatly speeds imputation as
only 12% of the total reference set of SNPs are attempted. Furthermore, rare imputed
SNPs are very prone to artifact and based on a prior imputation project [38], we found
that the vast majority of extreme P-value false positives were for low MAF variants
(< 1%). Additionally, given that recent GWAS studies that have discovered new loci
for type 1 diabetes have had larger samples than the present analysis, we are already
working at a power disadvantage, so our power to detect association at rare SNPs would
be very low.

2.7 Analysis of uncertain genotypes

Imputation algorithms output uncertain genotypes, so rather than a sample being
assigned a fixed genotype, they will be assigned a vector of probabilities. These
uncertainties were analysed using SNPTEST using expectation maximisation (EM)
to estimate parameters in the missing data likelihood [37]. To combine beta coefficients
(log odds ratios) and P values from separate analyses of the Affymetrix and Illumina
cohorts, meta analysis was used with weights proportional to the inverse of the variance
(see Supplementary Methods 1.5) for more details. For Bayesian analyses we simply
summed the Log10 Bayes Factors for the two sources.

One of the most useful QC statistics for evaluating imputation success are the Infor-
mation (‘info’) scores (for further details see Supplementary Methods 1.3). Information
scores were higher for the Illumina data with a median score of 0.95 versus 0.89 for
Affymetrix. Various studies have used different cutoffs for info scores, including 0.3,
0.5, and 0.8 [3]. Here we used 0.25 as failure threshold and less than 0.75 as a warning
threshold.

2.7.1 Imputation quality control

In order to minimise the effect of artifactual imputation, various quality control (QC)
checks were performed for each SNP. Some checks were considered as potential ‘warn-
ings’ while others were considered pass or fail. See Supplementary Methods 1.10 for
the specific criteria.
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Using these criteria, 10% of imputed SNPs failed, 42% passed with no warnings, 37%
had one warning, 9% had two warnings, the remaining 3% had three or more warnings.
The warnings are now stored with the summary statistics for the dataset so that future
analyses can make the QC stringent or relaxed according to their application. The
failing SNPs from all analyses were excluded, while ‘warnings’ were used to inform
interpretation of any significant SNP association results.

2.7.2 Index SNPs, conditional analysis and colocalisation

The index SNP, conditional signal, and colocalisation analyses were conducted as per
the recent ImmunoChip study [40]. These methods are also described explicitly in
Supplementary Methods 1.6-1.7. Conditional analyses were also run with SNPTEST,
and a scan for pleiotropic associations showing P < 10�5 where p < 5 ⇤ 10�8 has been
observed in another autoimmune disease, was undertaken.

2.7.3 Credible Sets

Bayes factors were generated directly by using SNPTEST with ‘bayesian’ analysis using
the ‘score’ method. Log10 Bayes factors from the Affymetrix and Illumina datasets
were combined using a simple sum to obtain meta analysis Bayes factors [23]. Further
details are provided in Supplementary Methods 1.8. The cumulative sum of the sorted
posterior probabilities for all SNPs in each region were used to define 99% credible sets.
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Location Range: Index +/- 1 cM Index SNP OR P value Alleles Info MAF P (Coeliac)

1p31.3 64,102,590 - 64,168,032 rs2269242* 1.18 2.14 ⇤ 10�8 G>A 0.98 0.24
1q24.3 172,648,956 - 172,871,189 rs78037977 0.78 3.06 ⇤ 10�9 A>G 0.83 0.12
1q24.3 172,648,956 - 172,871,189 rs12068671 0.85 7.92 ⇤ 10�7 T>C 0.97 0.20 1.40 ⇤ 10�10

1q31.2 192,469,607 - 192,547,791 rs10801121 1.14 5.74 ⇤ 10�6 A>G 0.90 0.29 8.82 ⇤ 10�12

2q11.2 100,544,267 - 100,969,443 rs70940197 0.86 1.00 ⇤ 10�8 G>GTGATGA 0.97 0.37
11q12.2 60,680,130 - 60,856,960 rs118000057 1.51 †1.24 ⇤ 10�8 T>G 0.71 0.02

Table 2 – New type 1 diabetes regions identified by this analysis. The regions either satisfy the GWST
or satisfy the pleiotropic threshold of p < 10�5, when another related autoimmune condition has a
GWST result for the SNP. Regions are defined as +/- 0.1 cM from the Index SNP. Index SNP locations
are available in Table 4, except for rs12068671 which is at chr1:172,681,031. Alleles are major>minor
and ORs are >1 when cases have a higher frequency of the minor allele. The variant, rs70940197, is
an indel. ‘Info’ scores (range 0-1) are standard output from IMPUTE2 and SNPTEST and reflect the
amount of information available for imputation, increasing with the number of SNPs available highly
correlated with the SNP being estimated. MAF is the minor allele frequency in Europeans in the 1000
Genomes Project legend file. P values for coeliac were used to satisfy a posterior probability > 0.9 and
came from an ImmunoChip study [50]. Co-localisation was examined for all ImmunoBase catalogued
immune diseases, but both co-localised hits related to the same coeliac dataset. rs2269242* is in
full LD with rs2269240 in this dataset (position=64,109,264, C>T). † rs118000057 was confirmed
using meta analysis with the type 1 diabetes family dataset from Onengut-Gumuscu et al [40] (it was
one of three top novel regional SNPs with potential for such). The imputation analysis P value was
7.11 ⇤ 10�7, whilst the family TDT P value was 0.007.

3 Results

3.1 Immune and type 1 diabetes association regions replication

3.2 New type 1 diabetes regions

Six new associations in five novel regions are presented in Table 2. These five regions
are visualised in Supplementary Figures 12-14. Converging patterns of LD based
association in these plots, including for directly genotyped SNPs from our Barrett et al
[4] replication and from the ImmunoChip study [40], show that these associations are
not due to extreme random or isolated imputation artifacts.

Three novel regions, 1p31.3, 1q24.3 and 2q11.2, satisfied a GWST in the primary
analysis. Within 1p31.3, two index SNPs had equal P values: rs2269242 and rs2269240.
The latter was P < 10�6 in the ImmunoChip analysis, and the nearby variant rs2269241
was marginally short of satisfying the GWST in the original Barrett et al study [2009].

The index SNP rs78037977 for 1q24.3 was also proposed as a new type 1 dia-
betes locus via Bayesian colocalization analysis for shared controls in a recent study
[20]. Additionally, there was a further pleiotropic association in the same region with
rs12068671. The adjusted OR covarying for UK region was slightly weaker at 0.805
suggesting slight inflation due to ancestry for this SNP. It should be noted that the
converging study results mentioned here involved considerable overlap between subject
cohorts.
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A post-hoc meta-analysis was conducted on two SNPs known to be measured on
ImmunoChip that fell marginally short of satisfying the GWST, allowing the 11q12.2
variant, rs118000057, to be included in Table 2.

3.2.1 Regions satisfying a pleiotropic threshold

The current list of 867 SNPs with P < 5 ⇤ 10�8 in any ImmunoBase disease was
downloaded and cross referenced to the results of this study. From this set, 91 SNPs
were at or below GWST in this study, and 144 were at P < 10�5. Two SNPs from
novel regions satisfied this condition, rs12068671 from the same association region as
rs78037977 above, and rs10801121 from 1q31.2. Both SNPs were associated with coeliac
disease with P < 10�9 [50].

3.2.2 Comparison to ImmunoChip results

Four of six novel index SNPs, rs78037977, rs12068671, rs10801121, and rs118000057,
were directly genotyped on ImmunoChip and tested previously [40]. The latter SNP
was confirmed using meta-analysis with the ImmunoChip families data. For the first
four SNPs listed, the P values were higher and the ORs were considerably weaker in the
family dataset at 1.06, 0.94, 0.95 and 0.96 respectively. The OR and significance statis-
tics were more similar in the case-control dataset, but this dataset is not independent,
using most of the same type 1 diabetes subjects. None of these SNPs had very poor
signal clouds in the ImmunoChip dataset, with only rs78037977 showing some small
clustering bias. Only rs2269242 and rs70940197 were unique to the imputation dataset.

3.2.3 Cross checking of results

To increase confidence in the validity of results some checks of assumptions were carried
out: (i) associations were confirmed as null on the Bipolar disease cohort to ensure
that their use as controls was justified; (ii) OR and P value statistics were compared
against models that included region and sex covariates showing that ORs were not
reduced; (iii) GWST regions were confirmed not to fall within a list of cytobands with
a strong association for UK geographical regions; and (iv) failures and warnings were
generated based on post imputation QC metrics that excluded inconsistent findings
between Illumina and Affymetrix datasets.

3.3 Conditional analyses

Conditional analysis was run for regions with a result passing the GWST. Results
for regions with conditional associations from the ImmunoChip study [40], and any

10

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 23, 2017. ; https://doi.org/10.1101/120022doi: bioRxiv preprint 

https://doi.org/10.1101/120022


Location SNP Position OR P value Reg.Size info Allele MAF iChip Repl. Novel Condition on

2q24.2 rs141102226 162,992,004 0.44 3.03 ⇤ 10�6 1,313 0.71 A>T 0.01 X X rs33998987
10p15.1 rs4749924 6,082,396 0.86 1.03 ⇤ 10�7 1,580 0.97 A>C 0.34 X X rs12722496
12q13.2 rs184688715 56,358,737 1.61 3.49 ⇤ 10�5 1,260 0.64 A>C 0.03 X rs7297175
19p13.2 rs34536443 10,463,118 0.68 1.82 ⇤ 10�5 1,153 0.61 G>C 0.03 X X rs142155407
20p13 rs202458 1,713,957 0.84 1.03 ⇤ 10�5 934 0.86 G>T 0.15 X rs6043405

11p15.5 rs7115640 2,194,914 1.13 3.96 ⇤ 10�4 1,103 0.62 G>A 0.35 X rs689
18p11.21 rs2542158 12,788,424 1.23 1.01 ⇤ 10�4 1,370 0.79 G>A 0.08 X rs35153695

10p15.1 rs41295159 6,148,535 0.53 5.53 ⇤ 10�5 1,579 0.67 C>G 0.01 X rs12722496,
rs4749924

Table 3 – Results for conditional analyses. Conditional results satisfying a Bonferroni correction for
the number of SNPs within each region, or attempted replications of conditional associations from the
ImmunoChip study [40] are tabulated. Those satisfying an overall Bonferroni correction for �37,000
conditional SNP tests P < 1.35⇤10�6 have a bold rs id. Replication attempts failing at both thresholds
are presented below the middle line. ‘Reg.Size’ is the number of SNPs tested in each region, ‘info’
is the SNPTEST information score, ‘Allele’ shows the major>minor alleles. A X for ‘iChip’ means
this region had a conditional hit in [40], ‘Repl’ is for when such a hit was replicated and ‘Novel’ is for
regions with no previously reported conditional signals. The ‘Condition on’ column shows which index
SNP, and/or first level conditional SNP, was conditioned on for each result.

additional results passing a region-wise or global conditional Bonferroni correction
are presented in Table 3. Three from five regions with conditional signals in the
ImmunoChip study were at the region-wise threshold, and the first additional signal for
10p15.1 satisfied the global threshold. There were two novel conditional signals, neither
of which met the global corrected P value criteria.

3.4 Updated credible sets for causal variants

Credible sets were generated for novel regions and those at a GWST reported previously.
Table 4 shows separate and combined BFs and posterior probabilities for each index
SNP. Three credible set counts were reduced while 17 were expanded, many of these
considerably. Credible set sizes ranged from 1 to 247, where the median size was 2.8%
of the number of SNPs in each region (including an extension of +/- 50 kb).

Based on average densities, this imputed dataset should have at least twice as many
SNPs in each region as ImmunoChip, and this was indeed the case with a mean set size
of 48.2 for imputation versus 22.8 for ImmunoChip.

11

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted April 23, 2017. ; https://doi.org/10.1101/120022doi: bioRxiv preprint 

https://doi.org/10.1101/120022


Location Index SNP Position Affy.LBF Illu.LBF Meta.LBF PP Index Credible Reg.Size

1p13.2 rs6679677 114,303,808 22.37 47.75 70.12 0.854 +1 2 2165
1p31.3* rs2269246 64,107,491 4.30 1.25 5.54 0.127 +33 36 717
1q24.3* rs78037977 172,715,702 1.81 4.28 6.09 0.908 14 812
1q31.2*** rs10801121 192,478,874 3.18 0.45 3.64 0.113 126 532
2q11.2* rs70940197 100,757,440 4.42 1.62 6.04 0.047 +51 142 2056
2q24.2 rs33998987 163,284,067 1.94 7.26 9.20 0.367 +3 6 961
2q33.2 rs3087243 204,738,919 3.92 5.45 9.37 0.304 +19 43 1112
4q27 rs77516441 123,243,594 4.77 2.56 7.33 0.141 +59 81 1968
6q15 rs3073485 91,010,824 1.07 6.71 7.79 0.414 +12 48 772
7p12.2 rs10230978 50,477,144 1.13 3.92 5.04 0.068 35 1710
7p12.1 rs2329566 51,017,655 1.07 3.93 5.00 0.042 +12 54 1146
9p24.2 rs7020673 4,291,747 2.80 3.29 6.09 0.159 -2 15 1095
10p15.1 rs12722496 6,096,667 6.21 13.59 19.80 0.371 +3 6 1503
10p11.22 rs11272929 33,426,844 3.92 1.39 5.31 0.229 44 1581
11q12.2** rs118000057 60,806,721 0.69 2.59 3.28 0.065 136 979
11p15.5 rs689 2,182,224 10.29 100.16 110.45 0.731 +1 2 1293
12q13.2 rs7297175 56,473,808 10.16 8.93 19.09 0.304 14 1119
12q24.12 rs10774624 111,833,788 13.52 13.15 26.67 0.406 +10 11 2349
16p13.13 rs12927355 11,194,771 7.20 5.62 12.82 0.149 -6 24 2558
16p11.2 rs2726040 28,330,790 1.32 3.94 5.26 0.030 +234 247 1581
16q23.1 rs55993634 75,236,763 2.82 4.65 7.47 0.237 +53 61 2137
17q21.2 rs11388540 38,771,747 4.22 2.74 6.96 0.161 -35 20 599
18p11.21 rs1893217 12,809,340 4.93 6.69 11.62 0.144 +17 29 1063
19p13.2 rs34536443 10,463,118 0.16 4.99 5.15 0.355 +20 21 1144
20p13 rs1048055 1,610,062 0.84 4.36 5.20 0.204 +26 42 1283
21q22.3 rs80054410 43,836,010 1.55 7.64 9.20 0.787 +1 4 848
22q12.2 rs5763790 30,522,413 1.42 6.95 8.37 0.072 86 1957

Table 4 – Credible SNP sets for associated regions. Credible sets for all type 1 diabetes regions passing
GWST, novel type 1 diabetes regions passing GWST*, and novel type 1 diabetes regions confirmed
using co-localisation*** or meta-analysis with the families dataset from Onengut-Gumuscu et al [40]**.
‘Affy’ and ‘Illu’ LBFs are the Log10 Bayes Factor (LBF) scores for each Index SNP, originating from
SNPTEST Bayesian score tests. The meta-analysis LBF is simply the sum of the LBFs from the two
subsets. ‘PP Index’ is the probability of the Index SNP being the causal variant, considering all other
SNPs within the region as the alternative candidates. ‘Credible’ is the size of the 99% credible set.
The parallel + and - numbers show the increase or decrease in the size of these sets versus the credible
sets from the ImmunoChip paper. ‘Reg.Size is the number of SNPs in the association region (for novel
hits +/1 1cM was used) +/-50 kb passing QC. The numbers in brackets next to the credible counts
are the increase in the size of the set versus Onengut-Gumuscu et al [40].
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4 Discussion

Imputation has permitted the identification of five new type 1 diabetes risk regions
at GWST and further fine mapping of established loci, bringing the total number to
62. New index SNPs were supported for 16 of these regions, and 17 credible sets were
expanded versus those derived in the ImmunoChip paper [40].

To provide support for these findings, the validity of the imputed genotypes was
confirmed in several ways. Assumptions regarding the suitability of the Bipolar disease
cohort as controls were satisfied. Consideration of potential ancestry confounds and
sensitivity testing with covariation for UK region supported the effect sizes detected in
the primary models. Consistency of allele frequencies between Affymetrix and Illumina
analyses, and for controls against European samples from the 1000 Genomes Project
were also confirmed for reported associations.

Four of the five new regions have previously been associated with at least one other
autoimmune or autoinflammatory disease.

The 1q24.3 region with index SNP rs78037977 was identified in a Bayesian colo-
calization analysis with shared controls [20]. A second SNP, rs12068671, was also
confirmed using pleiotropic association with coeliac disease [50]. This region has also
been associated for Crohn’s disease and ulcerative colitis (UC) [21, 31]. A previously
proposed causal gene for this region is FASLG (Fas ligand TNF superfamily, member
6) which has through interaction with its ligand FAS has a critical role in inducing
apoptosis and cytotoxicity [46], although nearby tumour necrosis factor (TNFSF) genes,
TNFSF4 and TNFSF18, are also plausible candidates.

The 1p31.3 region was previously only just shy of the GWST [4]. The dual index
SNPs rs2269242/rs2269240 fall within an intron of PGM1 (phosphoglucomutase 1, glu-
cose metabolism). This gene is not considered a good causal candidate for autoimmune
diabetes. Another nearby gene with a potential functional connection is integrin beta 3
binding protein beta3-endonexin (ITGB3BP) which is involved in cell death signalling
[43].

The 1q31.2 region was associated previously with type 1 diabetes utilising pleiotropy
with coeliac disease for rs10801121 [50]. The region fell just short of the GWST in three
previous type 1 diabetes studies [4, 9, 41], and also has a pleiotropic association with
multiple sclerosis (MS) [29]. The proposed candidate gene in these previous studies
is RGS1 (regulator of G-protein signalling 1), which is involved in B cell activation
and proliferation. Experimental work has shown RGS1 is expressed in T-cells in the
intestinal intra-epithelial lymphocyte compartment [26], providing another potentially
gut/microbiome linked type 1 diabetes region [44, 34, 1]. Until further analyses are
performed linking the most associated variants with expression of certain genes in
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a region we need to be cautious assigning too much weight to a particular gene as
being causal for disease. For example, chromosome conformation capture results in
primary human blood cells indicate that TROVE2, which has been associated with
the autoimmune disease, systemic lupus erythematosus, should also be considered a
candidate causal gene in this region [30]. Data can be browsed at www.chicp.org,
and the strongest weightings for this SNP were with macrophage and neutrophil tissue
types.

The novel 2q11.2 locus was indexed by the insertion/deletion (indel ) variant rs70940197
lying within an intron of the gene AFF3 (AF4/FMR2 family member 3). This gene
was identified as associating with rheumatoid arthritis (RA) [5] and Chinese systemic
lupus erythematosus patients [12]. The G allele at rs10865035 was also linked to better
anti-TNF treatment response in RA [47]. Weak evidence for this assoication with type 1
diabetes was found previously [49, 9] and both these studies posited AFF3 as the causal
gene. If AFF3 is shown to be the causal gene, considering the likely causal candidates
for 1q24.3 are also related to TNF, these results provide support for the involvement of
this pathway, which has been linked to type 1 diabetes pathogenesis [8, 33, 6].

The 11q12.2 region was one of three non-type 1 diabetes ImmunoChip dense regions
to achieve P < 10�5, so was followed up with additional meta-analysis using the type 1
diabetes families dataset [40], where the revised P value passed the GWST. The region
has also been confirmed in MS, UC and Crohn’s disease [29, 31]. The index SNP was
rs118000057, with nearby genes: prostaglandin D2 receptor 2 (PTGDR2 ), CD5 and
CD6. The most likely candidates are CD5 and CD6 which are expressed on the surface
of T cells and are also implicated by chromosome conformation capture data [30] where
the strongest weightings are linked to naive and activated CD4 cell types. Experiments
have shown that the absence of CD5 increases the responsiveness of thymocytes to T
cell antigen receptor in vitro [48], and that variants within CD6 may mediate response
to TNF-alpha inhibitors in rheumatoid arthritis [32].

Fine mapping was facilitated in this study firstly through conditional analyses that
identified regions likely to contain more than one causal SNP, and secondly through
the creation of credible sets likely to contain the true variant for each region. Three
from five conditional regions identified in the ImmunoChip study [40] were replicated
at a region-wise P value, and the remaining two had P<0.001. Previously unreported
conditional signals were detected at a region-wise P value for 12q13.2 (IKZF4 [18]) and
20p13.

The total size of credible sets for regions passing the GWST was doubled versus
Onengut-Gumuscu et al [40], reflecting the map density ratio of the 1000 Genomes
Project versus ImmunoChip. Although most set counts increased, some of these may
be due to reduced power attenuating the relative differences between top and middling
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candidates in some regions. A few credible SNP sets were reduced in size, potentially
due to inclusion of some highly associated SNPs that were previously unmeasured.

Index SNPs reflect the best available candidate causal variant in each region. In
contrast to the novel regions, 14 from 25 top SNPs from replicated type 1 diabetes
regions were not measured in the ImmunoChip study and obtained a larger Bayes
Factor than the corresponding ImmunoChip index SNP.

Our sample size was smaller than recent GWAS in type 1 diabetes and other
autoimmune conditions (Supplementary Figure 15). We hoped greater coverage would
provide new associations emerging from previously untyped variants. Four out of five
novel regions had an index SNP typed on ImmunoChip, and several of these SNPs were
P>0.05 and showed a weaker OR in the independent families dataset. These SNPs may
have shown stronger effect size in the imputation analysis due to chance, displaying
winners curse against previous findings. These specific variants may have benefitted
from comparison to a substantially different control group, may have been subject to
genotyping bias on ImmunoChip, or may show inflated association due to artifact in
imputation. An alternative explanation is that because a portion of the family dataset
have been selected with the goal of obtaining multiple affected siblings, these families
may have a greater than average HLA burden of risk, weakening associations with
variants of low effect size.

Our newly identified disease-associated SNPs may also have been tested in the
Bradfield et al [9] analysis. However, the authors provided an explanation for lower
than expected power in that study: the cohort composition did not allow use of British
controls with British cases and American controls with American cases. Additional
covariates for ancestry were needed to control for this and as a result power was lost
despite using a larger sample size and imputing to a greater coverage than any previous
type 1 diabetes analysis.

The conditional and credible set analyses had sufficient power to identify some
potential causal SNPs that were previously untested. However, no third signals from
the ImmunoChip analysis were replicated, and some credible sets were very large. While
comprehensive, large credible sets provide limited scope to be refined via annotation to
a usefully small set of variants. The lack of replication for some conditional signals from
the ImmunoChip study [40] could reflect either a power deficit, or that with expanded
coverage new variants are true causal SNPs that were previously tagged indirectly by
multiple SNPs in LD. To better address these issues these results would benefit greatly
from combination via meta analysis with an additional imputed cohort.

We conclude that genotyping of more type 1 diabetes samples with genome-wide
imputation will allow significant expansion of the set of type 1 diabetes regions. MS
and RA have similar a genetic risk to type 1 diabetes but have identified far more
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association regions. This not only serves as an example of the benefits of additional
power, but may also provide a valuable resource for colocalisation analysis. The RA
dataset has been imputed to 10 million SNPs [39], and considering the greater sample
size, would be likely to provide pleiotropic support for �10% of 80 regions from this
study that showed P < 10�5. If imputed using the same reference, other large cohorts
in MS and the inflammatory bowel diseases could provide similar utility.
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