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Abstract

By profiling the transcriptomes of individual cells, single-cell RNA sequencing provides
unparalleled resolution to study cellular heterogeneity. However, this comes at the cost
of high technical noise, including cell-specific biases in capture efficiency and library
generation. One strategy for removing these biases is to add a constant amount of
spike-in RNA to each cell, and to scale the observed expression values so that the
coverage of spike-in RNA is constant across cells. This approach has previously been
criticized as its accuracy depends on the precise addition of spike-in RNA to each
sample, and on similarities in behaviour (e.g., capture efficiency) between the spike-in
and endogenous transcripts. Here, we perform mixture experiments using two different
sets of spike-in RNA to quantify the variance in the amount of spike-in RNA added to
each well in a plate-based protocol. We also obtain an upper bound on the variance due
to differences in behaviour between the two spike-in sets. We demonstrate that both
factors are small contributors to the total technical variance and have only minor effects
on downstream analyses such as detection of highly variable genes and clustering. Our
results suggest that spike-in normalization is reliable enough for routine use in
single-cell RNA sequencing data analyses.

Introduction 1

Single-cell RNA sequencing (scRNA-seq) is a powerful technique for studying 2

transcriptional activity in individual cells. Briefly, RNA is isolated from single cells, 3

reverse transcribed into cDNA and sequenced using massively parallel sequencing 4

technologies [28]. This can be performed using microfluidics platforms like the Fluidigm 5

C1 [21]; with protocols such as Smart-seq2 [20] that use microtiter plates; or with 6

droplet-based technologies [12,17] that can profile thousands of cells. Gene expression is 7

quantified by mapping read sequences to a reference genome and counting the number 8
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of reads mapped to each annotated gene. To avoid amplification biases, individual 9

transcript molecules can also be tagged with unique molecular identifiers (UMIs) [10], 10

such that sequencing to saturation and counting UMIs will yield the number of 11

transcripts of each gene in a cell. Regardless of whether reads or UMIs are used, not all 12

transcript molecules will be captured and sequenced due to cell-specific inefficiencies in 13

reverse transcription [29]. The presence of these cell-specific biases compromises the 14

direct use of the read/UMI count as a quantitative measure of gene expression. 15

Normalization is required to remove these biases before the gene counts can be 16

meaningfully compared between cells in downstream analyses. 17

A common normalization strategy for RNA-seq data uses a set of genes that have 18

constant expression across cells. This set can consist of pre-defined “house-keeping” 19

genes, or it can be empirically defined under the assumption that most genes are not 20

differentially expressed (DE) between cells [1, 15,24]. Any systematic differences in 21

expression between cells for this non-DE set of genes must, therefore, be technical in 22

origin, e.g., due to differences in library size or composition bias [24]. Counts are scaled 23

to eliminate these differences, yielding normalized expression values for downstream 24

analyses. This gene-based approach works well for bulk sequencing experiments where 25

the population-wide gene expression profile is stable. However, it may not be suitable 26

for single-cell experiments where strong biological heterogeneity complicates the 27

identification of a reliable non-DE set. For example, house-keeping genes may be turned 28

on or off by transcriptional bursting, while processes like the cell cycle may trigger 29

large-scale changes in the expression profile that preclude a non-DE majority. 30

An alternative normalization approach is to use spike-in RNA for which the identity 31

and quantity of all transcripts is known [2,29]. The same amount of spike-in RNA is 32

added to each cell’s lysate, and the spike-in transcripts are processed in parallel with 33

their endogenous counterparts to generate a sequencing library. This yields a set of read 34

(or UMI) counts for both endogenous and spike-in transcripts in each cell. 35

Normalization is performed by scaling the counts for each cell such that the counts for 36

the spike-in genes are, on average, the same between cells [11]. The central assumptions 37

of this approach are that (i) the same amount of spike-in RNA is added to each cell, 38

and (ii) the spike-in and endogenous transcripts are similarly affected by cell-to-cell 39

fluctuations in capture efficiency. Under these assumptions, any differences in the 40

coverage of the spike-in transcripts between cells must be artifactual in origin and 41

should be removed by scaling. One particular advantage of this strategy is that it does 42

not make any assumptions about the endogenous expression profile, unlike the non-DE 43

approach described above. This means that spike-in normalization can be applied in 44

situations where large-scale changes in expression (e.g., related to changes in total RNA 45

content, or involving highly heterogeneous populations containing many cell types) are 46

expected and of interest [16,19]. 47

There are two common criticisms of spike-in normalization that challenge the 48

validity of its central assumptions. The first is that the same quantity of spike-in RNA 49

may not be consistently added to each sample [24], and the second is that synthetic 50

spike-in transcripts may not behave in the same manner as endogenous transcripts [6] 51

(i.e., unequal capture efficiencies, caused by differences in the biophysical properties of 52

the transcripts). Any differences in spike-in quantity or behaviour across cells will 53

compromise the accuracy of spike-in normalization [22]. In some cases, it may also be 54

difficult to gauge how much spike-in RNA should be added, especially if the quantity of 55

endogenous RNA per cell is unknown, resulting in insufficient spike-in coverage for 56

normalization. These criticisms may contribute to the limited use of this normalization 57

strategy in the scRNA-seq literature [2]. However, if one were to dismiss the use of 58

spike-in normalization, there would be no general alternative for removing cell-specific 59

biases in scRNA-seq data sets where a non-DE majority of genes cannot be assumed. 60
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Thus, it is of particular interest whether or not the aforementioned criticisms of spike-in 61

normalization are relevant to real scRNA-seq experiments. To our knowledge, this has 62

yet to be rigorously studied. 63

In this paper, we conduct a series of experiments to estimate the reliability of 64

spike-in normalization in single-cell transcriptome studies employing plate-based 65

protocols. We use mixtures of two distinct spike-in RNA sets to quantify the variance of 66

the added spike-in volume across cells, and show that it is quantitatively negligible in 67

real experiments across a range of conditions. We also obtain an upper bound on the 68

cell-to-cell variability in the differences in behaviour (i.e., the fold-changes in the 69

capture efficiencies) between the two spike-in sets. Simulations indicate that both 70

factors have only minor effects on the results of downstream analyses such as detection 71

of DE and highly variable genes. These results suggest that spike-ins can be safely used 72

for routine normalization of scRNA-seq data. 73

Results 74

Overview of the mixture experiments 75

We aimed to assess the variability in the added spike-in quantity across cells. To do so, 76

we performed mixture experiments using two distinct spike-in sets (Figure 1) – the 77

External RNA Controls Consortium (ERCC) set and the Spike-in RNA Variants (SIRV) 78

set. An equal volume of each spike-in set was added separately to all wells of a 96-well 79

microtiter plate. Each well contained a single lysed mouse cell – a mouse 416B myeloid 80

progenitor cell or trophoblast stem cell (TSC) – thus mimicking real experimental 81

conditions. The resulting pool of endogenous/spike-in RNA in each well was used to 82

generate a cDNA library, using a modified version of the Smart-seq2 protocol (see 83

Methods). This process was repeated for all wells and high-throughput sequencing was 84

performed on all libraries. 85

For each library, reads were mapped to the genome and assigned to genes to quantify 86

expression. The total count was computed across all transcripts of each spike-in set in 87

each well. The log2-ratio of the totals between the two sets was computed for each well, 88

and the variance of this log-ratio was computed across wells. Any variability in spike-in 89

volume addition should manifest as an increase to the variability of the log-ratio, given 90

that the spike-in sets were added independently to each well. 91

We also repeated the experiment by adding volumes of “premixed” spike-in solution 92

where the two spike-in sets had been pooled at a 1:1 ratio. This ensures that there is no 93

well-to-well variability in the relative quantities of RNA from the two spike-in sets. The 94

variance of the log-ratio across these premixed-addition wells provides a baseline level of 95

variability in the protocol (e.g., due to sequencing noise). The variance of volume 96

addition was then estimated as the difference in the variance estimates from the 97

premixed-addition wells and from the wells with separate addition of spike-ins. 98

We performed both the premixed and separate-addition experiments on the same 99

plate to avoid plate effects [8, 30]. For the separate-addition experiment, we also 100

reversed the order of addition of the two spike-in sets to determine if this affected the 101

variance estimate. Finally, we generated data from replicate plates to ensure our results 102

were reproducible. This was done in a range of conditions, i.e., using different cell types, 103

by different operators and with sequencing at different locations. 104

We used a protocol based on microtiter plates rather than microfluidics as it is easier 105

to customise the spike-in addition step in the former. Our experimental design requires 106

two separate additions of spike-in RNA to each reaction (see Methods). This is not 107

straightforward to achieve on, say, the Fluidigm C1 chip where the added volume for 108

each reagent depends on the design on the reaction chamber. Our focus on data from 109
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Figure 1. Schematic of the experimental design to assess the variability of spike-in
addition in a plate-based scRNA-seq protocol. (a) A cell is sorted into each well of a
plate and lysed. For one set of wells, an equal volume of each spike-in set is added
separately, along with the reverse transcription (RT) reagents. For another set of wells,
an equal volume of a pooled mixture of the two spike-ins is added into each well (done
twice to keep the protocol consistent). Reverse transcription, PCR amplification, library
generation and sequencing were then performed. (b) The log2-ratio between the total
counts of the two spike-in sets was computed for each well. The variance of the log-ratio
was estimated from all wells with separate addition of spike-ins, and from wells with
addition of the premixed pool. The difference between these two estimates represents
the variance attributable to volume addition.
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plate-based protocols reflects their widespread use in single-cell studies [9, 26,27,32]. 110

Obviously, the procedure we describe here can be adapted to any protocol where the 111

spike-in addition can be easily modified, e.g., plate-based CEL-seq [7] or STRT-seq [9]. 112

Estimating the variance of volume addition 113

Denote the log2-transformed total read count for well i and spike-in set s as 114

Tis = log2

[
LilsVisRis

∑
ts

rtscts

]
+ εis

where the sum is taken over all unique transcripts ts in s. The other terms are defined 115

as follows: 116

• cts , a constant specifying the concentration (in terms of transcripts per unit of 117

volume) of ts. 118

• rts , a constant specifying the optimal transcript molecule-to-cDNA fragment 119

capture rate for ts. 120

• Ris, a random variable representing the average capture efficiency in i for all 121

transcripts in s. 122

• Vis, a random variable representing the volume of solution of s added to i. 123

• Li, a random variable representing the cDNA fragment-to-read conversion rate for 124

i. 125

• ls, a constant representing the “sequenceability” of transcripts in s. 126

The product of all of these terms defines the expected number of reads for each ts in 127

well i, and the sum of the products across all ts is the expected total count of set s in i. 128

In addition, εis represents the effect of sequencing noise on the log-total count, where 129

E(εis) = 0 and var(εis) = σ2
lib(s). 130

We assume that Ris, Vis and εis are mutually independent of each other, as they 131

describe separate steps in the protocol. We also assume that Vis1 and Vis2 are 132

independent for sets s1 and s2, as each spike-in set is added separately to each well. 133

Similarly, εis1 and εis2 are assumed to be independent as sequencing noise for each 134

transcript should be unaffected by that of other transcripts. (However, Ris1 and Ris2 135

are not independent due to well-specific factors affecting capture efficiency for all 136

transcripts). Further details on these variables are provided in Section 1 of the 137

Supplementary Materials. 138

Let s = 1 represent the ERCC spike-in set and s = 2 represent the SIRV spike-in set. 139

In the experiment where each spike-in set is added separately to each well, denote the 140

log2-ratio of the total counts between the two sets as θi = Ti1 − Ti2 for well i. This can 141

also be written as 142

θi = log2(Vi1) + εi1 − log2(Vi2)− εi2 + Fi + log2

[
l1
∑

t1
rt1ct1

l2
∑

t2
rt2ct2

]

where Fi = log2(Ri1/Ri2) and represents the log-fold change in the average capture 143

efficiency between the two sets (i.e., the difference in behaviour of the transcripts). 144

Computing the variance of θi yields 145

var(θi) = 2σ2
vol + σ2

lib(1) + σ2
lib(2) + var(Fi)
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where σ2
vol is the variance of both log2(Vi1) and log2(Vi2). The volume addition 146

procedure is the same for each spike-in set, so Vi1 and Vi2 should have the same 147

distribution. We consider the variance of Fi because Ri1 and Ri2 are not independent 148

(due to well-specific factors, as previously mentioned). 149

In the experiment where the spike-in sets are premixed before addition, Vi1 = aVi2 150

for some constant a representing the proportions in which the two sets are mixed. (This 151

should be close to unity.) If the same premixed solution is added to each well, the 152

relative volume of ERCC spike-ins to SIRV spike-ins must be constant for all wells. This 153

means that the log2-ratio for the premixed experiment is 154

θ∗i = log2(a) + εi1 − εi2 + Fi + log2

[
l1
∑

t1
rt1ct1

l2
∑

t2
rt2ct2

]
.

As a is constant for all i, the variance of θ∗i becomes 155

var(θ∗i ) = σ2
lib(1) + σ2

lib(2) + var(Fi) .

This represents the technical variance attributable to the rest of the scRNA-seq 156

protocol. To obtain an estimate of the variance of the volume addition step, simple 157

arithmetic yields 158

σ2
vol =

var(θi)− var(θ∗i )

2
.

It should be stressed that this variance estimate is relevant to all experiments using the 159

same protocol for spike-in addition, even if the identity or concentration of the spike-in 160

set is different. 161

With this mathematical framework, we estimated the variance components using the 162

data from our mixture experiments. We observed that the log-ratios θi and θ
∗
i 163

computed from each plate were roughly normally distributed (Supplementary Figure 1). 164

Thus, we fitted a linear model to each set of log-ratios and used the residual variance of 165

the fit as our estimate of var(θi) or var(θ
∗
i ). Linear models are particularly useful as 166

they allow blocking on additional structure in the experimental design (Methods). The 167

size of Tis was also similar between wells with premixed or separate addition of 168

spike-ins, which simplifies the calculation of σ2
vol (see Supplementary Figure 2, Section 1 169

of the Supplementary Materials for details). Finally, the order of spike-in addition did 170

not significantly affect the variance estimates for the separate-addition wells in most 171

plates (Supplementary Figure 3). 172

Our results indicate that σ2
vol is consistently smaller than the variance in the rest of 173

the protocol (Figure 2a). Indeed, no significant difference was detected between the 174

estimated var(θi) and var(θ∗i ) of each plate. This indicates that variability of spike-in 175

volume addition is a minor contributor to the technical variability of the spike-in counts. 176

To put these estimates into context, consider that Tis represents the log2-transformed 177

“size factor” for the library generated from well i. Spike-in normalization is performed by 178

scaling all counts in this library by the size factor, i.e., 2−Tis . This eliminates differences 179

in the coverage of spike-in set s between cells and corrects for well/cell-specific technical 180

biases. The variance of the log-size factors is approximately one order of magnitude 181

larger than σ2
vol (Figure 2b), which suggests that the latter will not have a major effect 182

on normalization. 183

Estimating the variance of differential behaviour 184

The variance of Fi is also relevant as it determines the effect of differences in behaviour 185

between distinct sets of transcripts. Even when the average capture efficiency differs 186

between sets, spike-in normalization is still appropriate provided that the fold change in 187
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Figure 2. Variance estimates of (a) the log2-ratio between the ERCC and SIRV total
counts across wells, or (b) the log2-size factors computed from those totals. Each estimate
is the residual variance of a linear model fitted to the log-ratios or log-size factors across
all wells on each plate. Results are shown for experiments with 416B cells or TSCs, with
two replicate plates for each cell type. Error bars represent the standard errors of the
estimates, assuming log-values are normally distributed. Numbers represent the residual
degrees of freedom used for each estimate – for (b), this was the same for each spike-in
set. Differences between the separate-addition and premixed estimates for each batch
were assessed using a one-sided F-test, yielding p-values of 0.28, 1.00, 1.00 and 0.06 from
left to right.

efficiency is the same in all wells. Consider a situation where there is a consistent 188

increase in efficiency in the spike-in set relative to endogenous transcripts. This scales 189

up the counts for the spike-in transcripts in all libraries by the same amount, which 190

ultimately cancels out between libraries (i.e., the log-fold changes of endogenous or 191

spike-in transcripts between different libraries are unaffected). However, if the fold 192

change in efficiency varies across wells, the accuracy of spike-in normalization is 193

compromised. This is because specific changes in efficiency for the spike-in transcripts 194

are confounded with general changes in efficiency for all transcripts in the well. 195

Differences in the coverage of spike-in transcripts may not represent technical biases 196

affecting other transcripts, precluding their use for normalizing all counts. 197

In our mathematical framework, the variance of θ∗i provides an upper bound for the 198

variance of Fi. This quantifies the extent to which normalization is affected by 199

differences in efficiency between two transcript sets. Our estimate of var(θ∗i ) is an order 200

of magnitude lower than the estimated variance of the log-size factors in each plate 201

(Figure 2). This indicates that the potential variance in differential behaviour across 202

wells, while greater than σ2
vol, is still relatively small compared to other biases in the 203

system, e.g., differences in cellular RNA content, well-to-well variability in capture 204

efficiency for all transcripts. Here, Fi is computed between two spike-in sets whereas the 205

differences between synthetic spike-in and endogenous transcripts are likely to be 206

greater. Nonetheless, the SIRV and ERCC spike-ins do vary in their biophysical 207

properties (Supplementary Figure 4). For example, the SIRV transcripts have more 208

variable length and lower GC content compared to the ERCC transcripts. This suggests 209

that Fi will include some of the differences in behaviour between synthetic and 210

endogenous RNA, such that var(Fi) can be used as a rough estimate of the magnitude 211

of the associated variability. 212
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We also performed simulations to gauge the relative contribution of var(Fi) and 213

σ2
lib(s) to var(θ∗i ) (see Section 2 of the Supplementary Materials). Counts for spike-in 214

transcripts were simulated such that any variability in the log-ratios was only caused by 215

stochastic sampling noise i.e., σ2
lib(1) + σ2

lib(2). Our results suggest that most of the 216

estimated variance of θ∗i in Figure 2 is driven by sampling noise (Supplementary 217

Figure 5), further reducing the potential impact of differences in behaviour. We also 218

observed that the variance of the log-ratios was robust to decreases in the coverage of 219

the spike-in transcripts in this simulation. In typical experiments, spike-in transcripts 220

take up 5-10% of the library size for each cell (50000-100000 reads in our data). Here, 221

the variance estimates were largely unchanged at 10-fold lower coverage. Thus, spike-in 222

normalization is still reliable when relatively low amounts of spike-in RNA are added or 223

sequenced. This is especially relevant to data sets where the spike-in coverage is lower 224

than recommended, due to difficulties in determining the appropriate concentration of 225

spike-ins to add to each cell when the quantity of endogenous RNA is unknown. 226

Assessing the downstream effect of variability with simulations 227

We assessed whether the results of downstream analyses using spike-in normalization 228

were sensitive to variability in spike-in addition or behaviour. First, we obtained data 229

from plate-based experiments that contained counts for spike-in transcripts. This 230

included public data sets [9, 27] as well as our 416B and TSC data. We then performed 231

analyses such as detection of differentially expressed genes (DEGs) and highly variable 232

genes (HVGs), as well as dimensionality reduction and clustering of cells. This was done 233

without any modification of the data to obtain a set of “original results”. 234

Next, we designed simulations based on each of the real data sets (see Methods). 235

Briefly, the total spike-in count for each well was rescaled by a randomly sampled factor 236

with variance equal to our experimental estimate of spike-in variance. Counts for the 237

individual spike-in transcipts were rescaled to reflect this new total, thus yielding a 238

simulated data set. Analyses were performed on the simulated data and the new results 239

were compared to the original set of results. Any differences indicate that the analysis is 240

sensitive to spike-in variability in real experiments. The advantage of this simulation 241

design is that only the spike-in counts are modified. Counts for the endogenous 242

transcripts were used directly without any modification, preserving the realistic nature 243

of the data in each simulation. 244

For DEG detection, we applied edgeR [23] and MAST [5] to the original and 245

simulated data after spike-in normalization. edgeR represents methods designed for DE 246

analyses of bulk RNA-seq data, while MAST represents bespoke single-cell methods. In 247

both cases, we observed only minor (< 5%) changes to the set of significant DEGs upon 248

introducing spike-in variability in each data set (Figure 3a). Similar results were also 249

observed in the top 200 DEGs with the smallest p-values, with fewer than 10% of the 250

genes in the set changing across iterations in all scenarios. For HVG detection, we used 251

methods based on the coefficient of variation [3] or the variance of log-expression 252

values [16]. Again, only minor changes were observed in most data sets (Figure 3b), for 253

both the set of significant HVGs and for the top 200 HVGs with the smallest p-values. 254

These results suggest that the detection and ranking of DEGs and HVGs are largely 255

robust to variability in spike-in volume or behaviour. 256

For dimensionality reduction, we restricted ourselves to principal components 257

analysis (PCA) on the normalized expression profiles of all cells. While t-distributed 258

stochastic neighbour embedding [31] is commonly used, its robustness is difficult to 259

evaluate due to its randomness. We generated PCA plots of the first three principal 260

components using both the original and simulated data. At each simulation iteration, 261

coordinates of all cells in the simulated plots were mapped onto the corresponding 262
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Figure 3. Effect of spike-in variability on DEG or HVG detection in simulated data.
(a) The percentage change in the set of DEGs detected in each data set at a FDR of
5% by edgeR or MAST. This was also calculated for the top set of 200 DEGs with the
smallest p-values. Simulations were based on our 416B data set, to detect DEGs after
inducing expression of a CBFB-MYH11 oncogene compared to a mCherry control (see
Methods); or on the data from Islam et al. [9], to detect DEGs between mouse embryonic
stem cells (mESCs) and fibroblasts. (b) The percentage change in the set of HVGs
detected in each data set at a FDR of 5%, using the Brennecke et al. method based on
the squared coefficient of variation (CV2) or with a method based on the variance of
log-expression. This was also calculated for the top set of 200 HVGs with the smallest
p-values. Simulations were based on our 416B and TSC data to detect HVGs across
cells. All values represent the mean of 20 simulation iterations, and error bars represent
standard errors.

original plots to determine the sensitivity of the original locations to spike-in variability. 263

Figure 4a indicates that changes in the location of each cell across simulation iterations 264

were generally minor. In particular, movement of cells across iterations did not 265

compromise the separation of different cell types. Thus, spike-in variability does not 266

appear to affect the visual interpretation of PCA plots. 267

Finally, we performed hierarchical clustering and applied a tree cut to identify 268

clusters of cells in the original data. This was repeated at each simulation iteration to 269

obtain a corresponding set of simulated clusters. For each original cluster, we computed 270

the Jaccard index with respect to each of the simulated clusters and recorded the 271

maximum value across all simulated clusters. A large maximum Jaccard index means 272

that most of the cells in the original cluster are still grouped together in the simulation, 273

i.e., the original cluster is (mostly) successfully recovered in one of the simulated 274

clusters. We observed that the maximum Jaccard indices were moderate to large 275

(Figure 4b), with values above 0.6 for most of the original clusters. To put this into 276

context, we re-clustered the original data using a different algorithm. This yielded 277

smaller Jaccard indices for all clusters (Figure 4c), indicating that spike-in variability 278

has less effect on the results than the choice of clustering method. 279
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Figure 4. Effect of spike-in variability on dimensionality reduction and clustering in
simulated data, based on real scRNA-seq data for cells extracted from a healthy human
pancreas [27]. (a) PCA plots of the first three principal components, where each cell
is coloured according to its annotated cell type from the original study. The circle
around each cell contains 95% of remapped locations across the simulation iterations,
and represents the deviation in location due to spike-in variability. (b) Clusters were
identified from the original data by hierarchical clustering with Ward’s criterion, followed
by a tree cut with k of 2, 5 or 10. This was repeated at each simulation iteration, and the
maximum Jaccard index between each original cluster and any of the simulated clusters
at the same k was computed. Each value represents the mean of 20 simulation iterations,
and the error bars represent standard errors. (c) The maximum Jaccard index for each
original cluster generated with Ward’s criterion compared to the clusters generated from
complete-linkage clustering of the original data.
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Discussion 280

In this article, we performed mixture experiments to quantify the variability of spike-in 281

RNA addition across wells in a plate-based scRNA-seq protocol. We also obtained a 282

rough estimate of the well-to-well variability in the differences in behaviour between two 283

different sets of spike-in transcripts. Both values were at least an order of magnitude 284

smaller than the variance of spike-in coverage across cells, suggesting that differences in 285

spike-in volume or behaviour were not major sources of error in the context of spike-in 286

normalization. This was supported by simulations where the introduction of realistic 287

levels of spike-in variance yielded only minor changes in the results of DEG and HVG 288

analyses as well as PCA and clustering. Our results indicate that spike-in normalization 289

is reliable enough for routine use in scRNA-seq data analyses. The common criticisms of 290

using spike-in RNA for normalization are only weakly relevant, if at all, to single-cell 291

transcriptome studies, and can generally be ignored. 292

Our conclusions differ from those of Risso et al. [22], where spike-in normalization is 293

not considered reliable enough for analyses of bulk RNA-seq data. We speculate that 294

this difference may be due to the difficulty of adding an appropriate amount of spike-in 295

RNA at the population level. For example, should spike-in RNA be added at a constant 296

ratio with respect to the concentration of endogenous RNA, or to the number of cells in 297

the sample? If the endogenous RNA concentration or the number of cells determines 298

the amount of spike-in RNA to be added, these will need to be experimentally 299

quantified for each sample. In that case, how accurate is the quantification, and what 300

effect do errors have on the downstream analysis? These questions are not relevant to 301

single-cell experiments where the obvious approach is to add the same amount of 302

spike-in RNA to each individual cell. 303

We have used the Smart-seq2 protocol in our study to reflect its widespread use in 304

the scRNA-seq literature. However, our estimate of σ2
vol is agnostic to how reverse 305

transcription, amplification and sequencing were performed, as these steps are 306

represented by other mathematical terms. Thus, we expect our conclusions to be 307

broadly applicable to any scRNA-seq protocol where spike-in RNA is added in a similar 308

manner (using repeater pipettes, see Methods). Different results will be obtained using 309

other methods for spike-in addition, e.g., with robotics systems or microfluidics, where 310

volume handling may be even more precise. Our experimental framework may also be 311

useful for evaluating the precision of spike-in addition when developing new scRNA-seq 312

protocols or setting up existing protocols in new laboratories, to ensure that spike-in 313

RNA is added correctly to each cell. 314

The term var(Fi) represents the variability in the difference in behaviour between 315

the SIRV and ERCC spike-in sets across wells. However, arguably a more relevant 316

quantity is the variability in the difference Pis between synthetic spike-in and 317

endogenous RNA, as this affects the accuracy of normalization. It may be possible to 318

obtain a rough estimate of var(Pis) by using pooled cellular RNA from another 319

organism as one of the spike-in sets [3], so that var(θ∗i ) provides an upper bound on the 320

variance in the differences in behaviour between synthetic and endogenous RNA. We 321

chose not to do so because of the difficulty in reproducibly using the same pool of 322

cellular RNA across batches, and in calibrating the concentration of RNA to be added 323

to each well. Use of UMI counts may also provide a tighter bound on var(Fi) or var(Pis) 324

by reducing the contribution of amplification noise to var(θ∗i ). 325

We stress that our study only examines the reliability of spike-ins for “relative” 326

normalization, i.e., to make counts comparable across cells. We do not consider the 327

reliability of spike-ins for absolute quantification, i.e., to determine the number of 328

molecules of each transcript in each cell. This is more difficult to evaluate as accuracy is 329

affected by the magnitude of the differences in the behaviour of spike-in and endogenous 330

transcripts. In contrast, relative normalization is only affected by variability in the 331
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differences in behaviour across wells, as discussed above. Nonetheless, our conclusions 332

are still relevant as absolute quantification depends on the precise addition of spike-in 333

RNA to each cell. 334

Methods 335

Obtaining and culturing 416B cells and TSCs 336

The murine multipotent myeloid progenitor cell line 416B [4] was stably transduced 337

with a TetOn construct of the CBFB-MYH11 (CM) oncogene (type A cDNA), using an 338

in-frame F2A-mCherry protein as a reporter. As a control, cells were alternatively 339

transduced with a version of the construct lacking the CM cDNA. Cells were 340

maintained in RPMI medium, supplemented with 10% fetal calf serum and antibiotics. 341

Expression of the CM oncogene or the mCherry control was induced by treatment with 342

1 μg/ml of doxycycline, and induction was confirmed after 24 hours by measurement of 343

mCherry levels by fluorescence activated cell sorting (BD Fortessa). 344

Murine TSCs were kindly provided by Dr. Jennifer Nichols (Wellcome Trust and 345

MRC Cambridge Stem Cell Institute) and cultured by Liliana Antunes (Wellcome Trust 346

Sanger Institute) on mouse embryonic fibroblast (MEF) feeders with TSC culturing 347

medium (a combination of 70% MEF conditioned media (R&D systems) and 30% 348

RPMI 1640, supplemented with 20% FBS, 2 mM L-glutamine, 1 mM sodium pyruvate, 349

100 μM β-mercaptoethanol, 25 ng/mL human recombinant FGF4 (R&D systems) and 1 350

μg/mL heparin (Tocris Bioscience)). To prepare for single-cell sorting, cells were 351

harvested with trypsin and MEF feeders were depleted by plating the cells onto a 352

gelatinised plate followed by incubation for 1h at 37◦C on TSC culturing medium. The 353

supernatant containing TSCs was used for sorting. 354

Spike-in mixture experiments with Smart-seq2 355

Single-cell RNA sequencing was performed using an adaptation of the previously 356

described Smart-seq2 protocol [20]. Single 416B cells or TSCs were sorted into 357

individual wells of a 96-well microtiter plate. Each well contained 2.3 μl of lysis buffer 358

with RNAse inhibitor (Ambion) in a 0.2% (v/v) Triton X-100 solution. Reverse 359

transcription (RT) was performed in a final volume of 13.2 μl per well, containing 1 μM 360

of oligo-dT (Sigma-Aldrich), 1.04 mM of each dNTP (ThermoFisher), 100 U of 361

SuperScript II retrotranscriptase (Invitrogen/ThermoFisher), 5 U of RNase inhibitor 362

(Ambion), 5 mM of DTT, 1 M of Betaine (Sigma-Alrich), 6 mM of MgCl2 (Ambion) 363

and 1 μM of TSO primer (Exiqon). Preamplification was performed in a total volume of 364

27 μl that contained 13.5 μl of HiFi Hotstart ReadyMix (2×; KAPA Biosystems) and 365

0.1 μM of IS PCR primer (Sigma-Aldrich). After 23 cycles of amplification, samples 366

were cleaned with 80% (v/v) of Ampure beads (Beckman Coulter). Sequencing libraries 367

were prepared using the Nextera XT DNA sample preparation kit (Illumina). This was 368

repeated to obtain several batches of sequencing data, with each batch consisting of one 369

plate of cells of the same type. 370

To perform the mixture experiments, spike-in RNA was mixed into the RT reagent 371

solution and added to each well. This was done such that each well contained 0.1 μl of a 372

1:3,000,000 dilution of the ERCC RNA Spike-In Mix (Invitrogen/ThermoFisher) and 373

0.12 μl of a 1:3,000,000 dilution of the Spike-in RNA Variant (SIRV) Control Mix E0 374

(Lexogen). Two separate solutions of RT reagents were prepared for the different 375

spike-in sets. For one third of the wells, addition of the two spike-in sets was performed 376

separately with the RT+ERCC solution first and the RT+SIRV solution second. For 377

another third of the wells, the order was reversed, i.e., with the RT+SIRV solution first 378
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and the RT+ERCC solution second. For the remaining wells, the RT+SIRV and 379

RT+ERCC solutions were premixed in a 1:1 ratio and the RT+SIRV+ERCC mixture 380

was added twice to each well. Each addition was performed independently for each well, 381

using a repeater pipette dispensing 2 μl at a time. 382

Sequencing of the 416B libraries was performed by the Genomics Core facility at the 383

Cancer Research UK Cambridge Institute. The first batch of libraries was sequenced on 384

an Illumina HiSeq 2500 machine generating 125 bp single-end reads, while the second 385

batch was sequenced on an Illumina HiSeq 4000 machine generating 50 bp single-end 386

reads. Sequencing of the TSC libraries was performed at the Wellcome Trust Sanger 387

Institute after library preparation by the Single Cell Genomics Core facility. Both 388

batches were sequenced on an Illumina HiSeq 4000 machine generating 75 bp paired-end 389

reads. 390

Data analysis for the mixture experiments 391

Reads were mapped to the mm10 build of the mouse genome, including sequences of 392

transcripts in the ERCC 393

(https://tools.thermofisher.com/content/sfs/manuals/ERCC92.zip) and SIRV 394

(https: 395

//www.lexogen.com/wp-content/uploads/2015/11/SIRV_Sequences_151124.zip) 396

spike-in sets. (The sequence of the CBFB-MYH11 oncogene was also included in the 397

reference when aligning data from 416B cells.) Mapping was performed using the 398

subread aligner v1.5.1 [13] in RNA-seq mode with unique alignment. The 416B data 399

were aligned in single-end mode while the TSC data were aligned in paired-end mode. 400

Reads with mapping qualities greater than or equal to 10 were assigned to exonic 401

regions of genes using the featureCounts function in the Rsubread package v1.24.1 [14]. 402

Genes were defined using Ensembl v82 annotation for the GRCm38 mouse assembly and 403

annotation for the ERCC and SIRV transcripts. This yielded a count for each 404

endogenous gene and spike-in transcript in each well. Mapping and counting statistics 405

for each batch of libraries are summarized in Supplementary Table 1. 406

Variance components were estimated from the libraries generated from a single plate. 407

In each well, the sum of counts across all transcripts in each spike-in set was computed, 408

and the log2-ratio between the ERCC and SIRV sums was calculated. To estimate 409

var(θi), a linear model with a one-way layout was fitted to the log-ratios for all wells 410

where the two spike-in sets were added separately. In each plate of the 416B data set, 411

each combination of treatment (control or oncogene-induced) and spike-in addition 412

order (ERCC or SIRV first) was treated as a group in the one-way layout. In each plate 413

of the TSC data, only the spike-in addition order was used to define the groups. After 414

fitting the model, the mean of the squared residual effects was used as an estimate of 415

var(θi). This was repeated for var(θ∗i ) using all wells where premixed spike-ins were 416

added. Here, addition order was irrelevant so the one-way layout contained only the two 417

treatment groups in the 416B data set. Similarly, only a single group was defined for 418

the TSC data. Linear modelling ensures that any changes in the mean log-ratio across 419

groups do not inflate the variance estimate. Note that we fit linear models to each plate 420

separately, to check whether the estimates are consistent across replicate plates. 421

To detect differences in the variance estimates for premixed and separate addition, 422

an F-test for the equality of variances was applied. Under the null hypothesis of equal 423

variances computed from independent data, the ratio of the variances σ2
1/σ

2
2 should 424

follow a F-distribution on n1 and n2 degrees of freedom, where n1 and n2 are the 425

residual degrees of freedom used to estimate σ2
1 and σ2

2 , respectively. This can either be 426

one-sided (i.e., σ2
1 ≤ σ2

2 under the null), in which case the lower tail probability at the 427

observed ratio is taken as the p-value; or it can be two-sided, in which case the p-value 428

is defined as twice the smaller of the two tail probabilities. Significant differences were 429
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defined by rejecting the null hypothesis at a type I error rate of 5%. We calculated σ2
vol 430

from estimates of var(θi) and var(θ2i ), using the expression described above. However, if 431

the difference between var(θi) and var(θ2i ) was negative, σ
2
vol was set to zero instead. To 432

assess the effect of the order of spike-in addition, a linear model was fitted to the subset 433

of relevant wells on each plate to obtain an order-specific variance estimate. 434

Simulation design for resampling spike-in variability 435

For each data set, we compute Tis for each cell i and spike-in set s. To simplify the 436

design of the simulations, we only consider the ERCC spike-in set here, i.e., s = 1. The 437

variance of Tis is 438

var(Tis) ≈ σ2
lib(s) + σ2

vol + var(log2Ris) + var(log2 Li)

where the approximation assumes that Li is independent of the other random variables 439

that contribute to Tis. (This is discussed in more detail in Section 1 of the 440

Supplementary Materials.) Let Ris = Ri0Pis, where Ri0 is the well-specific average 441

capture efficiency of endogenous transcripts and Pis is the fold change in average 442

efficiency of the transcripts in s over their endogenous counterparts. We assume that 443

Ri0 and Pis are independent for each well, and that var(log2 Pis) can be approximated 444

with var(Fi), i.e., the well-to-well variability in relative capture efficiency between the 445

two spike-in sets is similar to that between spike-ins and endogenous transcripts. This 446

yields 447

var(Tis) ≈ σ2
lib(s) + σ2

vol + var(Fi) + var(Ri0) + var(log2 Li) .

Let us denote x2 = σ2
vol + var(Fi), representing the total variance attributable to 448

spike-in addition and capture efficiency. We also denote σ̂2
s as the estimate of var(Tis) 449

across wells, and µ̂s as the estimate of E(Tis). We use the estimated var(θ∗i ) ≈ 0.015 in 450

Figure 2a as our estimate x̂2 of the upper bound of x2. This is based on the fact that 451

the estimated var(θ∗i ) provides an upper bound on var(Fi), while σ
2
vol is near-zero in 452

Figure 2a. For each well i, we compute a simulated log2-total T
∗
is as 453

T ∗
is = (Tis − µ̂s)

√
1− x̂2

σ̂2
s

+ µ̂s +Xi

where Xi ∼ Normal(0, x̂2) and is independently sampled for each well. This approach 454

ensures that var(T ∗
is) = σ̂2

s . In contrast, if Xi were directly added to Tis, the variance of 455

T ∗
is would be inflated as x2 is already present in var(Tis), i.e., the contribution of 456

spike-in variance would be doubled. 457

Counts for the library generated from each well were rescaled to reflect the new, 458

simulated log-total. A quantile adjustment approach was used to preserve the empirical 459

mean-variance relationship. Briefly, a negative binomial generalized linear model (NB 460

GLM) was fitted to the counts across all wells for each spike-in transcript, using the 461

mglmOneGroup function in edgeR [18,23] with an all-intercept design matrix and Tis 462

(converted to base e) as the offset for well i. An abundance-dependent trend was also 463

fitted to the NB dispersions across all spike-in transcripts using the estimateDisp 464

function. For each transcript t, we assumed that the count yti for well i was sampled 465

from a NB distribution with mean equal to the corresponding fitted value of the GLM 466

and dispersion equal to the fitted value of the mean-dispersion trend. We scaled the NB 467

mean by 2T
∗
is−Tis to obtain a modified NB distribution. Using the q2qnbinom 468

function [25], we calculated the lower tail probability of yti in the original distribution 469

and identified the corresponding quantile with the same tail probability in the modified 470

distribution. This new quantile was used as the simulated count for transcript t in i. 471
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Evaluating the robustness of DEG detection 472

Two data sets were used to test the effect of spike-in variability on DEG detection. The 473

first was the 416B data generated previously, where DEGs were detected between 474

control and oncogene-induced cells in both plates. Here, we used an additive model with 475

a treatment term and a blocking factor for the plate. The second data set was obtained 476

from the NCBI Gene Expression Omnibus (GEO) with the accession number GSE29087, 477

and compared mouse embryonic stem cells and fibroblasts [9]. 478

In both studies, DEGs were detected between conditions using edgeR and MAST. 479

Implementation details of each method are provided in Section 3 in the Supplementary 480

Materials. Briefly, normalization was performed by scaling the counts (explicitly or via 481

offsets) such that the spike-in totals were the same between cells. The set of DEGs in 482

the original data was then identified at a FDR of 5%. This procedure was repeated for 483

the simulated data, and the number of genes that were detected in the original results 484

and not in the simulated results (or vice versa) was recorded as a proportion of the total 485

number of original DEGs. The proportion of the top 200 genes with the smallest 486

p-values that were shared between the original and simulated results was also computed. 487

This was repeated for 20 simulation iterations and the average proportion across 488

iterations was reported for each method. 489

Evaluating the robustness of HVG detection 490

Our 416B and TSC data sets were used to assess the effect of spike-in variability on 491

detection of HVGs. In the former, blocking was performed to remove plate- and 492

treatment-specific effects on mean expression, i.e., HVGs were detected within 493

treatment conditions on each plate. Similarly, blocking was performed on the plate of 494

origin for each cell in the TSC data set to remove plate effects. 495

In each data set, spike-in normalization was performed and HVGs were detected 496

using two approaches based on spike-in counts (See Section 3 in the Supplementary 497

Materials for implementation details of each method.) The first approach is based on 498

the method of Brennecke et al. [3] where the squared coefficient of variation for each 499

gene is tested for a significant increase above technical noise. The second approach is 500

based on the variance of the log-normalized expression values [16], which provides some 501

more robustness against outlier expression patterns. Each method was applied on the 502

original and simulated data, and a set of significant HVGs was detected at a FDR of 5%. 503

The proportion of HVGs common to both the original and simulated sets was computed, 504

along with the common proportion among the top 200 genes with the lowest p-values. 505

This was repeated for 20 simulation iterations and the average proportion across 506

iterations was reported for each method. 507

Evaluating dimensionality reduction and clustering 508

Count data from a study of pancreatic islet cells [27] were obtained from ArrayExpress 509

with the acession E-MTAB-5061. Spike-in normalization was performed and a set of 510

HVGs was defined using the variance-of-log-expression method. PCA plots of the first 511

three components were constructed from the matrix of log-expression values for the 512

HVGs. This process – including HVG detection – was repeated with the simulated data 513

after introducing spike-in variability. To compare each simulated PCA plot to the 514

original plot, the coordinates of each cell in the former were mapped onto the latter by 515

rescaling and rotation. Robustness was assessed based on the spread of remapped 516

coordinates across all simulation iterations for each cell. See Section 3 in the 517

Supplementary Materials for details. 518
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To test the robustness of clustering, the matrix of Euclidean distances between cells 519

was computed from the HVG log-expression values. Hierarchical clustering was 520

performed using the Ward criterion and the resulting dendrogram was cut into 2, 5 or 521

10 clusters. (This was done using the hclust and cutree commands, respectively, from 522

the stats package.) This process was repeated with the simulated data, and the Jaccard 523

index between every pair of simulated and original clusters was computed. For each 524

original cluster, the maximum Jaccard index across all simulated clusters was recorded 525

at each simulation iteration. This value represents the extent to which the membership 526

of the original cluster was preserved in the most similar simulated cluster. We also 527

compared the original clusters to those generated from complete-linkage clustering of 528

the original HVG log-expression values. 529

Data access 530

Data are available on ArrayExpress using the accession E-MAT-5522. Code used for the 531

statistical analysis and simulations are available at 532

https://github.com/MarioniLab/SpikeIns2016. 533
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