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 2

Abstract 24 

Oxydemeton-methyl, is an organothiophosphate insecticide, which is widely used in 25 

agricultural and urban pest controls. It exists in the environment and a large amount 26 

bioaccumulation in the wildlife due to its strong water solubility and mobility. Although 27 

its potentially harmful effect on animals and humans, few studies have focused on the 28 

oxydemeton-methyl pollution in the environment. Zebrafish have been used for many 29 

years to valuate the pollution status of water and toxicity of chemicals. In the present 30 

study, we aimed to investigate the effect of oxydemeton-methyl on the expression level 31 

of liver microsomal cytochrome P450, on the activity of NADPH-P450 reductase and 32 

reactive oxygen species (ROS) generation in zebrafish.  Adult male and female zebrafish 33 

were treated with different concentration of oxydemeton-methyl (10, 50, 100 μM) for 5, 34 

10, 20 and 30 days. We found that the oxydemeton-methyl exposure significantly 35 

increased the P450 levels and the activity of NAPDH-P450 reductase. ROS generation 36 

and the DNA damage were augmented in a dose-dependent manner in the zebrafish. 37 

These results indicated that oxydemeton-methyl is able to induce strong oxidative stress 38 

and hence highly toxic to the zebrafish. 39 
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Introduction  47 

Oxydemeton-methyl is a widely organothiophosphate insecticide, which has 48 

primarily used to control pest [1-4]. Many countries have realized the high toxicity of 49 

oxydemeton-methyl to wildlife and made restriction or ban of the usage of this pesticide 50 

[5-7]. However, oxydemeton-methyl remains to be one of the most frequently used 51 

organophosphorus insecticides. The high water solubility and mobility led to significant 52 

harmful residues in the environment.  53 

Studies on toxicity testing are usually conducted in mammalian models, such as 54 

rodents and rabbits [8, 9]. Whatever these tests are commonly expensive and require a 55 

large amount of animals. Fish, like many other animal species in the aquatic environment, 56 

has been widely used to investigate the toxicology of organophosphorus insecticides [10-57 

13]. Zebrafish has been shown to be a valuable animal model to assess the effect of 58 

pollutants to the aquatic ecosystems [14-18]. Zebrafish is a useful experimental model for 59 

investigating vertebrate development because of its transparent embryos, low maintaining 60 

cost, conservation of key genes and signaling and easily genetic modification [19-25]. 61 

Hence, zebrafish has become increasingly common in compounds screening and drug 62 

discovery for evaluation of the toxicity mechanisms and also in drug selection and 63 

optimization [26-29]. The potential impacts of oxydemeton-methyl to the fish and the 64 

increased bioaccumulation effects of the toxicant in wildlife still need be further 65 

explored.  66 

One of the most important manifestations in fish is oxidative stress. Increased ROS 67 

levels, antioxidant defense systems impairment and loss function of the oxidative self-68 

repair can result in potential damage to fish [30-35]. The level of cytochrome P450 69 
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enzymes has been well established in fish as a monitoring indicator for evaluating of 70 

environmental contamination and ecotoxicology experiments [36-40]. 71 

In the present study, we examined the sensitivity of various biomarkers in zebrafish 72 

exposed to oxydemeton-methyl, thus gain a further understanding of the impacts of 73 

oxydemeton-methyl to the aquatic ecosystem. 74 

 75 
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Materials and methods 93 

Chemicals 94 

All chemicals (analytical standard) used in this study were purchased from Sigma-95 

aldrich.  96 

 97 

Zebrafish husbandry 98 

The wild type zebrafish (Danio rerio) were maintained at 28.5 °C on a 10-hours dark 99 

and 14-hours light cycle. All procedures were approved from the Qingdao Municipal 100 

Hospital Institutional Animal Care and Use Committee (2017N000105). 101 

 102 

Oxydemeton-methyl exposure  103 

Six-month old adult male and female zebrafish were separated and housed in fish 104 

tanks. The body weight of male and female zebrafish were 0.45 ± 0.05 g and 0. 52 ± 0.08 105 

g, respectively; and the length of male and female zebrafish were similar to 3.5 ± 0.3 cm. 106 

Both groups were treated with or without oxydemeton-methyl (10, 50, 100 μM) and 107 

samples were collected at 5, 10, 20 and 30 days post exposure. The fish were fed twice 108 

daily with commercial fish food and starved overnight prior to examination to avoid the 109 

effects of feces during the procedures of the assays. Half of the fish water was changed 110 

daily during the period of exposure to maintain the stable concentrations of oxydemeton-111 

methyl. 112 

 113 

Protein measurement  114 
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The protein concentration was measured by using the Piece BCA Protein Assay Kit 115 

(Thermo Fisher Scientific) according to the manufactures’ instruction.  116 

 117 

Isolation of liver microsomes 118 

The zebrafish were anesthetized in 0.4% tricaine (MS-222) and transferred to a moist 119 

sponge for surgery on ice. The livers were dissected and rinsed with ice-cold 1× PBS 120 

(137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, PH 7.4). The livers 121 

were transferred to ice-cold homogenization buffer (0.1 M sodium phosphate buffer, 1 122 

mM EDTA, 0.1 mM DTT and 0.1 mM PMSF, PH 7.5) with 10% (v/v) glycerol and 123 

homogenized. The homogenate was centrifuged at 16,000 g for 20 min at 4 °C and the 124 

supernatant was centrifuged at 100,000 g for 1 hour at 4 °C. The microsomal pellet was 125 

collected in homogenization buffer with 20 % (v/v) glycerol and stored at -80 °C. 126 

 127 

P450 enzyme activities 128 

The cytochrome P450 content and NADPH-P450 reductase activity were determined 129 

as described somewhere else [41, 42].  130 

 131 

Antioxidant enzymes activities 132 

The homogenate was centrifuged at 16,000 g for 20 min at 4 °C, and the supernatant 133 

was collected and used for determination of the enzyme activity and protein 134 

concentrations.  135 
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By determining the inhibition of SOD to the photochemical reduction of nitroblue 136 

tetrazolium chloride (NBT), the SOD and CAT activity was measured as described 137 

previously [43-46].  138 

 139 

ROS production 140 

The ROS production was determined according to the method described previously 141 

[47-49].  142 

 143 

Statistical analysis 144 

Statistical analysis was performed using SPSS (IBM, Armonk, NY). Graphs were 145 

plotted using Prism Graph Pad software (6.0). Two-way ANOVA for repeated 146 

measurements used to determine the differences between duration and concentrations. All 147 

the values were presented as mean ± SEM. P ≤ 0.05 was considered statistically 148 

significant by Student’s t tests. 149 

 150 
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Results 159 

Exposure to oxydemeton-methyl impaired cytochrome P450 and NADPH-P450 160 

reductase activities 161 

Compared to male fish treated with oxydemeton-methyl, the cytochrome P450 162 

contents were higher in the female fish at the same exposed concentrations (Fig. 1). The 163 

P450 contents were increased and reached a maximum at the 10 days and then the 164 

induction showed a decreasing trend (Fig. 1). The P450 contents were higher at all 165 

experiment duration in the exposed fish compared to the controls.   166 

The NAPDH-P450 reductase (NCR) activity of oxydemeton-methyl treated fish was 167 

higher than the controls at all concentration during the exposure (Fig. 2). Oxydemeton-168 

methyl significantly induced the NCR activity, and which was higher in the female than 169 

the male fish treated with the same concentrations. The NCR activity reached a maximum 170 

at 20 days both in the male and female fish exposed to oxydemeton-methyl (Fig. 2).  171 

 172 

Exposure to oxydemeton-methyl inhibited anti-oxidative enzymes activity  173 

During exposure, oxydemeton-methyl significantly inhibited the SOD activity in 174 

both male and female fish consistently over time (Fig. 3). The SOD activity of the female 175 

fish was higher then the same concentration treated male fish.  176 

The CAT activity was induced by low concentration of oxydemeton-methyl (10 μM) 177 

and inhibited by higher concentration and showed a consistent decrease during the 178 

exposure (Fig. 4). The CAT activity in the female fish was higher than in the male fish 179 

when treated with the same concentrations of oxydemeton-methyl, and which reached a 180 
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maximum at 10 days. The CAT activity in the male fish reached the maximum at 20 181 

days. 182 

 183 

Effect of oxydemeton-methyl treatment on ROS production 184 

The ROS production was significantly activated by oxydemeton-methyl treatment. 185 

Compared to the controls, the ROS levels in the exposed fish were higher, and had a 186 

tendency to increase at all oxydemeton-methyl concentration (Fig. 5). The ROS levels 187 

were higher in the female than the male fish, which may reflected some sex differences.  188 

 189 
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Discussion 204 

Our data showed that oxydemeton-methyl exposure could affect the cytochrome 205 

P450 and ROS contents, SOD NCR and CAT activities in the zebrafish. Cytochrome 206 

P450 enzymes activities are useful marks that can be used in environmental 207 

contamination biomonitoring and xenobiotic metabolism tests [50-52]. The P450 contents 208 

were impacted by oxydemeton-methyl treatment and the stimulation trend appeared an 209 

initial increase followed by a significant decrease over time. The alteration of NCR 210 

would affect the function of the monooxygenase system [53]. We found that cytochrome 211 

P450 affect the activity of NCR, which might be the role of P450 enzyme activity in 212 

detoxification.  213 

The activity of SOD and CAT was significantly induced by oxydemeton-methyl 214 

treatment, which might due to oxydemeton-methyl increased ROX production in the 215 

exposed zebrafish. Increased CAT and SOD activities eliminate the redundant ROS and 216 

maintain ROS levels at a steady-state concentration [54, 55]. ROS, including a large 217 

amount of reactive chemically molecules derived from oxygen, are generated during 218 

normal physiological process in all aerobic organisms [56, 57]. ROS can directly damage 219 

cellular components and affect cell function [58-60]. Oxydemeton-methyl treatment 220 

significantly increased ROS levels in zebrafish, suggested its high toxicity which caused 221 

the organisms were not able to eliminate the exceed ROS. The generation of ROS might 222 

damage membrane lipids, DNA, protein metabolism and barbohydrate activities.   223 

Our study showed that the cytochrome P450 and ROS content, SOD, CAT and NCR 224 

activities were higher in female than in male fish, that suggested the sex differences can 225 

affect enzyme activity. These results indicated that female zebrafish could be a good 226 
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biological indicator in pollution evaluation. Our study could provide a basic theory to 227 

further studies of toxicity mechanisms of oxydemeton-methyl in animals.  228 

 229 
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Figure 1 Effect of oxydemeton-methyl on the cytochrome P450 contents in zebrafish.  451 
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Figure 2 Effect of oxydemeton-methyl on the NADPH-P450 reductase activity in 457 

zebrafish. 458 
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Figure 3 Effect of oxydemeton-methyl on the SOD activity in zebrafish. 464 
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Figure 4 Effect of oxydemeton-methyl on the CAT activity in zebrafish. 471 
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Figure 5 Effect of oxydemeton-methyl on the ROS production in zebrafish. 478 

 479 

 480 

 481 

 482 

 483 

5 10 20 30
0

50

100

150

200

250

days

Fl
uo

re
sc

en
ce

 In
te

ns
ity

Male

0 µM
10 µM
50 µM
100 µM

5 10 20 30
0

50

100

150

200

250

days

Fl
uo

re
sc

en
ce

 In
te

ns
ity

Female

0 µM
10 µM
50 µM
100 µM

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 23, 2017. ; https://doi.org/10.1101/119982doi: bioRxiv preprint 

https://doi.org/10.1101/119982
http://creativecommons.org/licenses/by-nc-nd/4.0/

