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Abstract

Structural variants can contribute to oncogenesis through a variety of mechanisms, yet,
despite their importance, the identification of structural variants in cancer genomes remains
challenging. Here, we present an integrative framework for comprehensively identifying
structural variation in cancer genomes. For the first time, we apply next-generation optical
mapping, high-throughput chromosome conformation capture (Hi-C), and whole genome
sequencing to systematically detect SVs in a variety of cancer cells.

Using this approach, we identify and characterize structural variants in up to 29 commonly
used normal and cancer cell lines. We find that each method has unique strengths in
identifying different classes of structural variants and at different scales, suggesting that
integrative approaches are likely the only way to comprehensively identify structural
variants in the genome. Studying the impact of the structural variants in cancer cell lines, we
identify widespread structural variation events affecting the functions of non-coding
sequences in the genome, including the deletion of distal regulatory sequences, alteration
of DNA replication timing, and the creation of novel 3D chromatin structural domains.
These results underscore the importance of comprehensive structural variant identification
and indicate that non-coding structural variation may be an underappreciated mutational
process in cancer genomes.
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Introduction

Structural variations (SVs), including inversions, deletions, duplications, and translocations,
are a hallmark of most cancer genomes'. The discovery of recurrent SVs and their molecular
consequences for gene organization and expression has greatly advanced our knowledge of
oncogenesis. Numerous oncogenes have been identified as the product of recurrent
translocations and have provided successful targets for drug therapies *°. Further, structural
variations also provide clear diagnostic and prognostic information in the clinic ’. Despite
their importance, comprehensively identifying structural variations in cancer genomes
remains challenging, hindering our ability to better understand oncogenesis and to develop
targeted treatments for cancer.

Several methods are currently used to identify structural variations in cancer
genomes. G-band karyotyping has been the major method historically to detect gross
structural anomalies in the genome, and it is routinely performed today clinically for certain
malignancies such as leukemia 2. However, karyotyping is an inherently low resolution and
low throughput method that cannot adequately characterize extensively rearranged
genomes. Microarrays are another commonly used method for detecting gains and losses of
genetic material °, but they do not provide precise localization of rearrangements. Further,
microarrays are inherently limited in detecting balanced rearrangements, such as inversions
or balanced translocations. Finally, targeted approaches such as fluorescence in situ
hybridization (FISH) and PCR are also used extensively in the clinic. However, these methods
require a priori knowledge of the rearrangement events and hence are not suitable for de
novo detection of structural variations.

Recently, high-throughput sequencing based methods have emerged as an attractive

method for structural variant identification ** !

. Targeted approaches such as exome
sequencing and RNA sequencing provide cost-effective means of identifying gene fusion
events ", while whole genome sequencing (WGS) can provide information both on
rearrangements as well as on gains and losses of genetic material **®. Despite their success,
these high-throughput technologies are limited by their reliance on short sequence reads
(usually less than 100 bp), which cannot be effectively mapped to the repetitive regions in
the genome. More importantly, these techniques involve fragmenting the genome into
approximately 500 base-pair fragments prior to sequencing, and as a result, much of the
structural information in the genome is lost. Finally, in whole genome sequencing data
structural rearrangements are represented only by the reads crossing the breakpoints
greatly reducing the sensitivity of detecting of such events. Given the aforementioned
limitations, it is imperative to develop alternative approaches for detecting structural
variations that either use longer sequence reads or that retain long-range genomic
structural information.

Here we propose an integrative framework to comprehensively detect SVs by using a
combination of technologies, including WGS, next-generation optical mapping (BioNano
Irys), and high throughput chromosome conformation capture (Hi-C). Although Irys and Hi-C
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1725 this is the first time that WGS, optical

mapping and Hi-C technology have been systematically used and integrated for SV detection

have been previously used for genome assembly

in cancer genomes. Irys optical mapping works by first introducing single-strand cuts in DNA
molecules with a sequence-specific nicking endonuclease, and then repairing the nick with
fluorescently labeled nucleotides *°. Each DNA molecule is then straightened and
electrophoresed through microfluidic nanochannels, through which DNA can migrate only
when unfolded. Fluorescently labeled nicks are then imaged within the nanochannels. By
aligning images of multiple DNA molecules at specific sites, this technology can generate
high-throughput genomic maps for extremely long, single DNA molecules (~200kb — 1Mb).
In addition to analyzing Irys optical mapping data, we develop novel algorithms to use Hi-C
data to systematically identify structural variations genome-wide. Hi-C technology was
initially invented to investigate genome-wide chromatin interactions >’ but has been

19, 21

and haplotype phasing

?8_ While the presence of structural variants has been observed in Hi-C datasets '* *°*!, we

recently adopted for other purposes, such as genome assembly

have developed and validated an approach to use Hi-C data to find structural variation in
cancer genomes. We demonstrate that Hi-C can accurately detect structural variants in
cancer genomes even with modest sequencing coverage (20-100 million reads or 1-5X
coverage). We compiled a list of high confidence SVs in 8 human cancer cell lines by
comparing the results from each of the three technologies, and we performed validation
experiments on a subset of these variants. We observed that each method can detect
distinct subsets of structural variations: Irys optical mapping and Hi-C excelled at detecting
large and complex structural alterations, whereas high coverage WGS was adept at
identifying smaller insertions, deletions, and rearrangements. Having obtained large-scale
genomic structural information from Irys and Hi-C, we also investigated the consequences of
these large-scale structural alterations in cancer genomes. We confirmed known oncogenic
fusion transcripts such as BCR-ABL, and also discovered novel fusion events. We identified
numerous instances of novel 3D chromatin structure alterations as a result of structural
genome variation, such as the formation or dissolution of topologically associating domains
(TADs), suggesting a novel role of structural variation in gene misregulation in oncogenesis.

Results
An integrated approach for structural variant detection

To comprehensively identify SVs in cancer genomes, we performed a combination of whole-
genome sequencing, optical mapping, and Hi-C in 12 commonly used cancer cell lines
representing different cancer types (Fig. 1a and Supplementary Table 1). First, we
performed WGS in six cancer cell lines with an average coverage of 30X and obtained WGS
in a seventh cell line from a previous study **. We identified SVs using WGS data using an in-

33,34 Next, we

house pipeline mainly based on Manta software (Supplementary Table 2)
performed optical mapping in eight cell lines with an average coverage of ~100X, the most
comprehensive optical mapping effort in cancer cells thus far. We used Irysview Refaligner

to conduct de novo assembly and detect SVs for these cancer cell lines, and on average,
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identified ~2,600 SVs in each cell line (Supplementary Tables 3). Lastly, we performed Hi-C
experiments in 12 cancer cell lines and analyzed an additional 17 previously published Hi-C

datasets (Supplementary Table 1)** %>

. We developed novel algorithms to identify
potential re-arrangement events using Hi-C data (Supplementary Table 4). For this analysis,
we focused on identifying inter-chromosomal translocations and intra-chromosomal re-
arrangements greater than 1Mb apart, as our algorithm is less sensitive to SVs between
regions within the same TAD (~1 Mb) due to increased chromatin interactions a4z
Combining all methods, we detected thousands of insertions and deletions (>50bp),
hundreds of inversions, and around 100 inter- and intra-chromosomal translocations in each
genome (Table 1, Supplementary Table 5). We compiled a list of high-confidence SVs, which
were predicted by at least two of the three methods (Supplementary Table 6). For example,
Caki2 cells carry a translocation between chromosomes 2 and 3 that was detected by all
three methods. This translocation was validated by observation of dramatic shifts in DNA
replication timing profiles in this region (Fig. 1b). We obtained data from additional 8
cancer cell lines and 9 karyotypically normal diploid cells (Supplementary Table 1) and
performed similar analysis. We visualized the high-confidence SVs as circular genome
structural profiles43, which showed that the cancer genomes displayed many more

rearrangement events compared with normal cells (Fig. 1c, Supplementary Fig. 1).
Detection and Characterization of Translocations and Large Scale Re-arrangements

It has been suggested that strong inter-chromosomal interactions observed in Hi-C

192931 “\while locus

interaction matrices from cancer cell lines might be the result of SVs
specific chromosome conformation capture has been used to identify whether individual
genes are re-arranged in a given genome““, to our knowledge, no algorithm has been
developed for systematic, unbiased, genome wide detection SVs from Hi-C data. We
designed an iterative refinement algorithm to systematically detect translocations in cancer
genomes using Hi-C data (details in method section, Supplementary Fig. 2). Fig. 2a shows an
example of a potential translocation in Hi-C data. In normal cells, inter-chromosomal
interactions are rare (Left panel in Fig. 2a). In Caki2 cancer cells, we observed strong “inter-
chromosomal” interactions (Right panel in Fig. 2a), which are likely due to the fusion of
chromosome 6 and chromosome 8. The challenge is to determine whether the increased
signal is due to the translocated region forming chromatin interactions with its re-arranged
partner, or the product of dynamic 3D genome organization. We have developed
probabilistic models of Hi-C data to model “normal” features of 3D genome organization,
including genomic distance between loci, TADs, A/B compartments, and the increased
interactions between small chromosomes and between sub-telomeric regions. In the event
of a re-arrangement, the two re-arranged regions are genetically fused, altering the linear
distance between loci. This leads to local clusters of deviation from the expected
interaction frequencies of the model. This signature can then be used for systematic
identification of structural variation in any Hi-C dataset, including both inter-chromosomal
translocations and intra-chromosomal re-arrangements (Fig. 2a,b).
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We tested our method with a well characterized chronic myelogenous leukemia cell
line (K562) and specifically used a limited number of sequencing reads (27 million read pairs
and 1.54X coverage in replicate 1, generated as part of this study, and 22 million read pairs
and 1.33X coverage in replicate 2, generated previously *°) to determine whether Hi-C can
identify re-arrangements with limited sequencing depth. We started our analysis on large
scale re-arrangements identified with a Hi-C bin size of 1Mb. We found 21 re-arrangements
across the two replicates, of which 13 are known through prior karyotyping and the
remaining 8 are novel re-arrangement events **. The 8 novel re-arrangements were found
in both replicates, suggesting that these are not a product of clonal evolution. More
interestingly, several of them are novel complex re-arrangements: one event is between
chromosome 16 and two different regions of chromosome 6 (Fig. 2c) and in another case,
we observed a re-arrangement between chromosome 1, 6, 18, and 20 (Supplementary Fig.
3). We performed fluorescence in situ hybridization (FISH) experiments and validated a set
of novel re-arrangement events. In total, 20 of the 21 predicted translocations using Hi-C
data were validated by either FISH or previous karyotyping (Supplementary Table 7),
suggesting that our algorithm can identify large-scale structural variation with high
specificity. Next, to estimate the precise location of breakpoints, we iteratively applied the
algorithm at increasingly smaller bin sizes to determine a subset of the re-arrangements
with high resolution (Supplementary Fig. 4). For example, in K562 cells, we identified 4 of
the 21 re-arrangements at 1kb resolution, all of which were further validated by PCR and
Sanger sequencing (Supplementary Fig. 4).

To further evaluate the sensitivity of our approach, we evaluated its ability to detect
the previously identified breakpoints on human chromosome 21 in Tcl ES cells
(Supplementary Fig. 5). Tcl ES cells are a mouse ES cell line engineered to carry a copy of
human chromosome 21%. In the process of establishing this cell line, human chromosome
21 was subject to gamma irradiation e leading to massive genomic re-arrangements, a
subset of which have been previously identified using PCR and Sanger sequencing *’. We
generated high coverage Hi-C data in Tc1 cells and performed our algorithm (Supplementary
Fig. 5 a). By sub-sampling the data, we evaluated the sensitivity of our algorithm at various
sequencing depths. The sensitivity ranges between 40%-90% depending on the sequencing
depth and method used to call overlap, and appears to plateau when using 100 million
sequencing read pairs or more (Supplementary Fig. 5b). In addition, we observe high
internal consistency of breakpoints calls when there is at least 50 million reads
(Supplementary Fig. 5¢,d). This result suggests that our method requires only modest
sequencing depths to achieve high sensitivity and saturation of breakpoint calls, and that we
can achieve decent sensitivity with as little as 5-10 million reads. By examining the “missed”
breakpoints, we observe that Hi-C may call breakpoints in identical regions as identified by
WGS, but identifies a different strand as part of the breakpoint (Supplementary Fig. 5e,f).
This suggests that although Hi-C does not always precisely resolve the strandedness of a
subset of breakpoints, it may retain more information regarding the large-scale structure of
the re-arrangement. Having demonstrated the sensitivity and specificity of our approach,
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223  we expanded our Hi-C analysis to 19 additional cancer cell lines and 9 karyotypically normal
224  lines (Fig. 2d). We observed on average 28 re-arrangements in cancer cells and virtually no
225  such events in normal cells. The rare instances of re-arrangements in normal cells all occur
226  immediately adjacent to centromeres and therefore potentially represent anomalous or
227  polymorphic assembly differences.

228 To systematically characterize the translocations in these cancer cells, we compared
229  the translocations predicted by Hi-C, optical mapping, and WGS, compiling a list of high-
230 confidence SVs in seven cancer cell lines where we performed all three experiments.

231  Compared with previously known karyotypes in each lineage, the majority of the

232  translocations detected in this study are novel (Fig. 2e). We selected eight novel

233  translocations of T47D for further validation, all of which were confirmed by PCR

234  experiments (Supplementary Table 7).

235 We observed that 25% of these rearrangements were identified by more than one
236  method (Fig. 2f). There is a large overlap between the translocations detected by Irys and
237  Hi-C: 64% (9 out of 14) of inter-chromosomal translocations and 83% (10 out of 12) of intra-
238 chromosomal re-arrangements detected by optical mapping in T47D cells are predicted by
239  Hi-C (Fig. 2f, Supplementary Fig. 6). The overlap between Irys with WGS is much smaller:
240  33% (5 out of 14) of Irys-detected inter-chromosomal translocations are captured by WGS
241 (Fig. 2f). The difference might be due to two reasons. First, the sizes of the rearrangements
242  identified by WGS are smaller than those identified by optical mapping: 49% of WGS-specific
243  translocations are less than 1kb. Since Hi-C and optical mapping both rely on either

244  restriction enzymes or nickases that recognize target motifs with a spacing greater than 1kb
245  (Hi-C) and 10Kb (optical mapping), small SVs are unlikely to be captured by these methods.
246  On the other hand, both Hi-C and optical mapping can identify rearrangements in repetitive
247  regions of the genome, which are usually missed by WGS. For example, one of the

248  rearrangements in K562 cells is located near a centromere of chromosome 20, which

249  contains many centromeric repeats and therefore is unmappable with WGS. However, Hi-C
250  was able to leverage reads from nearby, mappable portions of the genome to detect the
251  centromere-proximal breakpoint (Supplementary Fig. 3a), which we subsequently confirmed
252 by FISH (Supplementary Fig. 3b). Likewise, since optical mapping operates on DNA

253  fragments on the order of 100-200kb in size, minimizing the influence of short, repetitive
254  sequences, it can discover many breakpoints in or near unmappable regions of the genome
255  (Supplementary Fig. 6h). Finally, we observed that both Hi-C and Irys are particularly

256  powerful at detecting complex translocation events, as illustrated in Supplementary Fig. 3.
257  In summary, these results illustrate that each method has unique strengths and weaknesses,
258 and should be applied accordingly depending on the study goals. Whenever possible, an

259  integrative approach of different methods is essential to gain a more complete knowledge
260  of structural variation in cancer genomes.

261  Validation of breakpoints using replication timing
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Eukaryotic genomes replicate via the synchronous firing of clusters of origins, which
together produce multi-replicon domains each of which completes replication in a short
burst during S-phase. Genome-wide profiling of replication timing reveals that these
domains can be replicated at different times during S phase, with adjacent earlier and later
replicating domains punctuated by regions of replication timing transition ***°.
Consequently, translocations that fuse together domains of early and late replication can
result in the earlier replication of the late replicating domain and/or delayed replication of

the early replicating domain > !

. When mapped to the reference genome, these changes
appear as abrupt shifts in replication timing profiles that have the potential to validate
breakpoints (Fig. 2g). Our Hi-C pipeline identified 245 translocations in 9 cell lines in which
replication timing is available. Out of these, 50 translocations were associated with an
abrupt shift in replication timing. Since an abrupt shift is only expected for translocation
between domains that replicate at different times, we aimed to classify the translocations
based on the replication timing of the loci. However, the lack of a control cell line that
represents the pre-translocation replication timing of the loci confounds this classification.
To circumvent this problem, we classified the genome into regions that are constitutively
early replicating (CE), constitutively late replicating (CL) and regions that switch replication
timing during development (“switching regions”), using 35 replication timing profiles of non-
cancerous cell types spanning all three embryonic lineages (Methods, Supplementary Fig.
7a) °*>3. Among the 245 translocations detected by Hi-C, 17 were CE to CL fusions and 30
were CE to CE or CL to CL fusions. As expected, an abrupt shift in timing was identified in CE
to CL with a much higher frequency (~*59%) than in CE to CE or CL to CL fusions
(~13%)(Supplementary Fig. 7 b, c). The majority (~76%) of the translocations that could be
classified as CE, CL or S involved a switching region making it difficult to confidently predict
their replication timing before the translocation event.

Detection and Characterization of Copy Number Variations

We also identified numerous gains or losses of genetic material by optical mapping and
WGS. First, we observed that optical mapping detects significantly fewer deletions than
WGS (504 vs 4804, Fig. 3a, Supplementary Fig. 8a, b), but the sizes of Irys-detected deletions
are larger (median size 7 kb vs 100 bp, Fig. 3b). Thus, 94% (4425/4723) of WGS-detected
deletions cannot be predicted by Irys, because optical mapping relies on nickases that
recognize specific sequence motifs and cannot detect small indels. However, 35% of the
Irys-detected deletions are not captured by WGS, because optical mapping retains long-
range contiguity of large DNA fragments (>100kb) and can identify larger deletions that are
frequently missed by WGS. We tested a subset of Iry-specific deletions and 87.5% (14 of 16)
were validated by PCR (Supplementary Table 7). In addition, optical mapping can identify
deletions in repetitive regions that WGS misses, as shown in Fig. 3c. Furthermore, the
deletions identified by Irys are enriched for repeat elements (compared to the genome
background), whereas those identified by WGS show little or no enrichment for repeats (Fig.
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3d). Hi-C data was not used for CNV analysis, as it does not provide any obvious additional
information than WGS for this purpose.

To further investigate whether the deletions are specific to cancer genomes, we
compared the deletions detected in this study with the Database of Genomic Variants
(DGV), which contains known SVs identified by previous studies in healthy individuals,
including the three phases of the 1000 Genomes Project. The majority (85%) of deletions
identified in cancer cell lines have been previously identified in the DGV (Fig. 3e), suggesting
that many of the deletions represent polymorphisms in the population. However, we
observed that cancer cells suffer more loss of genetic material (Supplementary Fig. 8c), and
exhibit a greater number of rare and novel re-arrangements in comparison with GM12878
(40% vs. 10%), suggesting that a portion of the SVs represent somatic mutation events in
cancer cells. The previously identified polymorphic deletions from the healthy population
are enriched for repetitive elements (70% vs 50% genomic background) and depleted of
functional elements such as enhancers (10% vs 20% genomic background) and exons (2.5%
vs 1% genomic background) (Supplementary Fig. 8d-f). In contrast, the novel deletions are
not enriched in repeats or depleted of enhancers or exons. Instead, they are enriched in
COSMIC tumor related genes (Fig. 3e)>, suggesting that a subset of the deletions are
potentially pathogenic.

We also compared the ability of WGS and optical mapping to detect global patterns
of copy number variations. Individual fragments generated by optical mapping can be used
to detect changes in depth of coverage over given regions, similar to WGS or microarray-
based approaches for CNVs detections. By analyzing chromosome-wide patterns of copy
number changes, we detect strong concordance between the results of optical mapping and
WGS (Supplementary Fig. 9).

Better Estimation of Gap Regions in Human Reference Genome

Interestingly, we discovered that optical mapping can help refine genome assemblies,
especially with respect to estimating the size of gap regions. First, we noticed that the
number of Irys-detected structural variants differs substantially when we compared the
results to different version of the reference genomes (hgl19 vs. GRCh38). Further
investigation shows that many predicted “deletions” in hg19 by optical mapping consist of
gaps in the reference genome that have been corrected in the GRCh38 build. The corrected
size in GRCh38 is very similar to the prediction by optical mapping based on deletion
detection (Supplementary Table 8), suggesting the power of optical mapping in accurately
estimating the size of gap regions. For example, when we used hgl9 as the reference
genome, optical mapping in 10 cell types (4 normal primary cells and 6 cancer cell lines)
recurrently predicted a 143Kb “deletion” within genomic loci chrl: 3,845,268-3,995,268.
This region, however, is annotated as a 150Kb gap. Therefore, we predicted that the real
gap size in the human reference genome should be 6.68Kb. When we checked the GRCH38
reference genome, we found that the size of this gap has been corrected to 6.51Kb, which is
strikingly similar to the value we predicted.
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However, we noticed that there remain several such “deletions” over gap regions
even in the GRCh38 build that are not consistent with our findings with optical mapping,
indicating that these gap sizes may still be in error or that there may be individual
heterogeneity in gap sizes over these regions. The improved gap size estimation for GrRch38
is provided in Supplementary Table 9.

Fusion transcript and gene dosage in cancer cancers

We investigated the functional consequences of these genetic alterations identified in
cancer cell lines. First, we examined gene fusions due to genomic rearrangement, with a
goal to both confirm known events and identify novel ones in these cancer cells. We
analyzed RNA-Seq data of 11 cancer cell lines, including K562, and investigated whether we
can detect fused gene transcript that are consistent with the genomic rearrangements
identified in this study. We detected numerous RNA-Seq read pairs whose two ends are
mapped to different chromosomes, crossing the identified translocation breakpoints
(Supplementary Table 10). We confirmed some known oncogene transcripts, such as the
BCR-ABL gene fusion. Importantly, we discovered many novel fusion transcripts involving
bona fide oncogenes, such as EVI1-CFAP70 in T47D cells, whose expression was increased
more than 10 fold compared with the un-translocated genes. How these novel gene fusions
events contribute to the oncogenic potential remains to be further investigated.

Copy number alterations also represent a well-defined class of genetic variation in
cancer. Prior studies have shown the presence of recurrently amplified and deleted genes
in diverse cancer types °. Examining the deleted regions that we identify by WGS and Irys,
we observed that deleted regions are enriched for Gene Ontology annotations related to
tissue-specific and cancer type-specific genes and pathways (Fig. 3f, g). Further, by
comparing with the recent findings from WGS data of 560 breast cancer patients *°, we
observed that 8 out of the top 10 frequently mutated oncogenes in breast cancer patients
were also amplified in T47D cancer cells, and tumor suppressor genes such as ATRX and
CDKN1B displayed loss of copies (Fig. 4a), suggesting that T47D cells reflect the CNV
landscape in breast cancer and our method can accurately capture these variations. We
further compared the RNA-Seq data in T47D cells with those from human mammary
epithelial cells (HMEC), confirming that loss-of-heterozygosity (LOH) and homozygous
deletions in T47D cells indeed lead to significantly reduced gene expression correlated to
the number of lost copies (Fig. 4b). For example, one 18Mb deletion in T47D results in LOH
of over 400 genes, and decreased transcription of the majority of this set of genes
(Supplementary Fig. 10a,b ). We found deletions in exonic regions of a total of 25 COSMIC
tumor-related genes, and the majority (76%) showed decreased transcription
(Supplementary Fig. 10c). We made similar observations when comparing transcriptomes in
other cancer cells (Supplementary Fig. 10d). These results suggest that our integrated
method can accurately capture changes in gene dosage in cancer genomes. As we extended
the CNV analysis onto 7 cancer cell lines, we noticed widespread amplification of known
oncogenes (such as MYC) and loss of cell cycle checkpoint genes (such as CDKN2A/B,
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Supplementary Fig. 11). In addition, we found over 100 genes that are extensively amplified
or deleted in cancer cells but were not reported in COSMIC, suggesting their potential roles
in cancer (Supplementary Fig. 12).

Disruption of non-coding elements in cancer genomes

We are also interested in whether structural variants can affect non-coding regulatory
elements and whether such alterations play a role in oncogenesis. For this analysis, we
focused on comparing the enhancer landscape in T47D breast cancer cells and HMEC cells.
We downloaded histone modification data from both cell types from the ENCODE
Consortium and then predicted candidate enhancers based on H3K27ac signals. By
comparing the enhancer annotations in HMEC and the deleted regions in T47D, we
identified potential deleted enhancers in T47D cancer cells (Supplementary Table 11). We
show an example in Fig. 4c, where multiple strong candidate enhancers present in HMEC
cells are in a region deleted in T47D cells. These candidate enhancers are located upstream
of gene ERBB4, which has been shown to play a crucial role in breast cancer. These
candidate enhancers are linked to the promoter for ERBB4 in recently published capture HiC
data™ (Fig. 4c), lending support to our hypothesis that deletion of this region could play a
role in breast cancer via effects on ERBB4 expression. To investigate whether candidate
enhancer elements deleted in T47D cells are broadly associated with cell growth control,
specifically whether they affect any known signaling pathways, we performed Gene
Ontology analysis with the GREAT tool. Strikingly, we found that these deleted enhancers of
T47D are located near genes important for cellular response to VEGF, genes down-regulated
in breast cancer, and genes involved in abnormality of DNA repair (Fig. 4d). Furthermore, we
observed that genes linked to these deleted enhancers by capture Hi-C in HMEC cells show a
reduced level of expression in T47D breast cancer cells (Fig. 4f). Overall, these results
suggest that deletions in cancer genomes may frequently remove enhancers and thereby
contribute to oncogenesis. Whether these enhancer deletions represent recurrent
alterations to cancer genomes remains to be further investigated in patient samples and
validated by additional functional experiments.

The impact of structural variation on 3D genome organization

Our previous work in karyotypically normal cells and tissues has suggested that topologically
associating domains (TADs) are fundamental features of 3D genome structure that are

conserved in diverse cell types and species. Several recent reports have shown that genetic

mutations can disrupt TADs and create “neo-TADs”>® >’

56,57

that in turn can lead to misregulated
gene expression in developmental disorders . Further, recent reports have also
indicated that deletion of CTCF binding sites can disrupt local looping events leading to mis-
regulation of nearby oncogenes > However, how SV contributes to changed 3D genome

organization in cancer remains elusive.

Having identified structural variants in 20 cancer cell lines with Hi-C data, we
systematically investigated the consequences of structural variation on TAD structure in
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cancer genomes. We observed that neo-TADs are formed as the result of large-scale
genomic re-arrangements in cancer cells (Fig. 5a,b). For example, we identified a
translocation from chr7 to chr8 in SK-N-SH cells (Fig. 5a). The breakpoint region on
chromosome 8 occurred roughly 300kb downstream from the MYC/c-myc gene. SK-N-SH
cells are a neuroblastoma cell line, and whereas most neuroblastomas express high levels of
n-myc, SK-N-SH cells are a rare sub-type that express high levels of c-myc but not n-myc *°.
In examining the 3D genome structure near this re-arrangement, we observed extensive
interactions in the vicinity of the re-arrangement on chr7 and chr8 that appear to form a
neo-TAD. This neo-TAD extends ~300kb upstream of the breakpoint to precisely the
location of the MYC/c-myc gene, indicating that this translocation may form a neo-TAD
which includes MYC as well as regions over 1Mb across the breakpoint junction. We
generalized this observation by averaging the interaction signal across all translocation
breakpoints in all cell lines (Fig. 5¢c). We observed that on average, the nearest “normal”
TAD boundaries appear to be fused together on each side of the breakpoint creating neo-
TADs (Fig. 5¢). We analyzed gene expression profiles of 16 cancer cell lines for which RNA-
seq data is available. We observe more variable expression patterns of genes when they
reside within TADs containing a re-arrangement in the same cell type (Fig. 5d). These results
suggest that re-arrangements within TADs may lead to aberrant expression patterns of
genes within the TAD. These results indicate that structural variations in cancers can re-wire
TAD structure to create novel domains in cancer genomes and potentially leading to altered
regulatory environments within the domain (Fig. 5e). Determining whether any individual
neo-TAD represents a re-current alteration in a given cancer cell type, or how neo-TADs may
ultimately contribute to oncogenesis, remains to be elucidated. However, our analysis
suggests that creation of neo-TADs is a common consequence of re-arrangements in cancer
genomes.

Discussion

Comprehensively detecting structural variations in cancer genomes remains a
challenge for geneticists and cancer biologists. Here, we developed an integrative approach
that employs a combination of WGS, optical mapping, and Hi-C to detect structural
variations. We applied the procedure to three cancer genomes and validated a selected
subset of them by PCR and FISH. No single method comprehensively identifies all structural
variants, and each approach has its own strengths and weaknesses. Hi-C is extremely
sensitive for detecting inter-chromosomal rearrangements and can readily detect
rearrangements greater than 1Mb in size on the same chromosome. Furthermore, the
algorithm we developed in this work does not require deep sequencing of Hi-C, successfully
detecting rearrangements with little more than ~1X coverage of the genome. However, our
algorithm currently has limited power in detecting alterations less than 1Mb in size. On the
other hand, optical mapping can readily detect both intra-chromosomal and inter-
chromosomal alterations, including rearrangements less than 1Mb in size. Furthermore,
optical mapping can be used to detect CNVs, similar to what is commonly done with WGS-
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or microarray-based approaches. However, optical mapping cannot identify small deletions
and insertions (< 1kb). Finally, WGS can detect small deletions and insertions, and has higher
resolution than Hi-C or optical mapping. However, WGS is less successful with detection of
SVs in poorly mappable regions of the genome or complex structural variants.

In examining regions affected by structural variants identified in this study, we
observed well-characterized functional consequences, such as the creation of gene fusions
and changes in gene dosage in cancer genomes. In addition, we detected extensive
deletions of distal enhancer elements. These deletions are enriched for proximity to genes
known to be mutated in cancer and important for pathways in cancer biology, including
DNA repair and signal transduction. To what extent such distal non-coding mutations are
re-current in cancer genomes remains unclear, but this represents an important largely
unexplored aspect of cancer genomics. Lastly, by analyzing the 3D genome structure
surrounding the structural variants, we observed the creation of new TADs as a result of
genomic rearrangements in cancer genomes. TADs appear to be an invariant organizational
principle of metazoan genomes, and alterations that disrupt TAD structure have already
been shown to underlie certain rare disorders of limb development. There is ample
evidence that the juxtaposition of active regulatory sequences to known oncogenes can
contribute to tumorigenesis. These results indicate that at least part of this effect may
result from the creation of novel structural domains in cancer genomes.
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501 Data Access:

502  Hi-C and replication timing data generated in this study have been deposited to ENCODE
503  portal (http://encodeproject.org/). Details can be found in the supplementary method

504  section. WGS data has been deposited to SRA (access code PRINA380394). Replication time
505 data can be visualized at http://replicationdomain.com. Hi-C data can be visualized at

506  http://3dgenome.org.
507
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647  Figure Legend:

648

649  Figure 1 | Overall strategy of SV detection in cancer genomes. a. The pipeline of SV

650  detection, validation, and functional analysis. b. An example of SVs that are detected by all
651 technologies (chr2: 205,125,031 and chr3: 179,412,688 in Caki2 cells). c. The cancer

652 genome possess extensively more CNV and translocation in comparison with NA12878

653  (hgl9). Tracks from outer to inner circles are chromosome scales, CNV, insertions, deletions
654  and TLs. Outward red bars in CNV track indicate gain of copies (>2), and inward blue loss of
655  copies (<2). CNV are profiled by Irys with 50,000 bp bin size. Insertion, deletion, and TLs are
656  detected by at least two methods from WGS, Irys, and Hi-C.

657

658 Figure 2 | Detection and characterization of SVs in cancer genomes. a-b. Inter-
659 chromosomal and intra-chromosomal TLs detected by using Hi-C data (<¢). c. Validating a
660 complex TL (chr6-chr6-chrl6) by FISH in K562 cells. d. Inter-chromosomal and intra-
661 chromosomal TLs detected by Hi-C in 20 cancer genomes and 9 normal genomes. e. Overlap
662  between known and novel TLs in T47D cells detected in this study. f. Comparison of inter-
663 chromosomal and intra-chromosomal TLs detected by three methods. A large portion of
664  WGS-specific TLs are smaller than 10Kb. g. The impact of TLs on replication timing. RT
665  profiles of chr5 and chr10 of SKNMC, when plotted to the reference genome, show abrupt
666  shifts at the TL breakpoints (¢, left panels), and they are smoothly connected due to their
667  juxtaposition in the cancer genome (right panel).

668  Figure 3 | Comparative analysis and characterization of deletions in cancer genomes.
669 a. Overlap of deletions detected by optical mapping and WGS. b. Size distribution of
670 deletions detected by optical mapping and WGS. c. Optical mapping detects a 6Kb deletion
671 within chr15:55,215,578-55,235,682 that is missed by WGS. The deletion is located inside an
672  unmappable region and overlaps with a LINE element. d. Deletions detected by Irys are
673  enriched of repetitive elements in comparison with genomic background and deletions
674  detected by WGS. e. Over 85% of deletions (detected by both WGS and Irys) from cancer
675 and normal cells represent polymorphism, including frequent variants (reported 7~11813
676 times from population of healthy individuals) and rare variants (reported 1~6 times). Rare
677 and novel unreported variants account for less than 10% of deletions in normal genome, but
678 account for 40% of deletions in cancer genomes. Cancer-specific, rare, and unreported
679  variants are enriched of COSMIC cancer-related genes. f-g. Deletions detected in K562 and
680  T47D are located near tissue-specific and cancer-specific genes.

681

682  Figure 4 | The impact of CNV on transcription. a. The top 93 breast-cancer related genes
683  show extensive amplification of oncogene and loss of tumor suppressor genes. Shown in the
684  figure are all RefSeq genes sorted by copy number. b. Genes with homozygous deletion and
685 LOH in T47D show reduced expression (p=0.009, p=0.003), and genes with gain of copies

686  increased expression (p=4x10_79), relative to the expression in HMEC cells. c. A 130Kb

687  deletion in T47D contains a cluster of distal regulatory elements, three of which are linked
688  with ERBB4 gene by Capture Hi-C. d. The deleted enhancers are located near genes

689  important for pathways related to breast cancer. e. Genes with deleted enhancers show
690 reduced expression levels. We only used gene without exon deletion or copy number loss in
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691  this analysis. Then we put genes into two groups: 534 genes with loss of at least one linked
692  enhancers indicated by Capture Hi-C; 10677 without deletion of linked enhancer.
693

694  Figure 5 | Re-arrangements and TAD fusions. a. Hi-C signal in near a chromosome 7:8

695  translocation in SK-N-SH cells. The left hand region of the genome browser track shows the
696 re-arranged region on chromosome 8, with the location of the MYC gene marked, while the
697  right hand region shows the area on chromosome 7. The tracks are arranged relative to
698  each other to represent the predicted genetic structure of the re-arranged allele, with the
699  breakpoint fusion site in the middle. Above the tracks is the Hi-C signal. The triangle heat
700  maps on the left and right show intra-chromosomal interactions near the re-arranged

701 regions. The diamond shaped heat map shows the Hi-C signal that crosses the breakpoint.
702  The breakpoint crossing Hi-C signal shows the presence of a new TAD formation between
703  the re-arranged regions. b. Similar to panel a, showing a TAD fusion after a translocation
704  between chromosomes 9 and 18 in Pancl cells. c. Aggregate analysis of TAD fusions. The
705  breakpoint crossing Hi-C signal across all breakpoints in all 20 cell lines was averaged and
706  centered on the interacting bins between the nearest TAD boundaries (left) or randomized
707  TAD boundaries (right). The average signal from the true TAD boundaries shows a marked
708  enrichment within the regions demarcated by the closest TAD boundary, suggesting that
709  TAD fusions are a common result of re-arrangements in cancer genomes. This demarcation
710  is lost when using randomized TAD boundaries. d. Boxplot showing the distribution of gene-
711 wise Z-scores of genes located in TADs containing re-arrangements (Rearranged) or not
712  (Non-rearranged). The log2 of gene RPKM expression values was converted to a gene-wise
713  Z-score for each gene across all 16 cancer cell types with Hi-C and RNA-seq data. The

714 boxplot shows the absolute value of these Z-scores. Gene located in TADs containing re-
715  arrangements tend to have higher absolute value of their Z-scores, indicating more variable
716  expression patterns. e. Model for neo-TAD formation. Native TAD structures are re-

717  arranged as the result of breaks and fusions, resulting in the juxtaposition of regulatory

718  sequences from one domain and genes from another, potentially altering the regulatory

719  landscape of cancer genomes.
720
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Figure 1 | Overall strategy of SV detection in cancer genomes. a. The pipeline of SV detection, validation, and
functional analysis. b. An example of SVs that are detected by all technologies ( chr2: 205,125,031 and chr3:
179,412,688 in Caki2 cells). c. The cancer genome possess extensively more CNV and translocation in comparison with
NA12878 (hg19). Tracks from outer to inner circles are chromosome scales, CNV, insertions, deletions and TLs. Outward

red bars in CNV track indicate gain of copies (>2), and inward blue loss of copies (<2). CNV are profiled by Irys with

50,000 bp bin size. Insertion, deletion, and TLs are detected by at least two methods from WGS, Irys, and Hi-C.
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Table 1. Number of SVs detected in T47D

No. of Events T47D Non-redundant
(median size) Irys WGS Hi-C Total
Deletion 503 (4 Kb) 4802 (84 bp) - 4922
Insertion 909 (2.5 Kb) 2530 (108 bp) - 3175
Inversion 44 68 - 100
Inter-chr translocation 14 54 25 75

Intra-chr translocation 13 5 22 17
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Figure 2 | Detection and characterization of SVs in cancer genomes. a-b. Inter-chromosomal and intra-chromosomal
TLs detected by using Hi-C data (&). c¢. Validating a complex TL (chr6-chr6-chr16) by FISH in K562 cells. d. Inter-
chromosomal and intra-chromosomal TLs detected by Hi-C in 20 cancer genomes and 9 normal genomes. e. Overlap
between known and novel TLs in T47D cells detected in this study. f. Comparison of inter-chromosomal and intra-
chromosomal TLs detected by three methods. A large portion of WGS-specific TLs are smaller than 10Kb. g. The impact
of TLs on replication timing. RT profiles of chr5 and chrl10 of SKNMC, when plotted to the reference genome, show
abrupt shifts at the TL breakpoints (<, left panels), and they are smoothly connected due to their juxtaposition in the

cancer genome (right panel).
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Figure 3 | Comparative analysis and characterization of deletions in cancer genomes. a. Overlap of deletions
detected by optical mapping and WGS. b. Size distribution of deletions detected by optical mapping and WGS. c.
Optical mapping detects a 6Kb deletion within chr15:55,215,578-55,235,682 that is missed by WGS. The deletion is
located inside an unmappable region and overlaps with a LINE element. d. Deletions detected by Irys are enriched
of repetitive elements in comparison with genomic background and deletions detected by WGS. e. Over 85% of
deletions (detected by both WGS and Irys) from cancer and normal cells represent polymorphism, including
frequent variants (reported 7~11813 times from population of healthy individuals) and rare variants (reported 1~6
times). Rare and novel unreported variants account for less than 10% of deletions in normal genome, but account
for 40% of deletions in cancer genomes. Cancer-specific, rare, and unreported variants are enriched of COSMIC
cancer-related genes. f-g. Deletions detected in K562 and T47D are located near tissue-specific and cancer-specific
genes
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Figure 4 | The impact of CNV on transcription. a. The top 93 breast-cancer related genes show extensive amplification
of oncogene and loss of tumor suppressor genes . Shown in the figure are all RefSeq genes sorted by copy number. b.
Genes with homozygous deletion and LOH in T47D show reduced expression (p=0.009, p=0.003), and genes with gain of
copies increased expression (p=4%107?), relative to the expression in HMEC cells. c. A 130Kb deletion in T47D contains a
cluster of distal regulatory elements, three of which are linked with ERBB4 gene by Capture Hi-C. d. The deleted
enhancers are located near genes important for pathways related to breast cancer. e. Genes with deleted enhancers
show reduced expression levels. We only used gene without exon deletion or copy number loss in this analysis. Then we
put genes into two groups: 534 genes with loss of at least one linked enhancers indicated by Capture Hi-C; 10677
without deletion of linked enhancer.


https://doi.org/10.1101/119651

Breakpoint_crossing Breakpoint crossing
Hi-C signal Hi-C signal

74,000,000 | | 74,500,00Q | 75,000,000 |
] q

l‘ 3p,500,000 [ W,OOO,‘QQO“ 37,500,009 [
| 'lﬂ' i " 1 " -
- i Mo "
MAMS Translocated Region 1 (chr9)” Translocated Region 2 (chr18)

Translocated Region 1 (chr8) Translocated Region 2 (chr7)
RNA-seq Z-score (absolute value)

d. 0.0 05 1.0 15 20

Non-rearranged

Breakpoint crossing Hi-C signal I— I D -I p-value
from 20 cancer cell lines 13e-7
/ RearranQEd P o _ __________ +

e. TAD #1 TAD #2

TAD N TAD TAD & TAD

Signal Average l

Boundary Boundary
Transl_ocated Transl_ocated ’ 4 Breakpoint
Region 1 Region 2
H1 hESC TAD Calls Randomized TAD Calls Breakpoint

Enhancer Target gene Non-target gene \J/
_— _— )

\‘ Fusion TAD ‘/
R . /‘> :>';n/(\ pr

TAD A TAD 4 TAD 4 TAD TAD 4 TAD TAD 4 TAD
Boundary Boundary Boundary Boundary
Translocated Region 1 | Translocated Region 2 Translocated Region 1 | Translocated Region 2
Breakpoint Breakpoint

Enhancer New-target gene
] o

Figure 5 | Re-arrangements and TAD fusions. a. Hi-C signal in near a chromosome 7:8 translocation in SK-N-SH
cells. The left hand region of the genome browser track shows the re-arranged region on chromosome 8, with the
location of the MYC gene marked, while the right hand region shows the area on chromosome 7. The tracks are
arranged relative to each other to represent the predicted genetic structure of the re-arranged allele, with the
breakpoint fusion site in the middle. Above the tracks is the Hi-C signal. The triangle heat maps on the left and
right show intra-chromosomal interactions near the re-arranged regions. The diamond shaped heat map shows
the Hi-C signal that crosses the breakpoint. The breakpoint crossing Hi-C signal shows the presence of a new TAD
formation between the re-arranged regions. b. Similar to panel a, showing a TAD fusion after a translocation
between chromosomes 9 and 18 in Pancl cells. c. Aggregate analysis of TAD fusions. The breakpoint crossing Hi-C
signal across all breakpoints in all 20 cell lines was averaged and centered on the interacting bins between the
nearest TAD boundaries (left) or randomized TAD boundaries (right). The average signal from the true TAD
boundaries shows a marked enrichment within the regions demarcated by the closest TAD boundary, suggesting
that TAD fusions are a common result of re-arrangements in cancer genomes. This demarcation is lost when using
randomized TAD boundaries. d. Boxplot showing the distribution of gene-wise Z-scores of genes located in TADs
containing re-arrangements (Rearranged) or not (Non-rearranged). The log2 of gene RPKM expression values was
converted to a gene-wise Z-score for each gene across all 16 cancer cell types with Hi-C and RNA-seq data. The
boxplot shows the absolute value of these Z-scores. Gene located in TADs containing re-arrangements tend to
have higher absolute value of their Z-scores, indicating more variable expression patterns. e. Model for neo-TAD
formation. Native TAD structures are re-arranged as the result of breaks and fusions, resulting in the juxtaposition
of regulatory sequences from one domain and genes from another, potentially altering the regulatory landscape of
cancer genomes.
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