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Abstract	

Word models describing molecular mechanisms are a common currency in spoken and written 

communication in biomedicine but are of limited use in predicting the behavior of complex biological 

networks. We present an approach to building computational models directly from natural language 

using automated assembly. Molecular mechanisms described in simple English are read by natural 

language processing algorithms, converted into an intermediate representation and assembled into 

executable or network models. We have implemented this approach in the Integrated Network and 

Dynamical Reasoning Assembler (INDRA), which draws on existing natural language processing 

systems as well as pathway information in Pathway Commons and other online resources. We 

demonstrate the use of INDRA and natural language to model three biological processes of increasing 

scope: (i) p53 dynamics in response to DNA damage, (ii) adaptive drug resistance in BRAF-V600E 

mutant melanomas, and (iii) the RAS signaling pathway. The use of natural language for modeling 

makes routine tasks more efficient for modeling practitioners and increases the accessibility and 

transparency of models for the broader biology community.  
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INTRODUCTION	 	

 Biophysics and biochemistry are the foundations of quantitative reasoning about biological 

mechanisms (Gunawardena, 2014a). Historically, biochemical systems were described in formal 

reaction diagrams and analyzed algebraically. As such systems became more complex and grew to 

include large networks in mammalian cells, word models (natural language descriptions),  often 

accompanied by a pictogram or informal schematic, became the dominant way of describing 

biochemical processes.  However it remains true that formal approaches involving dynamical models 

and systems theory can elucidate aspects of biological control that are obscured by informal 

descriptions. These include mechanisms such as all-or-none response to apoptosis-inducing ligands 

(Albeck et al, 2008; Rehm et al, 2002), sequential execution of cell cycle phases (Chen et al, 2004), the 

interplay of stochastic and deterministic reactions in the control of cell fate following DNA damage 

(Purvis et al, 2012), drug sensitivity and disease progression (Lindner et al, 2013; Fey et al, 2015), 

bacterial cell physiology (Karr et al, 2012) and similar biological processes. The challenge therefore 

arises of converting a plethora of word models in the literature into computational forms that can be 

rigorously analyzed.  The technical environments used to create and explore dynamical models are 

unfamiliar to many biologists and there is little evidence that creation of new word models is being 

routinely supplemented by formal modeling approaches.  

 A variety of methods have been developed to make mechanistic modeling more powerful and 

efficient. These include fully integrated software environments (Loew & Schaff, 2001), graphical 

formalisms (Le Novère et al, 2009; Kolpakov et al, 2006), tabular formats (Tiger et al, 2012), high-level 

modular and rule-based languages (Smith et al, 2009; Mallavarapu et al, 2009; Danos et al, 2009), 

translation systems for generating SBML models from pathway information (Büchel et al, 2013; 

Ruebenacker et al, 2009) and specialized programming environments such as PySB (Lopez et al, 2013). 

These tools have increased the transparency and reusability of models, but have not sufficiently bridged 

the gap between verbal descriptions that dominate current literature and computational models.  

 To date, most attempts to make modeling more accessible have focused on graphical interfaces 

in which users draw reaction diagrams that are then used to generate equations. This approach is 

attractive in principle, since informal diagrams are a mainstay of most scientific presentations, but it has 

proven difficult in practice to accommodate the simultaneous demands of accurately rendering 

individual reactions while also depicting large numbers of interacting components. It is particularly 

difficult to create graphical interfaces that model the combinatorially complex reactions encountered in 

animal cell signaling (Stefan et al, 2014). 
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 In this paper we explore the idea that natural language can serve as a direct input for dynamical 

modeling. Natural language has many benefits as a means of expressing mechanistic information: in 

addition to being familiar, it can concisely capture experimental findings about mechanisms that are 

ambiguous and incomplete. Extensive work has been performed on the use of software to convert text 

into computable representations of natural language, and natural language processing (NLP) tools are 

used extensively to mine the scientific literature (Fluck & Hofmann-Apitius, 2014; Krallinger et al, 

2012). To our knowledge however, natural language has not been widely used as a direct input for 

computational modeling of biological or chemical processes. A handful of studies have explored the use 

of formal languages resembling natural language for model creation (Wasik et al, 2013; 

Kahramanoğullari et al, 2009) but these systems focus on capturing low-level reaction mechanisms and 

require that descriptions conform to a precisely defined syntax.  

 Three technical challenges are encountered in converting natural language models into 

executable models. The first is reading text with a machine in a manner that reliably identifies 

mechanistic assertions in the face of variation in how they are expressed.  The second is designing an 

intermediate knowledge representation that captures often-ambiguous and incomplete mechanisms 

without adding unsubstantiated assumptions (thereby implementing the rule: “don’t know, don’t write”). 

This intermediate representation needs to be compatible with existing machine-readable sources of 

network information such as pathway databases. The third challenge is translating mechanistic 

assertions from the intermediate representation into executable models that involve varying 

mathematical formalisms and levels of detail; this involves supplying necessary assumptions left out of 

the original text. 

 The software tool described in this paper, the Integrated Network and Dynamical Reasoning 

Assembler (INDRA), addresses these challenges and makes it possible to construct different types of 

executable models directly from natural language and fragmentary information in pathway databases. In 

contrast to previous approaches to incorporating natural language in models, INDRA can accommodate 

flexibility in style and syntax through use of sophisticated NLP algorithms (Box 1). Mechanisms 

extracted from natural language and other sources are converted into Statements (the INDRA 

intermediate representation) and then translated into one of several types of models depending on the 

specific use case. We describe this process in some detail because it relates directly to how we 

understand and communicate biological mechanisms in papers and conversations. The fundamental 

challenges here are converting the informality and ambiguity of language, which is frequently a benefit 
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in the face of incomplete information, into a precise set of statements (or equations) that constitute an 

executable mathematical model. 

 As a test case, we show that INDRA can be used to automatically construct a model of p53 

dynamics in response to DNA damage from a few simple English statements; we show that the 

qualitative behavior of the INDRA model matches that of an existing mathematical model constructed 

by hand. In a second, more challenging test, we show that an ensemble of models of the MAP kinase 

pathway in melanoma cells can be built using literature-derived text describing the interaction of 

BRAFV600E and drugs used to treat the disease (Box 4). As a final test-case we use natural language and 

INDRA to assemble a large-scale model of the RAS pathway as defined by a community of RAS 

biology experts; we show how this model can be updated using a few simple sentences gathered from 

the RAS community . 

Glossary 

Application programming interface (API): a standardized interface by which one software 

system can use services provided by other software, often remotely; in the current context, 

INDRA accesses NLP systems and pathway databases via APIs. INDRA exposes an API that 

other software can build upon. API is used here interchangeably with Interface (e.g. INDRA’s 

TRIPS Interface).  

Molecular mechanism: used in this paper to refer to processes involved in changing the state of 

a molecular entity or in describing its interaction with another molecular entity as represented by 

a set of linked biochemical reactions. Mechanisms are often described in the literature and are 

captured in databases in formats such as BioPAX. The information we extract from such 

descriptions are interchangeably referred to as mechanistic information, mechanistic assertions, 

mechanistic facts and mechanistic findings. 

Processor: a module in INDRA that constructs INDRA Statements from a specific input format. 

Template extraction: the process by which INDRA Processors extract INDRA Statements from 

various input formats. 

Assembler: a module in INDRA that constructs a model, network or other output from INDRA 

Statements. 

Model assembly: the process of automatically generating a model in a given computational 

formalism from an intermediate knowledge representation; in our context from INDRA 

Statements. 

Executable model: a computational model that can be simulated to reproduce the observable 
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dynamical behavior of a system; often, but not always, a system of linked differential equations. 

Policies: user-defined settings which affect the automated assembly process. 

Knowledge representation: a formalism that allows aggregation of information, potentially from 

multiple sources, in a standardized computable format; in the current context, INDRA Statements 

serve as a common knowledge representation for mechanistic information. 

Natural language (NL): language that humans commonly use to communicate in speech and 

writing; in the current context, restricted to the English language. 

Natural language processing (NLP): the algorithmic process by which a computer interprets 

natural language text. 

Named entity recognition (NER): a sub-task of NLP concerned with the recognition of special 

words in a text that are not part of the general language; in the current context NER is used to 

identify proteins, metabolites, drugs, and other terms (which are generally referred to as named 

entities). 

Grounding: a sub-task of NLP related to NER which assigns unique identifiers to named entities 

in text by linking them to ontologies and databases; in the current context this involves creating 

links to databases such as UniProt, HGNC, GO or ChEBI. 

Logical form (LF): a graph representing the meaning of a sentence; an intermediate output of 

natural language processing in the TRIPS system (Box 1).  

Extraction knowledge base (EKB): a collection of events and terms relevant to molecular 

biology that is the result of natural language processing with TRIPS (Box 1). 

 

RESULTS	

INDRA	decouples	the	curation	of	mechanistic	knowledge	from	model	implementation	

 A core concept in INDRA is that the identification, extraction and regularization of mechanistic 

information (curation) is a distinct process from model assembly and implementation. Mechanistic 

models demand a concrete set of assumptions (about catalytic mechanisms, stoichiometry, rate 

constants, etc.) that are rarely expressed in a single paper or interaction extracted from a database. 

Models must therefore combine fairly generic assertions about mechanisms extracted from available 

knowledge sources (e.g., that enzyme E “activates” substrate S) with information or assumptions about 

molecular details (e.g., that the enzyme acts on the substrate S in a three-step ATP-dependent 

mechanism involving an activating site on the substrate) that derive from general knowledge about 
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biophysical mechanisms. Precisely how such details are constructed depends on the requirements of the 

mathematical formalism, the specific biological use case, and the nature of the hypothesis being tested. 

 Text-to-model conversion in INDRA involves three coupled steps. First, text is processed into a 

machine-interpretable form and the identities of proteins, genes and other biological entities are 

grounded in reference databases. Second, the information is mapped onto an intermediate knowledge 

representation (INDRA Statements) that is designed to correspond in both specificity and ambiguity to 

descriptions of biochemistry as found in text (e.g. “MEK1 phosphorylates ERK2”). Third, the translation 

of this intermediate representation into concrete reaction patterns and then into executable forms such as 

networks of ordinary differential equations (ODEs) is performed in an assembly step. In this process, 

Statements capture mechanistic information available from the knowledge source without additions or 

assumptions, deferring interpretations of specific reaction chemistry that are often unresolved by the 

knowledge source but must be made concrete to assemble a model. 

 

Information	flow	from	natural	language	input	to	a	model	

 The three steps involved in text-to-model conversion are implemented in a three-layer software 

architecture. An input layer comprising Interface and Processor modules (Figure 1A, block 1) is 

responsible for communicating with language processing systems (e.g., the TRIPS system) and pathway 

databases (e.g., the Pathway Commons database) to acquire information about mechanisms. An 

intermediate layer contains the library of Statement templates (Figure 1A, block 2), and a final output 

layer contains Assembler modules that translate Statements into formats such as networks of differential 

equations or protein-protein interaction graphs (Figure 1A, block 3). INDRA is written in Python and 

available under the open-source BSD license. Source code and documentation are available at 

http://indra.bio; documentation is also included as part of the Supplementary Information. 

 As an example of text being converted into an executable model, consider the sentence “MEK1 

phosphorylates ERK2 at threonine 185 and tyrosine 187.” Figure 1B shows eight lines of Python code 

implementing this example; the numbers alongside each code block correspond to the three layers of the 

INDRA architecture in Figure 1A and implement the flow of information between the user, INDRA and 

external tools shown in Figure 1C. The user first enters the sentence to be processed and calls the 

process_text command in the INDRA TRIPS Interface. This function sends a request to the web service 

exposed by the TRIPS NLP system (Allen et al, 2015) (Figures 1B and 1C, block 1). INDRA can also 

call on the REACH NLP system, which has complementary capabilities (Valenzuela-Escarcega et al, 

2015), but in this paper we focus exclusively on TRIPS. TRIPS parses the text into its logical form (Box 
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1, Supplementary Figure S1A), and then extracts mechanisms relevant to molecular biology into an 

extraction knowledge base (EKB; Box 1, Supplementary Figure S1B). Included in this process are entity 

recognition and grounding whereby MEK1 is recognized as a synonym of the HGNC gene name 

MAP2K1 and grounded to UniProt Q02750 (Erk2 is grounded to MAPK1 and UniProt P28482). These 

terms are explained in Box 1, in Supplementary Information section 2.1, and in (Allen et al, 2015). The 

TRIPS Processor in INDRA extracts Statements directly from the EKB output returned by TRIPS 

(Figures 1B and 1C, block 2). The translation of Statements into concrete models is performed by an 

INDRA Assembler. In this example, a PySB Assembler was used to build a rule-based model in PySB 

(Lopez et al, 2013) and generate an SBML-compatible reaction network (Figures 1B and 1C, block 3). 

Because the Phosphorylation Statements in this example are compatible with multiple concrete reaction 

patterns, the user specifies a policy for assembly: here we used the “two-step” policy, which implements 

phosphorylation with reversible enzyme-substrate binding (polices are described below). The resulting 

reaction network was instantiated as a set of ODEs and simulated using default parameter values to 

produce the temporal dynamics of all three phosphorylated forms of ERK2 (labeled MAPK1; Figure 1C, 

bottom right).  The same rule-based model can also be analyzed stochastically using network-free 

simulators (Danos et al, 2007b; Sneddon et al, 2011).  

Box 1: Natural language processing using TRIPS 
     To convert text into computable representations that capture syntax and semantics INDRA 

uses external NLP software systems exposed as web services. This paper focuses on DRUM 

(Deep Reader for Understanding Mechanisms; http://trips.ihmc.us/parser/cgi/drum) which is 

a version of the general purpose TRIPS NLP system customized for extracting biological 

mechanisms from natural language text. TRIPS has been developed over a period of decades 

and has been used for natural language communication between humans and machines in 

medical advice systems, robotics, mission planning, etc. (see for example Ferguson & Allen, 

1998; Chambers et al, 2005; Allen et al, 2006). 

    The first step in processing natural language with TRIPS is a “shallow” or syntactic 

analysis of the text to identify grammatical relationships among words in a sentence, 

recognize named entities such as proteins, amino acids, small molecules, cell lines, etc. and 

link these entities to appropriate database identifiers (the process of grounding). TRIPS then 

uses this information to perform a “deep” semantic analysis that tries to determine the 

meaning of a sentence in terms of its logical structure. This process draws on a general 

purpose semantic lexicon and ontology that defines a range of word senses and semantic 
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relations among words. The output of this process is represented as a logical form (LF) graph 

(Manshadi et al, 2008). The LF graph represents the sense of each word (e.g. “protein”) and 

captures the semantic roles of relevant arguments (e.g. “affected”) for each predicate (e.g. 

“activation”). The LF also represents tense, modality and aspect information — information 

that is crucial for determining whether a statement expresses a stated fact, a conjecture or a 

possibility. 

    The LF graph is then transformed into an extraction knowledge base (EKB) containing 

extractions relevant for the domain, in this case molecular biology. LF graphs compactly 

represent and normalize much of the variation and complexity in sentence structure; EKBs 

can therefore be extracted from the LF using a relatively small set of rules. The EKB is an 

XML file containing entries for terms (e.g., proteins, drugs), events (e.g., activation, 

modification) involving those terms, and higher-level causal relations between the events. 

The EKB also contains additional information such as the text from which a given term or 

event was constructed.  

    A more thorough technical description of TRIPS/DRUM is given in Supplementary 

Information section 2.1 and in (Allen et al, 2015); a broader overview of NLP systems can be 

found in (Allen, 2003).  

  

INDRA	Statements	represent	mechanisms	from	multiple	sources	

 INDRA Statements serve as the bridge between knowledge sources and assembled models and 

we therefore describe them in detail. Statements are implemented as a class hierarchy grouping related 

mechanisms (a UML diagram of existing Statement classes is shown in Supplementary Figure S2). Each 

INDRA Statement describes a mechanism involving one or more molecular entities, along with 

information specific to the mechanism and any supporting evidence drawn from knowledge sources. For 

example, the phosphorylation Statement shown schematically in Figure 2A contains references to 

enzyme and substrate Agents (which in this case refers to MAP2K1 and MAPK1, respectively), the 

phosphorylated residue and position on the substrate, and one or more Evidence objects with supporting 

information. An Agent is an INDRA object that captures the features of the molecular state necessary for 

a participant to take part in a molecular process (Figure 2B). This includes necessary post-translational 

modifications, bound co-factors, mutations, cellular location and state of activity (Figure 2B and 

Supplementary Figure S3). Agents also include annotations that ground molecular entities to unique 
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identifiers in one or more databases or ontologies (e.g. HGNC, UniProt, ChEBI; Figure 2B). Evidence 

objects contain references to supporting text, citations and relevant experimental context (Figure 2C). 

 An important feature of both Statements and Agents is that they need not be fully specified. If 

there is no information in the source pertaining to a specific detail in a Statement or Agent then the 

corresponding entry is left blank; this is an example of the “don’t know, don’t write” principle. INDRA 

and the rule-based models it generates are designed to handle information that is incomplete in this way. 

For example, the phosphorylation Statement shown in Figure 2A indicates that the phosphorylation of 

substrate MAPK1 can occur when the enzyme MAP2K1 is phosphorylated at serine residues S218 and 

S222, but other aspects of the state of MAP2K1 are left unspecified (e.g., whether MAP2K1 is 

phosphorylated at S298, or bound to a scaffold protein such as KSR). Statements capture the ambiguity 

inherent in the vast majority of statements about biological processes thereby permitting multiple 

interpretations: for example, phosphorylation of MAP2K1 at S218 and S222 could be necessary and 

sufficient for activity against MAPK1, necessary but not sufficient, sufficient but not necessary, or 

neither sufficient nor necessary, depending on other molecular context outside the scope of the 

Statement. The ability of Statements to capture knowledge from input sources while making as few 

additional assumptions as possible is an essential feature of the text-to-model conversion process. It also 

conforms closely to the way individual experiments are described and interpreted since each experiment 

typically reveals only a subset of the knowledge needed to fully understand a biochemical mechanism or 

implement it in a model. The ambiguity in Statements is resolved during the assembly step in which 

assumptions are explicitly declared as a means to generate a well-defined executable model.  

 

Normalized	extraction	of	findings	from	diverse	inputs	using	mechanistic	templates	

 The principal technical challenge in extracting mechanisms from input sources is identifying and 

normalizing information contained in disparate formats (e.g., BEL, BioPAX, TRIPS EKB) into a 

common form that INDRA can use. To accomplish this, INDRA queries for patterns in the input formats 

corresponding to the existing Statement types (templates), matching individual pieces of information 

from the source format to fields in the Statement template. This procedure is implemented for each type 

of input, making it possible to extract knowledge in a consistent form. Template-matching does not 

guarantee that every mechanism found in a source can be captured by INDRA, but it does ensure that 

when a mechanism is recognized, the information is captured in a normalized way that enables 

downstream model assembly. The process is therefore configured for high precision at the cost of  lower 

recall.  
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 INDRA implements template-matching extraction for each input format using a set of Processor 

modules. In the case of natural language, the extraction knowledge base (EKB) output from TRIPS 

serves as an input for the TRIPS Processor in INDRA. For a statement such as “MAP2K1 that is 

phosphorylated on S218 and S222 phosphorylates MAPK1 at T185” the EKB extraction graph (Figure 

3, top left) has a central node (red text) corresponding to a phosphorylation event that applies to the 

terms (blue text) MAP2K1 and MAPK1; the term “threonine-185” is a property of this event (green text 

depicts the grounding in UniProt and HGNC identifiers).  A second phosphorylation event (yellow box) 

involving S218/S222 of MAP2K1 is recognized by TRIPS as a nested property of MAP2K1 

phosphorylation. It is a precondition for the primary phosphorylation event on MAPK1. 

 INDRA establishes that this extraction graph corresponds to an INDRA Phosphorylation 

Statement and the template for such a Statement has entries for an enzyme, a substrate, a residue and a 

position (Figure 2A). The AGENT in the TRIPS EKB is identified as the enzyme which itself has a 

modification (phosphorylation) at specified positions (S218 and S222).  The AFFECTED portion of the 

TRIPS EKB is identified as the substrate MAPK1. The extracted INDRA Statement collects this 

information along with target residue (“threonine”) and position (“185”) on the substrate.  The end result 

is a biochemically plausible depiction of a specific type of reaction from a short fragment of text. 

 Extraction of a Phosphorylation Statement from databases using BioPAX or BEL follows the 

same general procedure. The INDRA BioPAX Processor uses graph patterns to search for reactions in 

which a substrate on the right hand side gains a phosphorylation modification relative to the left hand 

side (Figure 3, center left). The Processor identifies this as a phosphorylation reaction and constructs a 

Phosphorylation Statement for each such reaction that it finds. 

 In the case of BEL, statements consist of subject–predicate–object expressions describing the 

relationships between molecular entities or biological processes (Box 2).  INDRA’s BEL Processor 

queries a BEL corpus (formatted as an RDF graph) for expressions consistent with INDRA Statement 

templates. For example, Phosphorylation Statements are extracted by searching for expressions in which 

the subject represents the kinase activity of a protein that directly increases an object representing a 

modified protein (Figure 3, bottom left); directly increases is a predicate used when molecular entities 

interact physically. Triples that fit this pattern are extracted into an INDRA Phosphorylation Statement 

with the subject as the enzyme and the object as the substrate. 

  

Box 2: BioPAX and BEL 

BioPAX is a widely used format for describing biological interactions designed to facilitate 
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the exchange and integration of pathway information from multiple sources (Demir et al, 

2010). BioPAX is the core exchange format underlying the Pathway Commons database, 

which aggregates information from over 20 existing sources including Reactome, NCI-PID, 

KEGG, PhosphoSitePlus, BioGRID and Panther (Cerami et al, 2011). Pathway Commons 

provides a web service with an interface for submitting queries about pathways and 

recovering the result as a BioPAX graph; a query could involve finding all proteins and 

interactions in the neighborhood of a specified protein or finding all paths between two sets 

of proteins. 

     BioPAX employs a Web Ontology Language (OWL) knowledge representation centered 

around biochemical processes and reactants and is applicable to metabolic, signaling and 

gene regulatory pathways. The representation of reactions in BioPAX is flexible: an arbitrary 

set of complexes and standalone molecules on the left hand side of a reaction can produce 

complexes and molecules on the right hand side subject to one or more catalytic controllers.  

     The Biology Expression Language (BEL) was designed to facilitate the curation of 

knowledge from the literature in a machine-readable form. While BioPAX is designed to 

capture direct, molecular interactions, BEL can express indirect effects and higher level 

cellular- or organism-level processes; for example, one can represent the finding that the 

abundance of BAD protein increases apoptosis. Each BEL Statement records a scientific 

finding, such as the effect of a drug or other perturbation on an experimental measurement, 

along with contextual annotations such as organism, disease, tissue and cell type. BEL 

Statements are structured as subject, predicate, object (RDF) triples: the subject and object 

are BEL Terms identifying molecular entities or biological processes, and the predicate is a 

relationship such as increases or decreases. BEL has been used to create both public and 

private knowledge bases for machine reasoning; the BEL Large Corpus (see 

www.openbel.org) is currently the largest openly-accessible BEL knowledge base and 

consists of ~80,000 statements curated from >16,000 publications. 

 

Assembly	of	alternative	executable	models	from	mechanistic	findings	

 The role of INDRA Assemblers is to generate models from a set of Statements. This step is 

governed not only by the relevant biology, but also by the requirements of the target formalism and 

decisions about model complexity (e.g., the number of variables, parameters, or agents). INDRA has 

multiple Assemblers for different model formats; here we focus on the PySB Assembler, which creates 
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rule-based models that can either be simulated stochastically or as networks of differential equations 

(Danos et al, 2007a; Faeder et al, 2009). Models assembled by INDRA’s PySB Assembler can be 

exported into many widely used modeling formalisms such as SBML, MATLAB, BNGL and Kappa 

using existing PySB functions (Lopez et al, 2013). 

 Assembling an INDRA Phosphorylation Statement into executable form requires a concrete 

interpretation of information that is unspecified or ambiguous in the text or other source, a process we 

illustrate by describing three alternative ways to express the phosphorylation of MAPK1 by MAP2K1 

(Figure 4). As a first step, assembly of the Statement requires a concrete interpretation of the partially 

specified state of the enzyme agent:  MAP2K1 sites S218 and S222 are specified as being 

phosphorylated but no information is available about other sites or binding partners. In assembling rules, 

the PySB Assembler omits any unspecified context, exploiting the “don’t care don’t write” convention in 

rule-based modeling (Box 3) in which the states of unspecified sites are treated as being irrelevant for 

rule activity. The default interpretation is therefore that phosphorylation of MAP2K1 at S218 and S222 

is sufficient for kinase activity; whether or not it is also necessary is determined by other rules involving 

MAP2K1 that may be in the model. 

 

Box 3: Rule-based modeling and PySB 

Accurate simulation of biochemical systems requires that every species be explicitly tracked 

through time. The combinatorial nature of protein complex assembly, post-translational 

modification and related processes causes the number of possible molecular states in many 

signaling networks to explode and exceed the capacity for efficient simulation (Stefan et al, 

2014). For example, full enumeration of complexes involved in EGF signaling would require 

more than 1019 molecular species differing in their states of oligomerization, phosphorylation 

and adapter protein binding (Feret et al, 2009). Rule-based modeling (RBM) languages such as 

Kappa and BioNetGen (BNGL) address this challenge by allowing interactions among 

macromolecules to be defined using “rules” that specify the local context required for an 

molecular event to occur (Faeder et al, 2009; Danos et al, 2007a) . The molecular features that 

do not affect the event are omitted from the rule, a convention known as “don’t care, don’t 

write.” Specifying molecular interactions in this way has two chief benefits: (i) it makes the 

representation of a model much more compact and transparent than a set of differential 

equations; (ii) it enables the simulation of very complex systems using network-free methods 

(Danos et al, 2007b). RBMs can also be translated into conventional modeling formalisms such 
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as networks of ODEs. 

    Executable model assembly in INDRA is built on PySB, a software system that embeds a rule-

based modeling language within Python to enable the use of macros and modules to concisely 

express recurring patterns such as catalysis, complex assembly, sub-pathways, etc. (Lopez et al, 

2013). Rule-based modeling languages are well-suited to building executable models from high-

level information sources such as natural language because assertions about mechanisms 

typically specify little molecular context. INDRA converts such assertions into one or more 

model rules using policies that control the level of detail. 

 

 The second step in the assembly of a Phosphorylation Statement is generating a concrete set of 

biochemical reactions that constitute an executable model. The challenge here is that the concept of 

protein “phosphorylation” can be realized in a model in multiple different ways. For example, a “one-

step” policy converts an INDRA Phosphorylation Statement into a single bimolecular reaction in which 

a product (a phospho-protein) is produced in a single irreversible reaction without explicit consideration 

of enzyme-substrate complex formation (Figure 4, “one-step policy”; this produces one reaction rule and 

one free parameter). Such a representation is not biophysically realistic, since it does not reproduce 

behaviors such as enzyme saturation, but it has the advantage of requiring a single free parameter. One-

step mechanisms are convenient for modeling coarse-grained dynamics and causal flows in complex 

signaling networks (Salazar & Höfer, 2006). A “two-step policy” is more realistic and creates two rules: 

one for enzyme-substrate binding and one for product release (Figure 4, “two-step policy”; two reaction 

rules and three free parameters). This is the most common interpretation of a phosphorylation reaction in 

existing dynamical models and correctly captures enzyme saturation, substrate depletion, and other 

important mass-action effects. However, the two-step policy does not explicitly consider ATP as a 

substrate, and cannot model the action of ATP-competitive kinase inhibitors at the enzyme active site. 

The “ATP-dependent” policy explicitly models the binding of ATP and substrate as separate reaction 

steps (Figure 4, “ATP-dependent policy;” three reaction rules and five free parameters). Other 

mechanistic interpretations of “phosphorylation” are also possible: for example, two-step or ATP-

dependent policies in which the product inhibits the enzyme by staying bound (or re-binding) after the 

phospho-transfer reaction (Gunawardena, 2014b). Such rebinding can have a substantial impact on 

kinase activity.  

 At first glance, it might seem preferable to use the most biophysically realistic set of reactions in 

all cases. However, a fundamental tradeoff exists between model complexity and accuracy: as the 
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biochemical representation becomes more detailed, the number of free parameters and intermediate 

species increases, reducing the identifiability of the model. Given such a tradeoff, the benefit of having 

multiple assembly policies becomes clear: alternative models can automatically be constructed from a 

single high-level biochemical assertion depending on their suitability for a particular modeling task. The 

transparency and repeatability of model generation using assembly policies is especially important for 

larger networks in which hundreds or thousands of distinct species are subject to adjustment as the 

biophysical interpretation changes. 

 To enable the simulation of reaction networks as ODEs in the absence of data on specific rate 

parameters, INDRA uses a set of biophysically plausible default parameters; for example, association 

rates are diffusion limited (106 M-1s-1), off-rates default to 10-1 s-1 (yielding a default KD of 100 nM) and 

catalytic rates default to 100 s-1. These parameter values can be adjusted manually or obtained by 

parameter estimation. An extensive literature and wide range of tools exist for parameter estimation 

using experimental data and they are directly applicable to models assembled by INDRA (Mendes & 

Kell, 1998; Moles et al, 2003; Eydgahi et al, 2013; Thomas et al, 2015). For simplicity, we do not 

discuss this important topic further and rely below either on INDRA default parameters or manually 

adjusted parameters (as listed in the Supplementary Information) to facilitate dynamical simulations. 

 

Modeling	alternative	dynamical	patterns	of	p53	activation	

 As an initial test of using INDRA to convert a word model and accompanying schematic into an 

executable model, we turned to a widely cited review in Cell that describes canonical patterns of how 

mammalian signaling systems respond to stimulus (Purvis & Lahav, 2013). Figure 5 of (Purvis & Lahav, 

2013) depicts the dynamics of p53 response to single stranded and double stranded DNA breaks (SSBs 

and DSBs). Using a schematic illustration, Purvis and Lahav explained that pulsatile p53 dynamics 

arises in response to DSBs but sustained dynamics are induced by SSBs. The difference is attributed to 

negative feedback from the Wip1 phosphatase to the DNA damage sensing kinase ATM, but not to 

ATR. We wrote a set of simple declarative phrases (Figure 5B and C) corresponding to edges in the 

schematic diagram (Figure 5A) representing activating or inhibitory interactions between Mdm2 (an E3 

ubiquitin-protein ligase), p53, Wip1 and ATM (or ATR) (yellow numbers in Figure 5A, B and C). We 

then used INDRA to read the text and assemble executable models in PySB that were instantiated as 

networks of ODEs and simulated numerically. For each model we plotted p53 activation over time using 

standard Python libraries (Oliphant, 2007).  
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 We found that our initial set of phrases (the “word models” comprising sentences 1-5 in Figure 

5B and sentences 1-6 in 5C) failed to reproduce the expected p53 dynamics for SSBs and DSBs: in our 

INDRA models SSBs induced steady, low-level activation of p53 and DSBs failed to induce oscillation  

(Supplementary Figure S5). One feature not explicitly included in the Purvis and Lahav diagrams and 

hence missing from our initial word models is the constitutive negative regulation of Mdm2 and Wip1. 

For clarity, visual representations of signaling pathways generally omit such inhibitory mechanisms 

despite their impact on dynamics (Heinrich et al, 2002). Of course, Purvis and Lahav were aware of 

these inhibitory reactions since these are found in their ODE-based dynamical models of p53 response to 

SSBs and DSBs (Batchelor et al, 2011). The specific reactions that inactivate Mdm2 involve binding by 

the catalytic inhibitor p14ARF (Agrawal et al, 2006) and inactivation of Wip1 is mediated by HIPK2-

mediated phosphorylation and subsequent ubiquitin-dependent degradation (Choi et al, 2013) (depicted 

by dotted arrows and pink numbers in Figure 5A). We therefore added these reactions to the model as 

simple natural language phrases (denoted by pink numbers in 5B and C). 

 Following these changes, p53 response to SSBs correctly yielded sustained activation but the 

DSB response did not oscillate (Supplementary Figure S5). We noted that our DSB response model 

lacked a fundamental property of an oscillatory system, namely a time delay (Novák & Tyson, 2008). 

This delay was incorporated in the ODE model constructed by Lahav and colleagues (Batchelor et al, 

2011) by using delay differential equations. Time delays can also be generated, however, by positive 

feedback (Novák & Tyson, 2008) and both ATM and ATR are known to undergo activating auto-

phosphorylation (Bakkenist & Kastan, 2003; Liu et al, 2011). We therefore added the auto-activation of 

ATM or ATR to the text (denoted by dotted arrow and green numbers in Figure 5A, corresponding to 

green numbers in B and C). When assembled by INDRA, the extended word models resulted in p53 

oscillation in response to DSBs (Figure 5C). Oscillation was robust to changes in kinetic parameters and 

initial conditions (Supplementary Table 2 and Supplementary Figure S5). In addition, the expanded 

model of ATR-driven p53 activation by SSBs still resulted in sustained p53 activation (Figure 5B, 

Supplementary Table 1 and Supplementary Figure S5). The key point in this exercise is that features 

essential for the operation of a dynamical system (e.g. degradation and auto-activation) were omitted 

from an informal diagram focusing on feedback for all the right reasons—brevity and clarity—but this 

has the unintended consequence of decoupling the informal representation from the dynamics being 

described. Concise machine-assembled word models are useful in this context because they ensure that 

descriptions and dynamical simulations are congruent. 
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 The p53 model offers an opportunity to test how robust INDRA (and the TRIPS reading system) 

are to changes in the way input text is phrased. When we tested eight alternatives for the phrase “Wip1 

inactivates ATM” ranging from “Wip1 has been shown to deactivate ATM” to “ATM is inactivated by 

Wip1” (Figure 5D, right, green sidebar) we found that all eight generated the same INDRA Statement 

and thus the same model as the original sentence. However, NLP is sensitive to spelling errors such as 

“deaactivates” [sic] and to grammatical errors such as “Wip1 inactivate ATM”, and even some valid 

linguistic variants are not recognized (Figure 5D, right, red sidebar). We also tested whether differences 

in the way biological entities are named affects recognition and grounding; we found that Wip1, WIP-1, 

WIP1, PPM1D and Protein phosphatase 1D as well as ATM, Atm and ataxia telangiectasia mutated all 

worked as expected (Figure 5D, bottom, green). However, the recognition of protein and gene names in 

text is challenging and, for instance, “PP2C delta” was not recognized as a synonym for Wip1 (Figure 

5D, bottom, red).  

 We then used INDRA to assemble a more detailed and mechanistically realistic model of p53 

activation following DSBs (Figure 5E; POMI1.0). While the model in Figure 5C contained only generic 

activating and inhibitory reactions, the goal of POMI1.0 was to test the use of concepts such as 

phosphorylation, transcription, ubiquitination and degradation. We also used conditionals to describe the 

molecular state required for a protein to participate in a particular reaction (e.g. “ubiquitinated p53 is 

degraded”). The set of ten phrases shown in Figure 5E were assembled into 11 rules, 12 ODEs and 18 

parameters (Supplementary Table 3). When we simulated the resulting ODE model we observed the 

expected oscillation in p53 activity (Figure 5E and Supplementary Figure S5). By adding and removing 

different phrases we found that including the mechanism “Active ATM phosphorylates ATM” was 

essential for oscillation; the phrase “ATM phosphorylates itself” generated a valid set of reactions but 

did not create oscillations for any of the parameter values we sampled. The difference is that “Active 

ATM phosphorylates ATM” corresponds to a trans-phosphorylation reaction—i.e. one molecule of ATM 

phosphorylates another molecule of ATM—which produces the non-linearity necessary for a time delay. 

In contrast, “ATM phosphorylates itself” represents modification in cis, which is incapable of generating 

oscillations in this example. It is known that ATM and ATR auto-phosphorylation occur in trans 

(Bakkenist & Kastan, 2003; Liu et al, 2011), validating this aspect of the model. 

 Taken together, these examples show how the process of creating a formal model from text 

highlights gaps in informal representations or descriptions of mechanisms. Introducing alternative 

assumptions and mechanisms using natural language is straightforward and can be accomplished by 

individuals with little or no technical expertise. 
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Modeling	resistance	to	targeted	therapy	by	vemurafenib	

 The MAPK/ERK signaling pathway is a key regulator of cell proliferation, differentiation and 

motility and is frequently dysregulated in human cancer (Box 4). Multiple ATP competitive and non-

competitive (allosteric) inhibitors have been developed targeting kinases in this pathway. The most 

clinically significant drugs target RAF and MEK kinases in BRAF-mutant melanomas. For patients 

whose tumors express the oncogenic BRAFV600E/K mutation, treatment with the BRAF inhibitor 

vemurafenib (or, in more recent practice, a combination of the BRAF inhibitor dabrafenib and MEK 

inhibitor trametinib) results in dramatic tumor regression. Unfortunately, this is often followed by 

recurrence of drug-resistant disease 6 to 18 months later (Larkin et al, 2014). The mechanisms of drug 

resistance are under intensive study and include an adaptive response whereby MAPK signaling is 

reactivated in tumor cells despite continuous exposure to BRAF inhibitors (Shi et al, 2012a; Lito et al, 

2012, 2013). Re-activation of MAPK signaling in drug-treated BRAFV600E/K cells is thought to involve 

disruption of ERK-mediated negative feedback (Figure 6A). The biochemistry of this process has been 

investigated in some detail and is subtle. For example, differential affinity of BRAF kinase inhibitors to 

monomeric and dimeric forms of BRAF are partly responsible for the ERK rebound (Kholodenko, 2015; 

Yao et al, 2015). However, the process within the scope of the MAPK signaling pathway has not been 

subjected to detailed kinetic modeling and several mechanistically distinct hypotheses have been 

advanced to describe the same drug adaptation phenomenon. Adaptation to BRAF inhibitors therefore 

represents a potentially valuable application of dynamical modeling to a rapidly moving field of cancer 

biology (Kholodenko, 2015).  

 We sought to use natural language to rapidly create models of MAPK signaling in melanoma 

cells using mechanisms drawn from the literature, with a particular focus on a series of highly influential 

papers from the Rosen lab (Joseph et al, 2010; Poulikakos et al, 2010; Lito et al, 2012; Yao et al, 2015). 

We also sought to establish whether natural language could be used to modify the resulting models so 

that different biochemical hypotheses could be tested by non-experts. 

  

Box 4: The MAPK pathway and vemurafenib resistance in cancer 

In normal cells, signal transduction via MAPK is initiated when an extracellular growth 

factor such as EGF induces dimerization of receptor tyrosine kinases (the EGFR RTK for 

example) on the cell surface. Dimerization and subsequent activation of RTKs results in 

assembly of signaling complexes at the plasma membrane and conversion of RAS-family 
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proteins (HRAS, KRAS, and NRAS) to an active, GTP-bound state. RAS-GTP activates 

members of the RAF family of serine/threonine kinases (ARAF, BRAF, and RAF1), which 

serve as the first tier in a three-tier MAP kinase signaling cascade: RAF proteins 

phosphorylate MAP2K/MEK family proteins, which in turn phosphorylate the 

MAPK/ERK family proteins that control transcription factor activity, cell motility and 

other aspects of cell physiology. MAPK signaling is subject to regulation by feedback 

mechanisms that include inhibitory phosphorylation of EGFR and SOS by ERK, inhibition 

of the GRB2-mediated scaffold by SPRY family of proteins, and inhibition of ERK by 

DUSP proteins (Lito et al, 2012).   

      MAPK/ERK signaling is a key regulator of cell proliferation and is mutated in a 

variety of human cancers (Dhillon et al, 2007), with dramatic effects on cellular 

homeostasis. Overall, ~20% of all cancers carry driver mutations in one of the genes that 

encode MAPK pathway proteins (Stephen et al, 2014) and in the case of melanoma, 50% 

of cancers carry activating point mutations in BRAF (most commonly BRAF V600E). 

ATP-competitive inhibitors such as vemurafenib provide significant clinical benefit in 

treating BRAF mutant melanoma. However, remission of disease is transient, as tumors 

and tumor-derived cell lines develop resistance to vemurafenib over time (Lito et al, 

2012). Recent studies have identified feedback regulation, bypass mechanisms, and other 

context-dependent factors responsible for restoring ERK signaling to pre-treatment levels 

(Shi et al, 2012b; Lito et al, 2012, 2013). For example, in the BRAF-V600E cell line 

A375, vemurafenib has been shown to suppress EGF-induced ERK phosphorylation 

completely upon treatment (Lito et al, 2013) but ERK phosphorylation levels rebound 

within 48 hours, with a concurrent increase in the level of RAS-GTP, the active form of 

RAS (Lito et al, 2012). It is the biology of this adaptation that we aim to capture in an 

INDRA model. 

 

 The baseline MAPK model (Melanoma ERK Model in INDRA; MEMI1.0) consists of 14 

sentences describing canonical reactions involved in ERK activation by growth factors (Figure 6B, 

MEMI1.0) and corresponds in scope to previously described models of MAPK signaling (Stites et al, 

2007; Birtwistle et al, 2007). In the baseline model, BRAFV600E constitutively phosphorylates MEK as 

long as it is not bound to vemurafenib (sentence 9: “BRAF V600E that is not bound to Vemurafenib 

phosphorylates MEK”). A two-step policy that involves reversible substrate binding was used to 
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assemble all phosphorylation and dephosphorylation reactions. For simplicity, we did not specify 

residue numbers or capture multi-site phosphorylation, instead modeling each step in the MAPK 

cascades as a single, activating phosphorylation event.  With these assumptions, 14 sentences were 

processed by TRIPS to yield 14 INDRA Statements that were assembled into 28 PySB rules and 99 

differential equations; the network of coupled ODEs was then simulated.   

 A key property of vemurafenib-treated BRAFV600E cells as described by Lito et al. is that the 

drug initially reduces pERK below the steady state level but pERK then rebounds despite the continued 

presence of vemurafenib.  Levels of RAS-GTP (the active form of RAS) also increase during the 

rebound phase (Lito et al, 2012). In MEMI1.0, addition of EGF causes activation of RAS and 

phosphorylation of ERK at steady state. Addition of vemurafenib rapidly reduces pERK levels (Figure 

6B) but extended simulations under a range of EGF and vemurafenib concentrations show that the 

amount of active RAS depends only on the amount EGF and is insensitive to the amount of 

vemurafenib; moreover, no rebound in pERK is observed in the presence of vemurafenib (Figure 6B and 

Supplementary Figure S6A). Thus, MEMI1.0 fails to capture drug adaptation. 

 In a series of siRNA-mediated knockdown experiments Lito et al. demonstrated that the pERK 

rebound involves an ERK-mediated negative feedback on one or more upstream regulators such as 

Sprouty proteins (SPRY), SOS or EGFR. To identify a specific mechanism that might be involved we 

used the BioPAX and BEL search capabilities built into INDRA. We queried Pathway Commons 

(Cerami et al, 2011) for BioPAX reaction paths leading from ERK (MAPK1 or MAPK3) to SOS (SOS1 

or SOS2) and obtained multiple INDRA Statements for a MAPK1 phosphorylation reaction that had one 

or more residues on SOS1 as a substrate (including SOS1 sites S1132, S1167, S1178, S1193 and 

S1197). However, Pathway Commons did not provide any information on the effects of these 

phosphorylation events on SOS activity. To search for this we used the BEL Interface in INDRA to 

query the BEL Large Corpus (Catlett et al, 2013, Box 2) for all curated mechanisms directly involving 

SOS1 and SOS2. We found evidence that ERK phosphorylates SOS and that ERK inactivates SOS 

(Corbalan-Garcia et al, 1996). We did not find a precise statement in either database stating that 

phosphorylation of SOS inactivates it, but upon further investigation the publication referred to as 

evidence in (Corbalan-Garcia et al, 1996) describes a mechanism whereby SOS phosphorylation 

interferes with its association with the upstream adaptor protein GRB2. To include the inhibitory 

phosphorylation of SOS by ERK we therefore modified three sentences (Figure 6C, Model 2, Sentences 

4, 5, and 14) in Model 1 and added two new sentences (Figure 6C, Model 2, sentences 15 and 16).  
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Though INDRA can assemble Statements derived from databases directly into models, in this case 

human curation (via changes to the natural language text) was required to identify gaps in the 

mechanisms available from existing sources. 

 The inclusion of SOS-mediated feedback in the model resulted in 16 declarative sentences that 

were translated into a MEMI1.1 model having 34 rules and 275 ODEs. Assembly of MEMI1.1 involved 

imposing assumptions that limited combinatorial complexity. For instance, in sentence 15 (Figure 6C) 

we specified that ERK cannot be bound to DUSP6 for ERK to phosphorylate SOS. While it is not 

known whether or not ERK can bind both DUSP6 and SOS at the same time, allowing for this 

possibility would introduce a “combinatorial explosion” (Faeder et al, 2005; Feret et al, 2009) in the 

number of reactions and make mass-action simulations challenging. It is common to make simplifying 

assumptions of this type in dynamical models (see for instance (Chen et al, 2009)), and an advantage of 

using natural language is that the assumptions are clearly stated. When MEMI1.1 was simulated we 

observed that, given a sufficient level of basal activity by addition of EGF, addition of vemurafenib 

resulted in dose-dependent increases in active RAS over pre-treatment levels (Supplementary Figure 

S6B). However, pERK levels remained low, suggesting that negative feedback alone (at least as 

modeled in MEMI1.1) is insufficient to explain the rebound phenomenon observed by Lito et al. (Figure 

6C, Supplementary Figure S6B).   

 It has been suggested that RAF dimerization plays an important role in cellular responses to RAF 

inhibitors (Lavoie et al, 2013; Yao et al, 2015). Both wild-type and BRAFV600E dimers have a lower 

affinity for vemurafenib as compared to their monomeric forms (Yao et al, 2015). Moreover, Lito et al. 

observed that the reactivation of ERK following vemurafenib treatment was coincident with formation 

of RAF dimers, leading to the suggestion that vemurafenib-insensitive dimers in cells play a role in the 

re-activation of ERK signaling (Kholodenko, 2015). To model this possibility, we created MEMI1.2 in 

which binding of vemurafenib to monomeric or dimeric BRAF is explicitly specified by separate 

sentences, allowing the effects of different binding affinities to be explored (Figure 6D). Assembly of 

this model yielded 353 ODEs, many of which were accounted for by the combinatorial complexity of 

BRAF dimerization and vemurafenib binding (Supplementary Figure S7). Simulation showed that RAS 

activation increases and settles at a higher level following vemurafenib treatment, with the magnitude of 

the increase dependent on the amount of EGF and the concentration of drug (Figure 6D, Supplementary 

Figure S6C). Following a period of pERK suppression, a rebound in activity to ~30% of the fully active 

level is observed (Figure 6D) effectively recapturing the key findings of Lito et al. Subsequent work has 

shown that resistance to vemurafenib can also involve proteins such as DUSP, SPRY2 (Lito et al, 2013) 
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and CRAF (Montagut et al, 2008). These mechanisms do not feature in the models described here, but 

can be included in MEMI by adding a few phrases to the word model. 

This example demonstrates that it is possible to use INDRA to model signaling systems of 

practical interest at a scope and level of detail at which interesting biological hypotheses can be explored 

and tested. Comparison of models MEMI1.0 to 1.2 suggests that both feedback and BRAF dimerization 

are necessary for vemurafenib adaption and pERK rebound, in line with experimental evidence. The 

number of free parameters in these models varies, and we have not performed formal model calibration 

or verification, so the conclusion that MEM1.2 is superior to 1.0 is not rigorously proven. However, 

INDRA-assembled rule sets represent a solid starting point for modeling that involves rigorous 

comparison to data.  

One issue we encountered in assembling these models was controlling the combinatorial 

complexity arising from the formation of protein complexes from a single set of reactants. This is a 

known challenge in dynamical modeling of biochemical networks with poorly understood implications 

for cellular biochemistry (Faeder et al, 2005; Harmer et al, 2010; Sneddon et al, 2011). From the 

perspective of an INDRA user, it is likely to manifest itself as a problem that can only be diagnosed at 

the level of PySB rules or ODE networks. We will need to develop new software systems to help non-

technical users deal with such problems. Until then, it should be possible for non-expert users to modify 

most if not all sentences in a complex INDRA model as a means to explore alternative reaction 

mechanisms.  

 

An	extensible	and	executable	map	of	the	RAS	signaling	pathway	

 The BRAF pathway described above is part of a larger immediate-early signal transduction 

network with multiple receptors as inputs and transcription, cell motility and cell fate determination as 

outputs. RAS is a central node in this network and is an important oncogenic driver (Stephen et al, 

2014). The ubiquity of RAS mutations in cancer has led to renewed efforts to target oncogenic RAS and 

RAS effectors. As a resource for the community of RAS researchers, the NCI RAS Initiative has created 

a curated pathway diagram that defines the scope of the RAS pathway as commonly understood by a 

community of experts (Stephen et al, 2014). Such pathway diagrams can serve as useful summaries, but 

unless they are backed by an underlying computable knowledge representation they are of limited use in 

quantitative data analysis. 

 We used INDRA to describe the RAS signaling network and automatically generated a diagram 

(Figure 7A, right) corresponding to the community-curated Ras Pathway v1.0 diagram (available at 
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http://www.cancer.gov/research/key-initiatives/ras/ras-central/blog/what-do-we-mean-ras-pathway). We 

described the interactions in natural language (Figure 7A left, full text shown in Supplementary 

Information section 2.4) and used the TRIPS reading system to convert the description into INDRA 

Statements. A node-edge graph was generated using INDRA’s Graph Assembler and rendered by the 

Graphviz software (Figure 7A, right). The pathway map is visually comparable to one drawn by hand 

and allows natural language-based editing and extension of the underlying set of mechanisms. After the 

v1.0 RAS diagram was distributed, the diagram’s creators solicited verbal feedback from a large number 

of RAS biologists both in person and via a discussion forum. Suggestions from the community consisted 

of corrections and extensions. Using INDRA, these revisions can be made directly by editing the natural 

language source material. For example, one contributor noted that in the published pathway diagram 

(Figure 7A, right), P90RSK is activated by the mTORC2 complex, whereas in fact it is a substrate of 

MAPK1 and MAPK3 (https://www.cancer.gov/research/key-initiatives/ras/ras-central/blog/2014/what-

do-we-mean-ras-pathway#comment-1693526648). We modified the natural language description to 

reflect this correction by removing the sentence “mTORC2 activates P90RSK” and replacing it with 

“MAPK1 and MAPK3 activate P90RSK.” The pathway map obtained after assembly from the revised 

text correctly reflects the change (Figure 7B). 

 Several readers also suggested expansion of the pathway map to include other relevant proteins. 

Extensions of this type are easy to achieve using natural language: for example, we extended the v1.0 

RAS diagram to include JNK, a MAP kinase that is induced in most cells by cytokines and stress (Anafi 

et al, 1997; Antonyak et al, 1998; Wagner & Nebreda, 2009). This was achieved by adding four 

sentences (Figure 7C, top) including “MAP3K7 activates MKK4 and MKK7” and “MKK4 and MKK7 

activate JNK1 and JNK2”. The subnetwork appended to the diagram is shown in Figure 7C (bottom). 

Note that we used common names for the JNK pathway kinases in the word model but INDRA 

canonicalized these to their official gene names (e.g., “HPK1”, “MKK4”, and “JNK1” were converted to 

MAP4K1, MAP2K4, and MAPK8, respectively). 

 The set of mechanisms used to generate the diagrams in Figures 7A-C can also be translated into 

a qualitative predictive model. We used the Simple Interaction Format (SIF) Assembler in INDRA to 

generate a Boolean network corresponding to the natural language pathway description in Figure 7A 

(see Supplementary Information section 2.4 for the rules comprising the network). Using such a Boolean 

network we can interpret signaling data and make predictions about perturbations. For example, we 

simulated the effects of adding growth factors and MEK inhibitors on phosphorylated c-Jun. The 

Boolean network simulation correctly predicted that c-Jun would be phosphorylated in the presence and 
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absence of MEK inhibition (Figure 7D, blue). We then instantiated the extended network in Figure 7C 

(which identifies the JNK pathway as a possible contributor to c-Jun phosphorylation). In this case joint 

inhibition of JNK and MEK was required to fully inhibit c-Jun phosphorylation (Figure 7D, green). The 

biology in this example is relatively straightforward but it demonstrates that natural language 

descriptions of mechanisms, along with automated assembly into executable forms, can be used as an 

efficient and transparent way of creating extensible knowledge resources for data visualization and 

analysis. 

 

DISCUSSION	

 In this paper we described a software system, INDRA, for constructing executable models of 

signal transduction directly from text. The process involves using natural language reading tools 

(TRIPS, in this paper) to convert text into a computer-intelligible form, identifying biochemical 

mechanisms and casting them in an intermediate knowledge representation that is decoupled from both 

input and output formats. The intermediate representation, comprising a library of INDRA Statements, is 

then used to assemble computational models of different types including networks of ODEs, Boolean 

networks, and interaction graphs according to user-specified policies that determine the level of 

biophysical detail. We applied the approach to three successively more ambitious use cases: (i) 

translating a diagram and accompanying text describing p53 regulation by DNA damage, (ii) modeling 

adaptive drug resistance in BRAFV600E melanoma cells exposed to the BRAF inhibitor vemurafenib and 

(iii) constructing a large-scale model of RAS-mediated immediate-early signaling based on a crowd-

sourced schematic drawing. These examples demonstrate the surprising ability of machines to exploit 

the flexibility and ambiguity of natural language while also adding prior knowledge about reaction 

mechanisms to create well-defined executable models. 

 The p53 POMI model represents a case in which a non-expert INDRA user should be capable of 

building a model from scratch and then editing and updating the model to explore alternative 

hypotheses. We based POMI on a word model found in a highly cited review but found it necessary to 

add certain mechanisms to reproduce the described oscillations in p53 (i.e., constitutive degradation and 

dephosphorylation steps and a positive feedback step involving auto-phosphorylation of ATM in trans). 

This example highlights the potential of natural language to expose important and frequently overlooked 

differences between a formal representation of a mechanism (in this case, a network for ODEs) and a 

diagram that purports to describe it. Direct conversion of text into models via INDRA helps to minimize 
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such mismatches while keeping the description in an accessible and easily editable natural language 

form.    

 Construction of the BRAFV600E MEMI model in INDRA is more involved, because it is 

necessary to control combinatorial complexity through dexterous use of language; currently, unwanted 

model complexity can best be diagnosed at the level of rules and equations, which requires some 

expertise in computational biology. However it should be possible to develop semi-automated means for 

diagnosing and correcting such problems.  The RAS pathway is the most complex network tackled in 

this paper, but by restricting the mechanisms to positive and negative regulation and binding it remains 

manageable. Such a model could in principle be solicited directly from the community and we plan to 

release the INDRA RAS model to the same group of experts that helped Frank McCormick and 

colleagues build and improve the original RAS schematic (Stephen et al, 2014).  

 

Challenges in generating executable models from text 

 Automating the construction of detailed biochemical models from text involves overcoming 

three technical challenges. The first is turning text into a computable form that correctly captures the 

biochemical events described in a sentence (typically verbs or actions) and the precise biomolecules 

involved (typically the subjects and objects of a phrase or sentence). This is possible in our system 

because TRIPS can extract meaning from sentences describing complex causal relationships in the face 

of variations in syntax (Box 1). TRIPS performs an initial shallow syntactic search to identify and 

ground named entities (genes, proteins, drugs, etc.) and then uses biology-specific ontologies to perform 

“deep” or semantic analysis, determining the meaning of a sentence in terms of its logical structure.  

 The second challenge involves extracting and normalizing information about mechanisms 

contained in NLP output. INDRA extracts mechanistic information from graphs generated by TRIPS by 

searching for matches to a predefined set of templates corresponding to biochemical processes (e.g., 

phosphorylation, transcription, binding, activation, etc.; Figure 3). These templates regularize the 

description of biochemistry in text by capturing relevant information in pre-determined fields: for 

example, a template for phosphorylation is structured to have a protein kinase, a phosphorylated 

substrate, and a target site. Information extracted by this template matching procedure is stored in 

corresponding fields in INDRA’s intermediate representation, Statements; missing fields are left blank. 

INDRA Statements currently encompass terms and reactions commonly found in signal transduction 

pathways and gene regulation; however, the system is being extended to include a wider variety of 

biochemical processes. 
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 The third challenge in text-to-model conversion is constructing an executable model from high-

level mechanistic facts acquired from input sources. Knowledge of reaction type and reactant identity is 

insufficient to construct a detailed biophysical model: additional information derived from an 

understanding of the underlying biophysics is almost always required. For example, the conversion of a 

phosphorylation Statement into a reaction network can involve one-step kinetics, reversible two-step 

kinetics or two-step kinetics with explicit ATP binding. Conversion of Statements into explicit models is 

controlled by the imposition of assembly policies (Figure 4). Greater biophysical realism comes at the 

cost of increased model complexity and reduced parameter identifiability. Thus, there is no single 

optimal approach to model instantiation: the level of detail is determined by the purpose of the model 

and the way it is formulated mathematically.  

 Perhaps unexpectedly, constructing executable models from pathway databases using BioPAX or 

BEL presents similar challenges as constructing models from text. BioPAX and BEL statements are 

more structured than natural language, but they too lack the specificity needed to create executable 

models (Ruebenacker et al, 2009; Büchel et al, 2013). We therefore subject pathway information from 

databases to an analogous process as text, using templates and assembly policies to control the 

generation of specific reaction patterns. 

 

Separating Model Content and Implementation 

 Most approaches to modeling biological networks directly couple the specification of scope and 

the collection of relevant facts to mathematical implementation. For example, in an ODE-based model, 

molecular species are directly instantiated as variables and related to each other using one or more 

differential equations for each mass action reaction (Figure 8A “Ordinary differential equations” and 

Figure 8B, left). Although conceptually straightforward, the lack of division between content and 

implementation makes it difficult to update a model with new content (e.g., new findings from the 

literature or new hypotheses), to change the level of biophysical detail or to switch mathematical 

formalisms. Programmatic modeling overcomes some of these problems by allowing the construction of 

models at a higher level of abstraction in which users implement reusable and composable macros and 

modules (Figure 8A “PySB Macro” and Figure 8B, center) (Lopez et al, 2013; Mallavarapu et al, 2009; 

Smith et al, 2009). The mathematical equations necessary for simulation are then generated 

automatically from the abstract representations.  

 INDRA introduces a further level of abstraction whereby a user describes a set of reactions in 

natural language or searches for related mechanisms in pathway databases and then uses a machine to 
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turn these facts into executable models (Figure 8A “Natural language” and Figure 8B, right). In this 

process a user has full control over the content of the model and the level of detail, as specified by 

policies, but model assembly happens automatically. This decoupling simplifies the creation of 

dynamical models from natural language descriptions, enables the creation of models differing in detail 

or mathematical formalism and makes sure that verbal and mathematical descriptions of the same 

process are in correspondence (Figure 8B, right).  

 The decoupling of biological knowledge from specific applications reflects the way in which 

biologists work intuitively. We acquire informal knowledge through years of reading and experience, 

but this knowledge remains highly flexible; it allows for uncertainty about particular details and can be 

applied to a diverse set of problems in the lab. The ambiguity inherent in verbal descriptions of 

mechanisms conforms closely to the way in which individual experiments are designed and interpreted: 

it is extremely rare for one experiment to elucidate the status of all relevant sites of post translational 

modification, regulatory subunit binding or allosteric regulation of an enzyme. Natural language allows 

biologists to communicate this kind of provisional knowledge without prematurely resolving 

ambiguities or presupposing the biological context or experimental format in which the knowledge 

might be applied. In this respect INDRA mirrors the way biologists gather mechanistic information and 

apply it to specific research questions. 

 

Relationship to previous work 

 Several tools have been developed to partially automate the construction of executable models 

from bioinformatics databases such as KEGG, Pathway Commons, and others (Ruebenacker et al, 2009; 

Wrzodek et al, 2013; Büchel et al, 2013; Turei et al, 2016a). Automating model translation in this way 

increases throughput and maintains links between model assumptions and curated findings in databases, 

eliminating the need for labor-intensive annotations of hand-built models (Le Novère et al, 2005). Such 

approaches have been particularly successful in the field of metabolism in which knowledge about 

enzyme-substrate reactions is well curated and closely corresponds in level of detail to what is required 

for mechanistic modeling (Büchel et al, 2013). In signal transduction, curation is less complete, the 

number of molecular states and interactions is far higher and networks vary dramatically from one cell 

type to the next. This complexity has been addressed for the most part by using strictly qualitative 

formalisms that describe positive and negative influences between nodes (Büchel et al, 2013; Turei et al, 

2016b). In contrast INDRA uses an intermediate representation that encompasses both mechanistic 

processes (e.g., phosphorylation) and empirical causal influences (e.g., activation and inhibition). The 
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model assembly procedure makes use of mechanistic information where available, but can incorporate 

qualitative influence relationships when mechanisms are not known. 

Tools for assembling executable signaling models from pathway information can also be 

distinguished by the relationship between the number of input and output formats supported. The first 

instance of a software system for converting formats allowed one-to-one conversion from BioPAX to 

SBML (Ruebenacker et al, 2009). More recent one-to-many tools translate information from a single 

knowledge source into multiple output formats (Wrzodek et al, 2013), while many-to-one tools 

aggregate pathway information from many sources but target a single output format (Turei et al, 2016a). 

Use of an intermediate representation allows INDRA to decouple input and output formats and perform 

many-to-many conversion involving text, BioPAX, BEL, PySB, BNGL, SBML, ODEs, logical models 

and graph-based formats.  

 

Limitations and future extensions of INDRA  

 INDRA focuses exclusively on the construction and revision aspects of a modeling project in 

which the goal is to gather information about relevant mechanisms and specify model structure. By 

design, the software does not perform parameter estimation, simulation or model analysis, leaving these 

tasks to other tools and methods. INDRA is likely to be most useful in facilitating collaboration between 

biologists with domain-specific expertise and computational biologists. The advantage of natural 

language in this context is that it makes it easy for teams to communicate about biological hypotheses 

and mechanisms without becoming mired in details of model implementation. 

 Limitations of model building with INDRA can be grouped into two categories: issues relating to 

the external NLP systems and the internal representation and assembly systems. In this paper we 

construct models using simple declarative sentences that lack much of the complexity and ambiguity of 

spoken language or the scientific literature. Declarative language can express a wide variety of 

biological mechanisms at different levels of detail and ambiguity and its primary strength is that it 

mitigates many of the difficulties associated with NLP-based extraction of biological mechanisms. 

Although TRIPS and INDRA are robust to variation in syntax and naming conventions, they cannot 

understand all possible ways a concept can be stated; for example “Wip1 makes ATM inactive” is not 

recognized as a substitute for “Wip1 inactivates ATM” (Figure 5). In such cases rephrasing is usually 

successful. The TRIPS system (as well as other NLP systems we tried, such as REACH) can be used to 

process the more complex and ambiguous language used in scientific papers, but the results are less 

robust due to the greater technical and conceptual challenges involved. Elsewhere we will describe 
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progress on the task of extracting pathway information from the literature, which presents challenges not 

only for NLP but also for assembly (due to the large amount of irrelevant, redundant, overlapping, and 

erroneous information returned). In the approach described here, human domain experts simplify both 

the NLP and assembly challenges by digesting complex biological descriptions and summarizing them 

in simplified language. 

 The domains of knowledge covered by INDRA are currently limited by the scope of the 

intermediate representation and assembly procedures. The development of INDRA to date has focused 

on cell signaling, leaving metabolism, lipid biology, microRNA function, epigenetic regulation, etc. as 

future extensions. We are actively extending INDRA to include such processes by 1) updating 

processors to retrieve a wider range of information; 2) adding new Statement types; and 3) creating the 

necessary assembly procedures. Other areas of future development include automated retrieval of 

binding affinities and kinetic rates for parameter estimation. Encouragingly, the Path2Models software 

has shown that automated retrieval of kinetic parameters from databases is feasible for metabolic models 

(Büchel et al, 2013), and this approach may be adaptable to signaling pathways as well. Another 

direction for extension involves capturing observational in addition to mechanistic information. For 

instance, the experimental finding “IRS-1 knockdown resulted in reduction of insulin stimulated Akt1 

phosphorylation at Ser 473.” (Varma & Khandelwal, 2008) cannot be directly represented as a 

molecular mechanism. Literature and databases contain a wealth of such indirect, non-mechanistic 

information that could be used as biological constraints to infer or verify mechanistic models. 

 A system such as INDRA allowing biologists to “talk” to a machine about a biological pathway 

in natural language suggests the possibility that an improved machine could also “talk back” to the 

human user (Carvunis & Ideker, 2014). At its most basic level, such a system would allow humans and 

machines to jointly curate knowledge, thereby resolving ambiguities or errors in NLP or assembly. A 

more sophisticated machine would use its internal knowledge base to autonomously identify additional 

relevant reactions, inconsistencies in a user’s input, or novel hypotheses arising from model simulation. 

A computer agent could interact with many human experts simultaneously, facilitating curation and 

modeling efforts by communities of biologists. We anticipate that such human-machine collaborative 

systems will be increasingly valuable in making sense of the large and complex datasets that 

characterize modern biology.  
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MATERIALS	AND	METHODS	

Software	and	model	availability		

INDRA is available under the open-source BSD license. Code and documentation are available via 

http://indra.bio; the documentation is also included as part of the Supplementary Information. The 

TRIPS/DRUM system for extracting mechanisms from natural language is available at 

http://trips.ihmc.us/parser/cgi/drum. INDRA version 1.4.2 was used to obtain all results in the 

manuscript.  

 The POMI1.0 and MEMI1.0-1.2 models are provided as supplementary attachments in SBML, 

BNGL, Kappa and PySB formats, in addition to the natural language text files used to build them. The 

RAS pathway model and its extension are provided in SIF and Boolean network formats as 

supplementary attachments. Code used to generate these models is part of the INDRA repository and 

can be found in the models folder of https://github.com/sorgerlab/indra. 

TRIPS	Interface	

The INDRA TRIPS Interface is invoked using the top-level function process_text. This function queries 

the TRIPS/DRUM web service via HTTP request, sending the natural language content as input and 

retrieving extracted events in the EKB-XML format. The Interface then creates an instance of the 

TripsProcessor class, which is then used to iteratively search the EKB-XML output, via XPath queries, 

for entries corresponding to INDRA Statements. Extracted Statements are stored in the statements 

property of the TripsProcessor, which is returned by the Interface to the calling function.  

BioPAX/Pathway	Commons	Interface	

INDRA’s BioPAX Interface either queries the Pathway Commons web service or reads an offline 

BioPAX OWL file (Box 2). The Interface contains three functions that can be used to query the Pathway 

Commons database via the web service: 1) process_pc_neighborhood, which returns the reactions 

containing one or more query genes, 2) process_pc_pathsbetween, which returns reaction paths 

connecting the query genes, subject to a path length limit, and 3) process_pc_pathsfromto, which returns 

reaction paths from a source gene set to a target gene set, subject to a path length limit. The BioPAX 

Interface processes the resulting OWL files using PaxTools (Demir et al, 2013), yielding a BioPAX 

model as a Java object accessible in Python via the pyjnius Python-Java bridge 

(https://github.com/kivy/pyjnius). INDRA’s BioPAX Processor then uses the BioPAX Patterns package 
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(Babur et al, 2014) to query the BioPAX object model for reaction patterns corresponding to INDRA 

Statements. 

BEL/NDEx	Interface	

INDRA’s BEL Interface either reads an offline BEL-RDF file or obtains BEL-RDF from the BEL Large 

Corpus via the Network Data Exchange (NDEx) web service (Pratt et al, 2015). Subnetworks of the 

BEL Large Corpus are obtained by calling the method process_ndex_neighborhood, which retrieves 

BEL Statements involving one or more query genes. The BEL Processor then uses the Python package 

rdflib to query the resulting RDF object for BEL Statements corresponding to INDRA Statements via 

the SPARQL Protocol and RDF Query Language (SPARQL; https://www.w3.org/TR/sparql11-

overview). 

Assembly	of	rule-based	models	

Assembly of rule-based models is performed by instances of the PySB Assembler class. Given a set of 

INDRA Statements and assembly policies as input, the make_model method of the PySB Assembler 

assembles models in two steps. First, information is collected about all molecular entities referenced by 

the set of Statements. This defines the activity types, post-translational modification sites, binding sites, 

and mutation sites for each Agent, which can then be used to generate the agent “signatures” for the 

rule-based model. In PySB, the molecular entities of the model are represented by a set of instances of 

the PySB Monomer class. Because assembly policies chosen by the user govern the nature of binding 

interactions (e.g., one-step vs. two-step modification), the binding sites and agent signatures must be 

generated in accordance with the chosen policies at this step. For policies involving explicit binding 

between proteins (e.g., the two-step policy for post-translational modifications), each PySB Monomer is 

given a unique binding site for each interacting partner. The second step is the generation of reaction 

rules corresponding to each of the input Statements. The PySB Assembler iteratively processes each 

Statement, calling the assembly function specific to the Statement type and chosen policy. Depending on 

the Statement type and policy, one or more PySB rules may be generated and added to the PySB model. 

The PySB model returned by the make_model function can then be converted into other formats (Kappa, 

BNG, SBML, Matlab, etc.) depending on the type of simulation or analysis to be performed (Lopez et 

al, 2013). Importantly, the PySB Assembler adds annotations to the generated PySB model that link 

molecular entities referenced in the model to their identities in reference ontologies (e.g., HGNC and 

UniProt). These annotations are in turn propagated into SBML and other model formats by existing 

PySB model export routines. 
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Models	of	p53	activation	in	response	to	single-	and	double	strand	break	DNA	damage	

The text defining each model was submitted to the TRIPS web service for processing via INDRA’s 

TRIPS Interface. The TRIPS system returned Extraction Knowledge Base graphs (Box 1 and 

Supplementary Information section 2.2) from which INDRA’s TRIPS Processor extracted INDRA 

Statements. These Statements were then assembled using INDRA’s PySB Assembler into a rule-based 

model. The default “one-step” assembly policy was used, which generates rules in which the subject of 

an activation, inhibition, and modification changes the state of the object without binding.  

 The 8 sentences constituting the SSB damage response model (Figure 5B) resulted in 8 INDRA 

Statements (each of type Activation or Inhibition). For example, the sentence “Active p53 activates 

Mdm2” was represented as an Activation Statement with an additional condition on the Agent 

representing p53, requiring that it be active. During INDRA Statement construction, names of genes are 

standardized to their HGNC gene symbol (Eyre et al, 2006),  thus, the Agent representing “Mdm2” is 

renamed  “MDM2”, and the Agent representing “p53” is renamed “TP53”. Default initial conditions 

(10,000 molecules, based on a default concentration of 10-8 Molar in a typical HeLa cell volume of 1.6 x 

10-12 L) generated by the PySB Assembler were used for each protein in its inactive state and simulations 

were started with an initial 1 active ATR molecule to initiate the activation pathway. The forward rates 

for activation and inhibition rules were set to 10-7 molec-1s-1 (using a conversion rate of 105 M-1s-1 in a 

typical HeLa cell volume, as above). The forward rate of the rules corresponding to ATR auto-activation 

and p53 inactivation by Wip1 were modified to be 5 x 10-7 molec-1s-1, that is, faster than the forward rate 

of other rules (a summary of all rules and rates is given in the Supplementary Information section 2.2). 

PySB’s reaction network generation and simulation functions were then used to instantiate the model as 

a set of 8 ordinary differential equations. The model was simulated using the scipy package’s built-in 

vode solver for up to 20 hours of model time while tracking the amount of active p53, which was then 

plotted (Figure 5B). Natural language processing for this model took 10 seconds (here and in the 

following this includes network traffic time to and from the web service); the assembly and simulation 

of the model took less than 1 second.  

 The method for constructing the simple DSB response model (Figure 5C) with ATM was 

analogous to the SSB model. The same initial amounts and forward rate constants were used as in the 

previous model, except in this case an initial condition of 1 active ATM molecule was used, and the 

inactivation of ATM by Wip1 was given a forward rate of 10-5 molec-1s-1. For this model, the 9 natural 

language sentences were captured in 9 INDRA Statements and generated into a model of 9 rules and 

finally 9 ODEs. The model was again simulated up to 20 hours while observing the active form of p53. 
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Similar to the SSB response model, natural language processing for this model took around 10 seconds, 

with assembly and simulation taking less than 1 second. 

 The POMI1.0 model (Figure 5E) extends the basic DSB response model by specifying the 

activation/inhibition processes in more mechanistic detail. The model is described in 10 sentences 

yielding 12 INDRA Statements and a model containing 11 PySB rules and 12 ODEs (via the PySB 

Assembler using the “one-step” policy). The same rate constants were used as in the simple DSB 

response model; additionally, the degradation rate of Mdm2 was set to 8 x 10-2 s-1 and the rate of 

synthesis of Mdm2 by p53 to 2 x 10-2 molec-1s-1 (a full list of rules and associated rate constants is given 

in the Supplementary Information section 2.2). Natural language processing for this model took 14 

seconds; assembly and simulation took less than 1 second. 

Models	of	response	to	BRAF	inhibition	

The sentences for the MEMI1.0, 1.1 and 1.2 models were processed with the TRIPS web service via 

INDRA’s TRIPS Interface. Natural language processing took 37 seconds for MEMI1.0, 60 seconds for 

MEMI1.1, and 75 seconds for MEMI1.2. The resulting INDRA Statements were then assembled using 

INDRA’s PySB Assembler module into a rule-based model using the “two-step” policy for assembling 

post-translational modifications. Kinetic rate constants were set manually and the initial amounts of each 

protein were set to correspond in their order of magnitude to typical absolute copy numbers measured 

across a panel of cancer cell lines in Table S5 of (Shi et al, 2016). A summary of the kinetic rates and 

initial amounts is given in Supplementary Tables 4-6. Each model was instantiated as a system of 

ordinary differential equations and simulated using the scipy Python package’s built-in vode solver. 

Each model was started from an initial condition with all proteins in an inactive, unmodified and 

unbound state. The models were run to steady state and the values of GTP-bound RAS (active RAS) and 

phosphorylated ERK were saved. Another simulation was then started from the steady state values with 

vemurafenib added and the time courses of active RAS and phosphorylated ERK were normalized 

against their unperturbed steady state values and plotted.  

Extensible	and	executable	RAS	pathway	map		

The pathway map was created by processing 47 sentences with TRIPS (see Supplementary Information 

section 2.4) to generate 141 INDRA Statements. Reading and extraction of Statements took a total of 

160 seconds. The Statements were then assembled using INDRA’s Graph Assembler, which produced a 

network that was laid out using Graphviz (Ellson et al, 2002) as shown in Figure 7A. The same set of 

Statements was then assembled using the INDRA SIF Assembler which produced a list of positive and 
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negative interactions between genes that can be interpreted by network visualization software (Shannon 

et al, 2003) and Boolean network simulation tools. The logical functions for each node were generated 

by combining the state of parent nodes such that the presence of any activating input in an on state and 

the absence of any inhibitory inputs in an on state resulted in the node’s value taking an on state at the 

next time step (logical rules are given in Supplementary Information section 2.4). Boolean network 

simulations were performed using the boolean2 package (Albert et al, 2008). First, 100 independent 

traces were simulated using asynchronous updates on the nodes (which results in stochastic behavior) 

and the average of the value of each node (with 0 corresponding to the low and 1 to the high state of 

each node) was taken across all simulations to produce the time course plots in Figure 7D. 
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FIGURE	LEGENDS	

Figure 1. Building a model from natural language with INDRA.  

(A) The architecture of INDRA consists of three layers of modules (1-3). In layer (1), Interfaces collect 

mechanisms from natural language processing systems (e.g. TRIPS Interface) and pathway databases 

(e.g. Pathway Commons Interface) and Processors (e.g. TRIPS Processor, BioPAX Processor) extract 

INDRA Statements from their outputs. Statements, the internal representation in INDRA constitute layer 

(2). In layer (3), INDRA Statements are assembled into various model formats by Assembler modules 

(e.g. PySB Assembler, Graph Assembler).  

(B) A Python script is used to assemble and simulate a model from the text “MEK1 phosphorylates 

ERK2 at threonine 185 and tyrosine 187”. The process_text method of INDRA’s TRIPS Processor is 

called to send the text to the TRIPS NLP system (1) and then process the output of TRIPS to construct 

INDRA Statements (2). Then, a PySB Assembler is constructed, the Statements are added to it, and an 

executable model is assembled using the PySB Assembler’s make_model method with a “two-step” 

policy (3). Finally, the model is simulated for 300 seconds using PySB’s odesolve function. 

(C) User input, INDRA modules and external tools form a sequence of events to turn a natural language 

sentence into a model and simulation. The natural language description from the user is passed to 

INDRA’s TRIPS Interface, which sends the text to TRIPS (1). The TRIPS system processes the text and 

creates and Extraction Knowledge Base graph (Results column; yellow box). INDRA receives the 

results from TRIPS and constructs two INDRA Statements from it, one for each phosphorylation event 

(Results column), which are returned to the user (2). The user then instantiates a PySB Assembler and 

instructs it to assemble an executable model (3) from the given INDRA Statements (a schematic 

biochemical reaction network shown in Results column). Finally, the user calls an ODE solver via 

PySB’s odesolve function to simulate the model for 300 seconds (simulation output shown in Results 

column).  

 

Figure 2. INDRA Statements represent molecular agents and biochemical mechanisms.  

(A) The mechanism “MAP2K1 that is phosphorylated at S218 and S222 phosphorylates MAPK1 on 

T185” is represented in INDRA as a Phosphorylation Statement with an enzyme Agent (MAP2K1), a 

substrate Agent (MAPK1), a residue (Threonine), and a position (185) argument. The state of the 

MAP2K1 Agent is expanded in panel (B). A Statement can have one or more Evidences associated with 

it, with an example expanded in panel (C). 
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(B) The Agent representing “MAP2K1 that is phosphorylated at S218 and S222” has two modification 

conditions: serine-phosphorylation at 218 and serine-phosphorylation at 222. The grounding to the 

UniProt and HGNC databases associated with the Agent is also shown. 

(C) An Evidence object is shown which is associated with an INDRA Statement obtained from the BEL 

Large Corpus (see Box 2) as the source. The Evidence object represents the evidence text for the entry 

(“c-Raf activates MEK1 by phosphorylating at serine residues 218 and 222”), the citation associated 

with the entry (PubMed identifier 8621729), the original BEL statement (shown under Source ID) and 

any annotations that are available, including the organism (in this example, 9606, which is the identifier 

for Homo sapiens). In some cases, epistemic information is known about the Statement, such as whether 

it is an assertion or a hypothesis, and the Evidence object has a corresponding field to carry this 

information.  

 

Figure 3. INDRA Statements constructed from TRIPS NLP extractions, BioPAX and BEL.  

An identical INDRA Statement is constructed from three knowledge sources. A corresponding fragment 

of each source format (representing the phosphorylated state of MAP2K1 on S222) is highlighted in 

blue.  

Top left: A TRIPS EKB (see Box 1) graph is shown for the sentence “MAP2K1 that is phosphorylated 

on S218 and S222 phosphorylates MAPK1 at T185”. The main phosphorylation event has agent, 

affected and site arguments, which each refer to a term. The agent term resolves to a gene with name 

MAP2K1 and database references to UniProt and HGNC. The MAP2K1 term also refers to an additional 

event in which it is affected (yellow background). This additional event represents the phosphorylated 

state at two molecular sites: serine 218 and serine 222. The affected Term associated with the main 

phosphorylation event is MAPK1 with its associated UniProt and HGNC references. Finally, the site 

argument of the main event is a molecular-site resolving to threonine 185. 

Middle left: A BioPAX Biochemical Reaction is shown with unmodified MAPK1 on the left hand side 

and MAPK1 with a Sequence Modification Feature of phosphorylation at threonine 185 on the right 

hand side. Both the left and the right hand sides use the same Cross Reference to a UniProt identifier. A 

Catalysis is associated with the Biochemical Reaction with MAP2K1 as the controller. MAP2K1 has 

two Sequence Modification Features: phosphorylation at serines 218 and 222. MAP2K1 also refers to a 

UniProt identifier via a Cross Reference. Two alternative visual representations of the same BioPAX 

Reaction are given in Supplementary Figure S4.  
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Bottom left: A graphical representation of a BEL statement is shown in which the subject is the Kinase 

Activity of the Protein Abundance of the modified MAP2K1 (with phosphorylations at serines 218 and 

222). The object of the statement is the Protein Abundance of modified MAPK1 (phosphorylation at 

threonine 185) with the predicate being Directly Increases. Below the graphical representation, the 

statement is also given in BEL script format. 

Right: All example mechanisms from the three knowledge sources are constructed as the same INDRA 

Phosphorylation Statement with MAP2K1 as the enzyme (subject to modification conditions) and 

MAPK1 and the substrate. The Evidence associated with the INDRA Statement (not shown) constructed 

would be different for each knowledge source.  

 

Figure 4. INDRA Statements are assembled into biochemical rules via assembly policies  

The flow from representation and model content to implementation is governed by assembly policies 

and biochemical rule templates (top). A phosphorylation INDRA Statement with enzyme (MAP2K1) 

and substrate (MAPK1) can be assembled using several policies including one-step (top center), two-

step (middle center) and ATP-dependent (bottom center). Each policy corresponds to a template for a 

generic enzyme (E) and a substrate (S). The one-step policy assumes that the enzyme catalyzes the 

phosphorylation of the substrate in a single step such that that the transient enzyme-substrate complex is 

not modeled. This is represented as a single rule (Rule 1; red box) instantiated as a PySB rule (top right). 

The two-step policy assumes the reversible formation of an enzyme-substrate complex and an 

irreversible catalysis and product release step corresponding to two overlapping rules (Rules 1-2; red 

boxes). The ATP-dependent policy assumes a template in which the enzyme has to bind both the 

substrate and ATP but can bind them in an arbitrary order. This corresponds to two rules: one for ATP 

binding and one for substrate binding. A third rule describes the release of the phosphorylated substrate 

from the enzyme-substrate complex (Rules 1-3; red boxes).  

 

Figure 5. Modeling patterns of p53 activation dynamics from natural language 

(A) Patterns of p53 activation dynamics upon double strand break DNA damage (left) and single strand 

break DNA damage (right), adapted from (Purvis & Lahav, 2013). Edges with yellow numbers 

correspond to the original diagram in (Purvis & Lahav, 2013), pink and green numbers correspond to 

mechanisms added subsequently, as described in the text. 
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(B) Natural language descriptions of the mechanisms involved in double strand break DNA damage 

(DSB) response corresponding to the diagram on the left hand side of (A) and dynamical simulation of 

p53 activity from the corresponding INDRA-assembled model (below). 

(C) Natural language descriptions of the mechanisms involved in single strand break DNA damage 

(SSB) response corresponding to the diagram on the right hand side of (A) and dynamical simulation of 

p53 activity from the corresponding INDRA-assembled model (below). 

(D) For the base sentence “Wip1 inactivates ATM”, variants in the names of entities are shown below 

with four examples that produce the intended result (green sidebar) and one example that does not (red 

sidebar). To the right, eleven linguistic variants of the sentence are shown with eight producing the 

intended result (green sidebar) and three that do not, including one with a grammatical error and one 

with a spelling error (red sidebar). 

(E) The POMI1.0 model, a variant of the double strand break response model with a mechanistically 

more detailed description of the system in the left hand side diagram in (A) and the model in (B). The 

model assembled with INDRA produces oscillations in p53 activity over time when simulated (bottom). 

 

Figure 6. INDRA-built models of vemurafenib resistance in response to growth factor signals.  

(A) Simplified schematic representation of the observed ERK phosphorylation phenomena in BRAF-

V600E mutants that are hypothesized to be the basis of adaptive resistance. In untreated BRAF-V600E 

cells (left) mutant BRAF is constitutively active independently of RAS and leads to higher ERK 

phosphorylation levels (thick green edge) and stronger negative feedback to SOS (thick red edge). Upon 

vemurafenib treatment, in the short term (center) ERK phosphorylation is decreased due to BRAF 

V600E inhibition (thin green edge). Over time, resistance develops (right); the ERK-SOS feedback loop 

becomes weaker (thin red edge) and increased RAS activity induces RAF dimerization, leading to a 

rebound in ERK phosphorylation (thick green edge).  

(B) MEMI1.0 is described in 14 sentences which are assembled into 28 PySB rules and generated into a 

system of 99 ordinary differential equations. Simulation of phosphorylated ERK (blue) and active RAS 

(green) are shown relative to their respective values at time 0, when vemurafenib is added. The model 

simulation shows that upon vemurafenib addition, the amount of phosphorylated ERK is quickly 

reduced and stays at a low level, while the amount of active RAS is unchanged.  
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(C) In MEMI1.1, by extending three existing sentences (4, 5, 14) and adding two new ones (15, 16) 

(changes shown in orange), the ERK-SOS negative feedback is modeled and assembled into 34 rules 

and 275 ODEs. The model simulation (right) reproduces RAS reactivation (green) upon vemurafenib 

treatment, however, the experimentally observed rise in ERK phosphorylation (blue) is not reproduced.  

(D) MEMI1.2 extends MEMI1.1 by adding a sentence (17) and replacing an existing sentence with two 

new sentences (8A and 8B) (changes shown in green). INDRA produces a model consisting of 37 rules 

and 353 ODEs. Model simulations are able to reproduce the expected rise in RAS activation (green) and 

the increased phosphorylation of ERK (blue).  

 

Figure 7. An INDRA-assembled extensible and executable pathway map of RAS signaling. 

(A) Positive and negative activations as well as complex formation between proteins is written in natural 

language (left) to describe simplified interactions in the RAS pathway (for full text see Supplementary 

Information section 2.4). The INDRA-assembled graph is shown on the right showing activations 

(black), inhibitions (red) and binding (blue).  

(B) A correction on the pathway map is made by editing the original text. One sentence is removed (red 

sentence) and is replaced by another one (green sentence) as a basis for the updated assembly whose 

relevant parts are shown as a graph below. P90RSK is removed as a substrate of mTORC2 and added as 

a substrate of MAPK1 and MAPK3 (green highlight). 

(C) The pathway map is extended with a new branch by adding four additional sentences describing 

JNK signaling. The newly added pathway (green highlight; gene names appearing as their standard gene 

symbols, for instance “HPK1” in the original sentences is represented as the node MAP4K1) provides a 

parallel path from EGFR to the JUN transcription factor, both of which were included in the original 

model.  

 

Figure 8. Approaches to building dynamical models of biochemical mechanisms. 

(A) Stages of describing a mechanism from concept to implementation. The mechanism “an enzyme 

binds a substrate” is shown at different levels of abstraction from mechanistic concept to equation-level 

implementation. The conceptual description can be expressed in natural language, which can be 

formalized as an INDRA Statement between an enzyme and a substrate Agent. The PySB description 

and a corresponding BioNetGen description (see Box 3) describe a particular implementation of this 
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mechanism in terms of a single rule, which corresponds to a “low-level” instance of three differential 

equations describing the temporal behavior of the enzyme, substrate and their complex in time.  

(B) Comparison of “classical” mathematical modeling (left), programmatic modeling with PySB 

(center) and modeling with INDRA (right). In each paradigm, red arrows show processes that are done 

by the user and green arrows show ones that are automatically generated.   
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