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Abstract

Motion detection and position tracking of animal behavior over a period of time produce mas-
sive amount of information, but analysis and interpretation of such huge datasets are challeng-
ing. Here we describe statistical methods to extract major movement structures of Drosophila
locomotion in a circular arena, and examine the effects of pulsed light stimulation on these iden-
tified locomotor structures. Drosophila adults performed exploratory behavior when restrained
individually in the circular arenas (1.27 cm diameter 0.3 cm depth). Measures of the distance
to the center of the arena followed a gumbel distribution with mixed components. Representa-
tion learning of distance to center from 177,000 observations (from 63 controls and 55 flies with
pulsed light stimulation) revealed three major movement components, indicating three locomotor
structures characterized as: side-wall walk, angle walk and cross of the central region. Pulsed
flies showed reduced cross of the central region compared with controls. We also showed that
counter-clockwise walk and clockwise walk were the two major rotation behaviors with equal time
proportion. There was a peak relative turning angle at 25.6◦ for counter-clockwise walk, and
334.4◦ for clockwise walk. Regression analysis of relative turning angle as a function of distance
to center indicated that as distance to center increased, flies switched turning from directions
for perimeter-returning to directions for major rotation. Pulsed flies reduced trajectories that had
irregular circle-shape and increased trajectories with regular circle-shape during rotation. Taken
together, we present a feasible approach to extract major locomotor structures of Drosophila loco-
motion in a circular arena, and demonstrate how pulsed light stimulation increased the regularity
of locomotor trajectory.

Keywords:
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Author Summary

This work describes computational methods for the analysis and interpretation of Drosophila loco-
motion in an experimental setting. We present the good fit of gumbel distribution, a non-gaussian-
based model, to the observations. We provide a method to extract locomotor structures based
on individual parameters. In addition, we show that an external light stimulation increases the
regularity of movement trajectories in adult Drosophila. We applied currently leading statistical
techniques, including representation learning, modeling with finite mixture distribution, and non-
parametric linear-circular regression. Our data provide a novel approach in the interpretation of
behavioral structures of movement in Drosophila.
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Introduction

The complexity of animal behavior has multiple causes, including genetic makeup, evolutionary
constraints, and environmental impact. Cracking the codes of behavior provides insights in under-
standing animal internal physiological states as well as adaptive responses to external influence
(Kays et al. 2015). The understanding of behavioral complexity in the biological perspective is
hampered due to a lack of effective tools for data analysis and interpretation (Urbano et al. 2010).
The situation is exacerbated when massive movement data are collected, deposited and shared
worldwide using advanced mobile sensing technology (e.g. Global Positioning System) (Wikelski
& Kays 2010). In behavioral studies using a small insect, Drosophila melanogaster (fruitfly), ethol-
ogists have developed advanced techniques and software for behavioral tracking (Fry et al. 2003;
Branson et al. 2009; Uhlmann et al. 2016; Kumar et al. 2016; Gomez-Marin et al. 2012; Colomb
et al. 2012; Geurten et al. 2014). These tools allow rapid and high-throughput data collection of
flying or walking behavior of a group or individuals (Branson et al. 2009), movement of a body part
(e.g. wings) (Fry et al. 2003; Geurten et al. 2014) or activity of a single leg segment (Uhlmann
et al. 2016). However, there is an urgent need of developing statistical tools for sufficient data
interpretation.

The information richness and biological significance of animal behavior are well-described.
Animal behavior is often self-explanatory. Army ants Eciton burchelli form three traffic lanes with
a home-inbound lane flanked by two outbound lanes to maximize traffic flow for food-hunting in
a large population (Couzin & Franks 2003). Collective movement and coherent turning of bird
flocks (Heppner 1974) and fish shoals (Pitcher 1986) have evolutionary advantages in avoid-
ing predators and saving energy during migration. Caged laboratory mice consistently develop
stereotypical wire-gnawing, a clear reflection of frustration and behavioral suffering (Würbel et al.
1996). In addition, behavior of wild animals are natural indicators of ecological and environmen-
tal fluctuations. Barnacle geese migrate by following a green wave of vegetation phenology for
high quality food (Shariatinajafabadi et al. 2014). Non-migratory European butterflies shift their
distributional ranges northwards due to regional warming (Parmesan et al. 1999). The ranging
behavior of elephants closely match the patterns of greening and senescing of vegetation in their
home area (Bohrer et al. 2014). Furthermore, the behaviors of laboratory animals are indica-
tive of internal physiological states and the responsiveness to external stimulation. Phototaxis,
geotaxis (Carpenter 1905), circadian rhythms of locomotor activity (Konopka & Benzer 1971)
and rover/sitter foraging behavior (Osborne et al. 1997) are among the most prominent behav-
ioral characteristics in fruitflies. Drosophila larvae leave food burrows under hypoxic conditions
(Vermehren-Schmaedick et al. 2010). Adult fly increases boundary preference during locomotion
in a circular arena after pulsed light stimulation (Qiu et al. 2016). Collective escape behavior can
be induced by CO2 exposure, and can be conveyed by a single touch of leg appendage between
Drosophila individuals (Ramdya et al. 2015).

Whereas massive movement data have been already obtained (Wikelski & Kays 2010), be-
havioral statistics and computational biology are just about starting (Kays et al. 2015; Markowetz
2017). A working strategy is that complex animal behavior could be cracked down to identifiable
and representative elements termed movement modules. A behavior is thus deemed the combi-
nation of sequential movement modules with predictable transition probabilities. This strategy has
been applied in mapping sub-second scale of 3D pose structures in mouse behavior (Wiltschko
et al. 2015). A similar method is used to decode diving behavior of an Imperial Cormorant (Grundy
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et al. 2009) and seals (Bestley et al. 2015), the activities of cows (Schwager et al. 2007), and be-
havioral patterns of albatross movement (Torres et al. 2017). Drosophila wild-type larvae when
placed in an agar arena (5 cm diameter) apparently alternate between straight move and pause
(Suster et al. 2003). These two locomotor patterns can be sufficiently modeled and interpreted
using a single parameter of changes of direction (Holzmann et al. 2006). Freely walking adult
flies show three main behavioral patterns (resting, translation and rotation) (Geurten et al. 2014).
However, statistical methods for robust modeling and classification of Drosophila movement are
lacking.

We have recently developed software for tracking fly positions in circular arenas (Xiao &
Robertson 2015), and collected a large amount of movement data. In this study, we focus on
behavioral analysis and interpretation of walking activity of adult Drosophila. By combining the
techniques of fly tracking, representation learning and advanced statistical modelling, we show
here that Drosophila movement in a circular arena could be structurally extracted and interpreted
by single or multiple parameters. In addition, using these methods we analyze how pulsed light
stimulation increases the regularity of locomotor trajectories.

Results

Locomotor trajectory of adult fly in a circular arena

A five-day-old male fly of w1118 performed exploratory locomotion when loaded into a circular
arena (1.27 cm diameter and 0.3 cm depth). The 60 s walking trajectory, represented as con-
nected time-series of position every 0.2 s, showed a coil-like shape with irregularity. Similar fea-
tures were observed for different individuals (Figure 1a). In contrast, the 60 s trajectories of flies
which had been subjected to pulsed light stimulation showed coiled shape with visually improved
regularity (Figure 1b). 2D plots of x, y-positions indicated that, whereas control flies performed
substantial center crossing in addition to perimeter preference, pulsed flies greatly reduced cen-
ter crossing during locomotion (Figure S1). These observations were consistent with a previous
report of increased boundary preference induced by pulsed light stimulation in w1118 males (Qiu
et al. 2016).

Distance to center followed gumbel distribution

Each walking trajectory contained complex information about locomotion including, for example,
the time-series of distance to center, rotation orientation and relative turning angle. We first
examined the distribution of time-series of distance to center, because this parameter could be
indicative of location preference or walking mode. A two-step procedure, model selection and
parameter estimation (Stasinopoulos et al. 2017), was conducted for appropriate and adequate
modeling of distance to center.

A total of 1500 observations (the values of distance to center every 0.2 s) for each fly were
used. We considered several models of continuous distributions: gumbel, weibull, gamma, re-
verse gumbel, logistic, normal and t family distributions (Rigby et al. 2014). A generalized Akaike
information criterion (GAIC) (Akaike 1983) was applied for model selection. By fitting each of the
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selected models to data, we found that a gumbel distribution was favored by GAIC for better de-
scription of distance to center in a control (Figure 2a) or a pulsed fly (Figure 2b). The appropriate
fit of gumbel compared with weibull or gamma distribution was supported by a diagnostic tool of
worm plot (Buuren & Fredriks 2001). Modeled with gumbel distribution, the deviations of residuals
were well distributed within 95 % confident intervals but not apparently tilted, U-shaped, inverted
U-shaped or S-shaped (Figure 2c and 2d), indicating adequate modeling of parameters (location
and scale), skewness and kurtosis of data.

The same process of model selection was applied to multiple individuals. Gumbel distribution
was favored for modeling the distance to center in 92.1 % (58/63) controls and 80.0 % (44/55)
pulsed flies (Table S1). The percentages for controls and pulsed flies were statistically the same
(P > 0.05, Fisher’s exact test). Therefore, the distance to center of either control or pulsed flies
could be sufficiently modeled and interpreted by gumbel distribution.

Main patterns of locomotion in a circular arena

We next asked whether there were identifiable components or structures for the observations
of distance to center. Similar to the process of representation learning (Bengio et al. 2013), a
gumbel distribution with 1 - 3 mixed components was fitted to a relatively large dataset, which
contained 177,000 observations from 63 controls and 55 pulsed flies. Parameters from the model
giving lowest GAIC (Stasinopoulos et al. 2017) were extracted.

A three-component gumbel distribution was supported. This model gave rise to location pa-
rameter µ at 5.30, 5.04 and 3.05, scale parameter σ at 0.18, 0.36 and 0.79, mixture probability π
at 0.43, 0.49 and 0.08 (Figure S2), and posterior probabilities by which every actual observation
could be classified to the most probable component. These parameters were essential in defining
potential locomotor patterns common to control and pulsed flies.

We aligned the modeled values along with actual observations of distance to center, and
extracted the corresponding video frames for visual validation. The modeled values with lowest
µ (at 3.05) were the precise representations of observation with small distance to center (Figure
3a). Relevant fly positions extracted from video were indicative of the activities crossing over the
central region of arena (Figure 3b). The activity of cross typically last around 1 s, starting from
and ending at the perimeter of arena. We used a term ”cross” to describe such activities classified
by the model component with lowest µ.

Three additional locomotor structures: ”side-wall walk”, ”angle walk” and ”stop”, were classi-
fied. ”Side-wall walk” was descriptive of walking activities with highest µ (at 5.30), corresponding
to fly positions on the extreme: the side wall of arena. In each of these cases fly was posi-
tioned laterally to the camera (Figure 3b). For a conservative estimate, a criterion of at least five
consecutive positions on the side wall was applied to define a side-wall walk. ”Angle walk” was
descriptive of walking activities with µ at 5.04, representing two situations: (1) a fly was near the
edge of arena and on the floor or ceiling but not on the side wall, and (2) body main axis often
formed an acute angle to the side wall during walking. ”Stop” was a description of locomotion with
a step size no greater than a threshold value (1.41 pixels or 0.27 mm) and which persisted for at
least 1 s (5 steps). Most stops last for less than 5 s (Figure 3b). These four structures (”cross”,
”side-wall walk”, ”angle walk” and ”stop”) together were sufficient to explain most observations of
locomotion, leaving < 10 % data unclassified (Figure 4).
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Reduced cross in flies with pulsed light stimulation

We examined how classified locomotor structures were modified by pulsed light stimulation. The
activities of cross of individual flies from controls (n = 63) and pulsed flies (n = 55) are illustrated
(Figure 4a). Within 300 s locomotion, time proportion for cross in controls (median 0.19, interquar-
tile range (IQR) 0.14 – 0.24) was higher than that in pulsed flies (median 0.09, IQR 0.06 – 0.13)
(P < 0.05, Mann-Whitney test). The median number of cross in controls (median 61, IQR 43 –
72) was greater than that in pulsed flies (median 29, IQR 19 – 38) (P < 0.05, Mann-Whitney test).
Thus, pulsed light illumination reduced time proportion for cross and reduced number of cross
during 300 s locomotion (Figure 4b). Time proportion for side-wall walk in pulsed flies (median
0.31, IQR 0.24 - 0.44) was comparable with that in controls (median 0.30, IQR 0.25 - 0.35) with
insignificant difference (P > 0.05, Mann-Whitney test). Time proportion for angle walk in pulsed
flies (median 0.44, IQR 0.36 - 0.52) was also comparable with that in controls (median 0.42, IQR
0.36 - 0.46) (P> 0.05, Mann-Whitney test). There was no significant difference of time proportion
for stop between controls (median 0.08, IQR 0.04 - 0.11) and pulsed flies (median 0.07, IQR 0.04
- 0.11) (P > 0.05, Mann-Whitney test). Additionally, time proportions for unclassified activities
in controls (median 0.10, IQR 0.09 - 0.12) and pulsed flies (median 0.08, IQR 0.07 - 0.10) were
comparable (P > 0.05, Mann-Whitney test) and relatively small (Figure 4c).

Counter-clockwise walk and clockwise walk were two main rotation behav-
ior

Flies circled at the perimeter while walking in the arenas. The parameter distance to center was
insufficient to characterize circling behavior, although it provided information for modelling location
distribution. We next examined rotation orientation by analyzing ω, the angular displacement per
0.2 s.

We computed ω from 1500 observations (corresponding to 300 s locomotion) of each fly. The
rotation orientation of 24 controls and 24 pulsed flies were illustrated (Figure 5a). It was observed
that counter-clockwise walk and clockwise walk were the main rotation behavior in both groups.
Time proportion for counter-clockwise walk and clockwise walk were examined. In control flies,
time proportion for counter-clockwise walk (median 0.37, IQR 0.34 – 0.42) was comparable to
that for clockwise walk (median 0.37, IQR 0.34 – 0.40) (P > 0.05, Mann-Whitney test). In pulsed
flies, time proportion for counter-clockwise walk (median 0.41, IQR 0.35 – 0.47) and clockwise
walk (median 0.41, IQR 0.37 – 0.49) were also similar (P > 0.05, Mann-Whitney test) (Figure 5b).
We thus observed no preference of rotation orientation in either controls or pulsed flies.

Time proportion for both rotations (counter-clockwise and clockwise walk) was 0.74 (IQR 0.71
– 0.78) in controls and 0.85 (IQR 0.80 – 0.88) in pulsed flies. There was a significant increase of
time proportion for both rotations in pulsed flies compared to controls (P < 0.05, Mann-Whitney
test) (Figure 5c). We further scored the numbers of rotation in controls and pulsed flies. Within
300 s locomotion, median number of counter-clockwise walk was 39 (IQR 34 – 43) in controls
and 29 (IQR 21 – 35) in pulsed flies. Median number of clockwise walk was 38 (IQR 33 – 43) in
controls and 27 (IQR 22 – 37) in pulsed flies. Numbers of counter-clockwise walk and numbers
of clockwise walk were both reduced in pulsed flies (Figure 5d and 5e).

Together, counter-clockwise walk and clockwise walk were the two main rotation behaviors
in both control and pulsed flies. Pulsed light stimulation induced increased time proportion for
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rotation behavior and decreased numbers of counter-clockwise and clockwise walks.

Increased density of rotation at peak turning angle in pulsed flies

To further characterize how flies turned during counter-clockwise walk and clockwise walk, we
analyzed relative turning angle θ, a parameter showing instant change of turning direction at
current position based on three observations: current (i), immediately past (i-1) and immediately
future (i+1) relocations (Calenge 2006).

Nonparametric circular methods (Oliveira et al. 2014) were applied for modelling θ. We ob-
served that during counter-clockwise walk flies turned left most of the time. There was a peak θ
at 27.4◦ for a control and 23.8◦ for a pulsed fly. During clockwise walk flies mostly turned right.
There was a peak θ at 336.2◦ for a control and 336.9◦ for a pulsed fly (Figure 6a). The schemed
relationships between ω and θ for counter-clockwise walk and clockwise walk were illustrated
(Figure 6b).

During counter-clockwise walk, there was no significant difference of turning angle between
controls (median 26.0◦, IQR 23.8 – 28.1◦) and pulsed flies (median 25.3◦, IQR 23.1 – 28.1◦) (P >
0.05, Mann-Whitney test) (Figure 6c). During clockwise walk, there was no significant difference
of turning angle between controls (median 334.8◦, IQR 331.9 – 336.9◦) and pulsed flies (median
334.0◦, IQR 332.6 – 336.2◦) (P > 0.05, Mann-Whitney test) (Figure 6d). Therefore, pulsed light
stimulation had no effect on relative turning angle θ. The modeled values of peak θ, 25.6◦ for
counter-clockwise walk and 334.4◦ for clockwise walk, for overall observations from controls and
pulsed flies are provided (Figure 6b).

Relative density at peak θ was increased in pulsed flies (median 1.53, IQR 1.41 – 1.68)
compared with controls (median 1.18, IQR 1.02 – 1.32) during counter-clockwise walk (P < 0.05,
Mann-Whitney test) (Figure 6e). Relative density at peak θ was also increased in pulsed flies
(median 1.49, IQR 1.32 – 1.64) compared with controls (median 1.17, IQR 1.04 – 1.33) during
clockwise walk (P< 0.05, Mann-Whitney test) (Figure 6f). Thus, pulsed light stimulation increased
relative densities of rotation behavior at peak turning angles.

Turning behavior as a response to distance to center

Classification of locomotor structures based on single parameter was straightforward, but the
explanatory power was limited. Unraveling the dependence between multiple parameters, for
example, turning behavior as a function of distance to center, would be critical to understand
the dynamic changes of locomotor structures from one to another. The nature of high boundary
preference during locomotion (Liu et al. 2007; Xiao & Robertson 2015) implied that Drosophila
rapidly adapted to the arena and decided the walking direction as a response to the location.
We modeled the relation between relative turning angle and distance to center with respect to
rotation behavior. The estimation was performed using nonparametric linear-circular regression
with smoothing parameter computed by plug-in rule (Oliveira et al. 2014).

During counter-clockwise walk, as distance to center increased, flies changed turning direc-
tions from a tendency of right-turn to a concentrated left-turn. In contrast, during clockwise walk,
as distance to center increased, flies changed turning directions from a tendency of left-turn to a
concentrated right-turn. Both controls and pulsed flies showed such relationships between turn-
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ing direction and distance to center (Figure 7a). Distances further to arena center were clearly
associated with concentrated turning, in particular, left-turn for counter-clockwise walk and right-
turn for clockwise walk. Further distances to center (with gumbel location parameter at 5.30 or
5.04) were also associated with side-wall walk and angle walk (see Figure 3). Hence, during side-
wall walk and angle walk flies were concentrated at major turning directions, either left or right.
Distances closer to center were associated with the trend of opposite turning. Closer distance to
center was indicative of a locomotor structure cross. A cross with turning direction opposite to
concentrated turning would promote quick return of fly location to the perimeter.

We therefore schematically illustrated the turning behavior as a response to fly location with
visual proofs of actual video frames. We depicted these turning behavior: counter-clockwise walk
with right-turning cross; clockwise walk with left-turning cross; counter-clockwise walk without
cross; clockwise walk without cross. Trajectory of counter-clockwise walk with right-turning cross
and clockwise walk with left-turning cross were irregularly circle-shaped, whereas trajectory of
counter-clockwise walk without cross and clockwise walk without cross appeared regular in circle-
shape (Figure 7b).

Pulsed light stimulation increased regularity of rotation behavior

During 300 s locomotion, the number of counter-clockwise walk with right-turning cross in pulsed
flies (median 5, IQR 3 - 8) was lower than that in controls (median 12, IQR 9 - 15) (P < 0.0001,
Man-Whitney test). The number of clockwise walk with left-turning cross in pulsed flies (median 6,
IQR 3 - 8) was also lower than that in controls (median 12, IQR 8 - 16) (P < 0.0001, Man-Whitney
test) (Figure 7c). Thus, pulsed light stimulation reduced rotations with irregular circle-shape.
Within 300 s, time proportion for counter-clockwise walk without cross in pulsed flies (median
0.23, IQR 0.18 - 0.32) was higher than that in controls (median 0.19, IQR 0.16 - 0.23) (P < 0.001,
Man-Whitney test). Time proportion for clockwise walk without cross in pulsed flies (median 0.26,
IQR 0.20 - 0.33) was also higher than that in controls (median 0.18, IQR 0.15 - 0.22) (P< 0.0001,
Man-Whitney test) (Figure 7d). Therefore, pulsed light stimulation led to increased time proportion
for rotations with regular circle-shape.

Discussion

Large amounts of movement data of Drosophila walking and flying behavior have been collected,
but the tools for robust analysis and interpretation of such big datasets are underdeveloped. We
describe statistical methods for modeling data distribution and extracting movement structures of
Drosophila walking activities. We show how pulsed light stimulation modifies locomotor structures
and increases the regularity of walking trajectory of adult fly in a circular arena.

A gumbel distribution with mixed components is most sufficient to describe the observations
of distance to center. Gumbel distribution belongs to a family of generalized extreme value distri-
bution, which differs from normal or bell-shaped Gaussian distributions. Gumbel distribution has
been applied to model extreme or rare events, for examples, extreme floods (Gumbel 1941), or
fastest record of men’s 100-meter sprint within the next 100 years (Baum & McKelvey 2006). In
R and MATLAB, gumbel distribution has negative skewness, suitable for modeling minimum ex-
treme. The good fit of gumbel distribution to the observations of distance to center raises a critical

8

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 21, 2017. ; https://doi.org/10.1101/119966doi: bioRxiv preprint 

https://doi.org/10.1101/119966
http://creativecommons.org/licenses/by-nc/4.0/


issue: the observations without any exclusion do not violate gumbel properties of negative skew-
ness and asymptotic behavior. It has been common that data treatment technique such as block
maxima/minima, r-largest/smallest or threshold exceedence is applied to exclude non-extreme
values that might disfavor asymptotic model (Baum & McKelvey 2006). There is no literature pre-
viously documenting that without data exclusion the complete time-series of observations support
a generalized extreme value distribution.

Unlike Lévy or Brownian foraging movement of open-ocean predators (Humphries et al. 2010),
fly movement in a circular arena shows a clear preference to the boundary with around 60 % of
the time spent on the perimeter (Xiao & Robertson 2015). Percent time on perimeter is increased
if flies are pre-conditioned with pulsed light stimulation (Qiu et al. 2016). Both controls and pulsed
flies spend less than a half of exploratory time to relocate off the perimeter. This could explain
the good fit of gumbel distribution because locations off the perimeter could serve as negatively-
tailed, rare or extreme events. Normal, logistic and t family distributions have zero skewness,
thus are inappropriate for modeling skew data. Gamma and reverse gumbel distributions are
for positive skew data, thus also inappropriate. We found that weibull distribution is favored for
modeling the observations from only a small proportion of flies.

Although application of gumbel distribution has been successful in approximating the extreme
event, little attention has been paid to take full advantage of gumbel location parameter µ and
scale parameter σ. Additionally, by breaking down to several homogeneous gumbel components,
the complexity of distance to center could be better described than by single-component distri-
bution. We report here three movement representations generated by finite-mixture modeling
(Stasinopoulos et al. 2017) from a relative large dataset, including those from both controls and
pulsed flies. Each representation is approximated by a gumbel component with unique µ, σ and
mixing probability π. These movement representations are indicative of three locomotor struc-
tures: side-wall walk, angle walk and cross. Together with stop, these locomotor structures are
sufficient to classify around 90 % of the observations. Such a locomotor classification leads
us to understand the subtle changes of locomotor structure induced by pulsed light stimulation:
pulsed flies have decreased time proportion for cross and decreased numbers of cross during the
observation time.

Drosophila rotation orientation and instant turning activity in a circular arena are relatively
straightforward to be modeled and described. We report that counter-clockwise walk and clock-
wise walk are the two major rotation behavior, which together account for a large time proportion
throughout the observation duration. The equal time-proportions for counter-clockwise walk and
clockwise walk indicate that there is no preference of rotation orientation of Drosophila locomo-
tion in a circular arena. Additionally, there is a peak turning angle at 25.6◦ for counter-clockwise
walk, and 334.4◦ for clockwise walk. These peaks are unaffected by pulsed light stimulation.
The symmetry of peak turning angles along straight direction indicates the co-existence of two
equal-chanced opposite rotation behavior.

Pulsed light stimulation induces increased relative density at the peaks of turning angle with-
out changing the peaks. It suggests that pulsed flies become concentrated on counter-clockwise
walk or clockwise walk and reduce the turning at angles other than the peaks. This is consistent
with the reduction of cross of arena center in pulsed flies, because a fly might have high freedom
to turn at any angle during the cross while there is not much option to change turning angle during
side-wall walk and angle walk.

Modeling the relation between relative turning angle and distance to center has provided
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further explanation how flies turn in relation to locations. There are two peak turning directions
when a fly relocates on the perimeter: turning left for counter-clockwise walk and turning right
for clockwise walk. However, a fly tends to turn at directions opposite to perimeter-associated
peak directions when it is near the center. Therefore, during counter-clockwise walk, a departure
from perimeter, rendering small distance to center, is associated with a trend of turning right.
This behavior facilitates return to perimeter, although it causes irregular circle-shape of walking
trajectory. Similarly, during clockwise walk, a departure from perimeter associated with a trend
of turning left promotes quick return to perimeter, leaving also an irregular trajectory. Pulsed flies
reduce numbers of rotation with irregular circle-shape and increase time proportion for rotation
with regular circle-shape. Thus, pulsed flies show increased regularity of locomotor trajectories
in the circular arenas.

Methods

Flies

The white-eyed strain w1118 (L. Seroude laboratory) was used in the current study. This strain
has been widely used as a genetic background to construct transgenic flies in the Drosophila
laboratories. Flies were maintained with standard medium (cornmeal, agar, molasses and yeast)
at room temperatures of 21-23 ◦C with 60-70 % relative humidity. An illumination of light/dark
(12/12 hr) cycle was provided with three light bulbs (Philips 13 W compact fluorescent energy
saver) in a room around 133 square feet. Male flies were collected for experiments within 0-2 days
after emergence. We used pure nitrogen gas to anesthetize flies during collection. Collected flies
were raised in food vials at a density of 20-25 flies per vial for at least three additional days. A
minimum of three days free of nitrogen exposure was guaranteed before testing. The ages of
tested flies were 3-9 days old. To avoid natural peak activities in the mornings and evenings
(Grima et al. 2004), experiments were performed during the light time with three hours away from
light on/off switch.

Pulsed light stimulation

The procedures of pulsed light stimulation has been previously described (Qiu et al. 2016). Briefly,
freshly laid embryos of w1118 were subject to pulsed light illumination (continuous cycle of 5
s light on and 15 s light off during the light time) throughout the life cycle. Pulsed light was
provided in a light box with LED light strip (DC 12V Rxment 5050 SMD RGB LED) powered by
an electrical pulse generator (Grass S88 Stimulator). Male flies were collected at the age of 0-2
days, and raised under pulsed light illumination for at least three additional days. Flies received
pulsed light stimulation were named ”pulsed” flies. The remaining raising conditions (e.g. food
recipe, temperature and humidity) and collection procedures were the same as flies under regular
conditions (”control” flies). A period of 1 h before test was allotted for the adaptation of pulsed
flies to constant light illumination. Pulsed and control flies were examined simultaneously during
the light time.
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Locomotor assay

Locomotor assay was performed by following a protocol (Xiao & Robertson 2015). In general,
individual flies were loaded into small circular arenas (1.27 cm diameter and 0.3 cm depth). The
depth of 0.3 cm was considered to allow flies to turn around but suppress vertical movement. We
machined 128 arenas (8 × 16) in an area of 31 × 16 cm2 Plexiglas. The bottom side of arena
was covered with thick filter paper allowing air circulation. The top was covered by a slidable
Plexiglas with holes (0.3 cm diameter) at one end for fly loading. The Plexiglas with arenas was
secured in a large chamber (48.0 × 41.5 × 0.6 cm3). A flow of room air (2 L/min) was provided
to remove the effect of dead space (Bouhuys 1964). Locomotor activities were video-captured for
post analysis. Fly positions (the locations of center of mass) with 0.2 s interval were computed by
custom-written fly tracking software (Xiao & Robertson 2015). Subsequent movement analysis,
including trajectory reconstruction and data modeling, were based on the values of center of
mass, regardless of fly posture (e.g. dorsal, ventral or lateral view to camera). For each fly, a data
containing 1500 position information, corresponding to 300 s locomotion, was used for statistical
analysis.

Modeling the distribution of distance to center

The statistical modeling process, including model selection and parameter estimation, was con-
ducted as suggested (Stasinopoulos et al. 2017). The main procedures were as below.

(1) Calculate the distance to center at each time point using x, y-positions. The x, y-positions
were calibrated according to the center of arena (0, 0), so that the distance to center was calcu-
lated by a simplified Euclidean distance formula d =

√
x2 + y2.

(2) Select the ”best” model from candidate distributions using generalized Akaike information
criterion (GAIC) (Akaike 1983; Stasinopoulos et al. 2017). Because flies preferred boundary to
center region of arena (Liu et al. 2007; Xiao & Robertson 2015), a distribution with negative
skewness (e.g. Gumbel distribution) was preferably considered. We initially compared the fit
of Gumbel, Weibull, Gamma, Reverse Gumble, Logistic, Normal and t family distributions, all of
which have been fully described (Rigby et al. 2014). We fitted three-component homogeneous
mixtures of each selected distribution to the data by gamlssMX() function from an R package
(Rigby & Stasinopoulos 2005). The distribution giving lowest GAIC was chosen as the best
model. By following these procedures we selected the best model using a standard criterion,
thus avoided a guess or a blind assumption of data distribution.

(3) Identify latent components and estimate parameters for each component. The function of
gamlssMX() was applied to fit finite mixtures (K = 1-3) of selected distribution to observations.
The Expectation-Maximization (EM) algorithm (Dempster et al. 1977) was used to maximize the
likelihood function for a distribution with given K (number of component). The best K was de-
termined by GAIC (Stasinopoulos et al. 2017). Parameters for each component, for example,
location, scale and estimated probabilities, were output by gamlssMX().

Analysis of rotation orientation

The parameter ω (angular displacement per 0.2 s) was calculated by trigonometric function
atan2(y, x), where x, y were the calibrated position coordinations from locomotor assay. To
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avoid the big jump of ω value due to radian rotation, we calculated ω twice using radian inter-
val (0, 2π] and (-π, π], and chose one with smaller absolute value. Rotation orientation of a fly at
each location was determined by the reference of immediate next location, and was classified as
counter-clockwise (ω > 0) or clockwise (ω < 0) rotation.

We defined ”a counter-clockwise walk” as at least five consecutive relocations with ω > 0,
and ”a clockwise walk” at least five consecutive relocations with ω < 0. Classified data were
further treated to allow single hesitation step (i.e. pausing or backward walking with radian <
0.05) without apparent turning around. In a pretest, a control fly had a mixture of many episodes
of counter-clockwise walk or clockwise walk during 300 s locomotion.

Analysis of relative turning angle θ

Relative turning angle θ was an indication of turning direction (left or right) from current location
(Calenge 2006). Turning left could be mathematically described as θ ∈ (0, π), and turning right
θ ∈ (π, 2π). θ was obviously different from ω, the latter an angular displacement between two
polar angles. A fly may choose counter-clockwise walk (ω > 0) with the freedom of turning left or
right. A combination of θ and ω would indicate locomotor complexity of rotation orientation and
turning direction. The function as.ltraj() from an R package ”adehabitatLT” was used to compute
θ (Calenge et al. 2009).

Modeling relative turning angle θ as a function of distance to center

The common phenomenon of boundary preference (Liu et al. 2007; Xiao & Robertson 2015)
indicated that flies chose specific turning behavior according to location information. For example,
when located on the boundary of an open-field arena, flies performed wall-following activities.
When located in the open region, flies performed activities with directional persistence (Soibam
et al. 2012). Here we treated θ as a response variable and distance to center an explanatory
variable, and modeled the relation between θ and distance to center using nonparametric linear
- circular statistical methods (Oliveira et al. 2014). In addition, to reduce data dimension we split
actual observations by rotation orientation. The reasons were, (1) that counter-clockwise walk
and clockwise walk were the two major rotation behavior in the circular arena from preliminary
analysis; (2) that flies had equal time proportion to perform counter-clockwise walk and clockwise
walk; and (3) to prevent the neutralization of relationship because of the co-exist of two equal-
chanced opposite rotation behavior.

Statistics

We used statistical software R (R Core Team 2014) and the following R packages: gamlss and
gamlss.mx (Stasinopoulos et al. 2007), gdata, lattice (Sarkar 2008), adehabitatLT (Calenge et al.
2009), circular (Jammalamadaka & Sengupta 2001), and NPCirc (Oliveira et al. 2014). Data
normality was examined by D’Agostino & Pearson omnibus normality test. Nonparametric tests
were performed for the comparison of medians. Statistical data were illustrated as scatter dot
plot. A P < 0.05 was considered significant difference.
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Figure legends

Figure 1: Coil-like locomotor trajectories of Drosophila locomotion in the circular arenas.
(a) 60 s walking trajectories of control flies. (b) 60 s walking trajectories of pulsed flies. Individual
flies were loaded into the circular arenas (1.27 cm diameter 0.3 cm depth). Fly positions were
tracked once per 0.2 s. Time-series of x, y-positions during 60 s locomotion were re-constructed
as 3D locomotor trajectories.

Figure 2: Distance to center followed a gumbel distribution with finite mixtures. 300 s
time-series of distance to center were plotted and fitted by gumbel, weibull or gamma distribution
with finite mixtures in (a) a control fly, and (b) a pulsed fly. Diagnostic worm plots of residual
deviations vs unit normal quantile for gumbel, weibull or gamma modeling in (c) the control, and
(d) the pulsed fly.

Figure 3: Locomotor structures of Drosophila movement in a circular arena. (a) Alignment of
actual observations (black open circles and linking lines) and modeled values (red open circles)
of distance to center during 60 s locomotion. (b) Visual proofs of extracted locomotor structures:
cross, side-wall walk, angle walk and stop. Time series of distance to center corresponding to
several crosses were illustrated (in blue) in a. Black number on each image indicates starting
time (s) and red number duration (s).
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Figure 4: Analysis of locomotor structures during 300 s movement. (a) Illustrations of cross
activities (blue blocks) in the circular arenas from 63 controls and 55 pulsed flies. (b) Time
proportion for cross and numbers of cross during 300 s movement in controls and pulsed flies.
***, P < 0.0001 by Mann-Whitney test. (c) Time proportion for side-wall walk, angle walk, stop
and unclassified activities in controls and pulsed flies. n.s., non-significant difference.

Figure 5: Drosophila counter-clockwise walk and clockwise walk in a circular arena. (a)
Illustrations of counter-clockwise walk (red) and clockwise walk (grey) during 300 s movement
in controls and pulsed flies. (b) Time proportion for counter-clockwise walk and clockwise walk
in controls (left panel), and pulsed flies (right panel). (c) Time proportion for both rotations in
controls and pulsed flies. (d) Number of counter-clockwise walk in controls and pulsed flies. (e)
Number of clockwise walk in controls and pulsed flies. ***, P < 0.0001 by Mann-Whitney test.

Figure 6: Analysis of Drosophila relative turning angles in a circular arena. (a) Rose diagram
plot and modeling of relative turning angle during counter-clockwise walk (red) and clockwise walk
(grey). (b) Schematic relation between ω and θ during counter-clockwise walk (red square) and
clockwise walk (grey square). The modeled values of θ for overall observations from controls and
pulsed flies were provided. Black dots (with labels i-1, i and i+1) indicate sequential relocations.
Black arrows indicates instant walking direction. X represents arena center, and grey curves
arena edges. (c) Peak turning angle θ during counter-clockwise walk in controls and pulsed flies.
(d) Peak turning angle θ during clockwise walk in controls and pulsed flies. (e) Relative densities
at peak θ during counter-clockwise walk in controls and pulsed flies. (f) Relative densities at peak
θ during clockwise walk in controls and pulsed flies. ***, P < 0.0001 by Mann-Whitney test.

Figure 7: A relation between turning direction and distance to center. (a) Relationship be-
tween distance to center and relative turning angle in controls and pulsed flies. Analysis was
performed separately for counter-clockwise walk (red) and clockwise walk (grey). We rotated
angle interval from (180◦, 360◦] to (-180◦, 0◦] for zero-centered demonstration. Each panel con-
tained observations from ten flies. (b) Schematic movement structures for rotation behavior and
their visual proofs. Black dots represent centers of mass and arrows rotation orientations. Red
circle-shaped trajectories indicate counter-clockwise walk with or without right-turning cross. Grey
circle-shaped trajectories indicate clockwise walk with or without left-turning cross. (c) Numbers
of classified rotations in controls and pulsed flies. (d) Time proportion of classified rotations in
controls and pulsed flies. ***, P < 0.0001 by Mann-Whitney test.

Figure S1: Drosophila walking activities in the circular arenas. (a) Control flies’ walking ac-
tivities in the circular arenas. (b) Pulsed flies’ walking activities in the circular arenas. A single
fly was loaded into each arena (1.27 cm diameter 0.3 cm depth). Each panel illustrates activities
from 8 flies by 5 min. Walking activity is shown as blue lines connecting fly positions, which are
the centers of mass computed once per 0.2 s. A visual difference is that pulsed flies reduce the
chance of crossing central region of arenas compared with controls.
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Figure S2: Modeled gumbel components of distance to center. (a) Three representative
gumbel components (in black, red and blue) with respective parameters (µ, σ and π) modeled
by gamlss.MX() function. A total of 177,000 observations from 63 controls and 55 pulsed flies
were used for computing representative gumbel components. The bottom panel shows overlap of
components. (b) Classified observations of distance to center from a control and a pulsed fly by
posterior probabilities of gumbel components. Each color (blue, red or black) represents a unique
gumbel identity.
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Table S1: Model selection for the observations of distance to center

Number of flies
Distributions control pulsed
Gumbel 58 44
Weibull 5 8
Gamma 0 0
Reverse gumbel 0 0
t family 0 3
Logistic 0 0
Normal 0 0
Total 63 55
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